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Abstract:  The present work considers two published generalizations of the Laplace-

transform final value theorem (FVT), and some recently appeared applications of one 

of these generalizations to the fields of physical stochastic processes and Internet 

queueing.  Physical sense of the irrational time functions, involved in the other 

generalization, is one of the points of concern.  The work strongly extends the 

conceptual frame of the references and outlines some new research directions for 

applications of the generalized theorem. 
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1.  Introduction 

 

     The present work is motivated, on one side, by the appearance of the applications 

[1,2] and [3-5] of the generalization [6] of the Laplace transform final value theorem 

(FVT) [6-9], and, on the other side, by the more recent work [10] devoted to another 

generalization of the classical FVT.  We discuss applications of both generalizations 

and explore the use of irrational functions in the last generalization. Since such 

functions are rare in system theory, it was found necessary to go deeper into their 

physical origination.  This leads to some interesting analogies, which can encourage 

one to use such functions.  These topics should be interesting to system specialists. 

     The work is composed of three parts.  The first part (section 2) describes some 

classical system situations to which the generalized FVT (GFVT) should be applied.  

The second part (section 3) is devoted to application of irrational functions to some 

control and signal processing problems. Finally, the third part (section 4) is devoted to 

modern applications of the GFVT.  The connections between the topics involved are 

summarized in Fig. 1. Since some connections are best/naturally seen via physics, 

others via mathematics, our argumentation is both physical and mathematical. 

      The generalizations of [6] and [10] are very different, and for clarity, the notation 

GFVT is usually used only for the generalization of [6], as shown in Fig. 1.  This in 

no sense decreases the importance of the suggestions of [10], and in fact, the 

discussion of irrational functions influences the discussion of control systems (in 

section 2) and gives some support to the discussion of queueing theory (section 4) 

where sequences with non-integer powers arise. 
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Fig. 1:  The conceptual frame.  

 

2. Application of GFVT to classical systems  

 

2.1. The classical final value theorem  

       Consider the one-directional Laplace transform F(s) of f(t), 

 

                                                    

0

( ) ( )st
F s e f t dt

∞ −
∫=  . 

 

The classical final value theorem states that  

 

                                                        lim ( ) ( )
0

sF s f
s

= ∞
→

 .                               (1)                          
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     When f(t) arises as a solution function, depending on the structure of a physical or 

engineering system and its given input, equation (1) becomes relevant to the dynamics 

of the system.  Though function f(t) can arise in different systems, linear or nonlinear, 

Laplace transforms are especially effective for linear ones.  Therefore, we consider 

only linear equations, both ordinary and in partial derivatives.   

 

2.2. Possible nonexistence of ( )f ∞   

     The classical FVT requires existence of ( )f ∞ . Since in physical reality this is not 

always known beforehand, the case when ( )f ∞  does (potentially) not exist is most 

interesting to study. 

    There are two main possibilities for non-existence of ( )f ∞ : the suggestion of [10] 

to generalize (1) to include the case when ( )f t → ∞  as t → ∞  (and, respectively, 

0s →  in the s-domain), and the suggestion of the earlier work [6] to use the time 

average over the whole interval (0, )∞  instead of the final value ( )f ∞ . 

    The tendency to infinity in [10] is understood as, for instance the tendency of e
t
, or 

te
t
, but not of  e

t
sint.  Therefore, if we use the one-to-one map of f on ϕ  given by the 

equality 
2

tg f
πϕ

= , then ( )f t → ∞  is turned into ( ) 1tϕ →  , and ( )f t → −∞   into 

( ) 1tϕ → − . The "infinity" can thus be transformed into a finite value.      

     As for the suggestion of [6], defining the time-average over finite interval as 

 

                                                     
1

( ) ( )

0

t
f t f d

t t
µ µ≡ ∫  , 

 

we have the time-average of interest as the limit for t → ∞ : 

 

                                        
1

( ) lim ( ) lim ( )

0

t
f t f t f d

t tt t
µ µ≡ =

→∞ →∞
∫ . 

 

We thus replace (1) by     
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                                                       lim ( ) ( )
0

sF s f t
s

=
→

,                                   (2) 

 

which replaces the requirement, in FVT, of existence of ( )f ∞  by the much weaker 

requirement of a boundedness of ( )f t ,  providing existence of <f(t)>.   

     Clearly, (2) is a generalization of (1); if ( )f ∞  exists, <f(t)> = ( )f ∞ .  Indeed, since 

in this case f(t) is almost all the time close to ( )f ∞ , it is clear that  

 

                                                    
1

lim ( ) ( )

0

t
f d f

tt
µ µ = ∞

→∞
∫ .                               (3)  

 

     The proof of (2), for the cases when ( )f ∞  does not exist, is given in section 4.  

 

2.3. Comments on (1) and (2) 

1. The sinusoidal f(t) is the simplest example [8,9] warning against careless 

use of (1), since for this function lim ( )
0

sF s
s→

 = 0, but ( )f ∞  does not exist.  It is also 

the simplest supporting example for (2) since in this case lim ( )
0

sF s
s→

 equals the zero 

time average of the sinusoid. 

2. It needs to be stressed that the values of ( )f ∞  and of ( )f t  are influenced 

only by the asymptotic behavior of f(t) as  t → ∞, and thus f(t) may here denote any 

function having the same asymptotic behavior.  This observation is important when 

approximations of the functions of interest are needed.    

3. We generally require that lim ( )
0

sF s
s→

 exists, and it is argued (section 4.1) 

that at least for a function that possesses a simple spectral presentation, lim ( )
0

sF s
s→

  

and  ( )f t   exist simultaneously. 

4. It is worth stressing that ( )f t  does not exist for e
t
sint  and also for t

α
sint  

for 1α ≥ .   The latter is seen from the equality 
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1 1

0 0

1 1
sin cos cos

t t

tf d t t d
t t

α α αµ µ µ α µ µ µ− −
∫ ∫< > = = − +  ,     

 

obtained using integration by parts, which is correct for any 0α > .  The oscillations 

in  tf< >  do not vanish for 1α ≥  as  t → ∞.     

5. The practical use of average is associated, in particular, with the fact that 

any averaging means some low-pass filtering. This use of averaging is standard in 

signal processing [11], and is expected to be of interest for control problems where 

high-frequency noise, influencing the system input and its structure, has to be filtered 

(averaged).   The topic is also relevant to spatial filtering structures where the input 

and output variables are spatially distributed; see [12,13] and references there.   

 

2.4. The averaging of vectors 

         Consider the vector-function, denoted as x(t) or as ( )x t
r

,   

                                              1 2( ) ( ( ), ( ),..., ( ))T
nx t x t x t x t=

r
 ,                            

for which we can consider the limiting value ( )x ∞
r

 = 1 2( ( ), ( ),..., ( ))T
nx x x∞ ∞ ∞ .                        

We define the averaged vector            

  1 2 1 2( ) ( ( ), ( ),..., ( )) ( ( ) , ( ) ,..., ( ) )T T
n nx t x t x t x t x t x t x t< > = < > = < > < > < >

r
,  (4) 

assuming that all of the averaged components exist.  

     Then, for a constant matrix [A] of proper size we have 

 

                                                   [ ] ( ) [ ] ( )A x t A x t< > = < >
r r

,                           

 

which, for ( )x ∞
r

 existing, becomes, as t → ∞, the identity  [ ] ( ) [ ] ( )A x A x∞ = ∞
r r

.                               

     Passing now on to time-dependent matrices relevant to linear time variant (LTV) 

systems, we can compare  

                                                            lim ([ ( )] ( ))
t

A t x t
→∞

r
                                   (5) 

with  

                                                             [ ( )] ( )A t x t< >
r

 .                                   (6) 
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     Considering each component of vector [ ( )] ( )A t x t
r

 in view of (3) (as "f(t)"), and 

then applying (4) to the whole vector, we see that if the limit-vector (5) exists, then 

average (6) equals (5).  

 

2.5. The use of the transfer matrix 

    Consider now the transfer matrix function [H(s)] of a general LTI system.  We are 

interested in the time averages of the input function ( )u t
r

 and output function ( )y t
r

.      

    By definition of [ ( )]H s , 

 

                                                     ( ) [ ( )] ( )Y s H s U s=
r r

,                                     

 

with ( )Y s
r

 and ( )U s
r

 Laplace transforms of ( )y t
r

 and ( )u t
r

. In view of GFVT (2), the 

time average of the ( )u t
r

 simply results in the time average of ( )y t
r

: 

                                     
0 0

0

( ) lim( ( )) lim( [ ( )] ( ))

[ (0)]lim( ( )) [ (0)] ( )

s s

s

y t sY s s H s U s

H sU s H u t

→ →

→

= =

= =

r rr

r r  .               (7)       

 

Since [H(0)] is physically realized by ignoring all of the differential elements having 

memory, this matrix is real-valued, and, as such, can be passed on to the time domain. 

     Equality (7) includes the case ( ) [ (0)] ( )y H u∞ = ∞
r r

.  For existence of ( )y ∞
r

, it is 

sufficient to require stability of the system and existence of ( )u ∞
r

. 

      Let us determine [H(0)] for the case of the finite values existing.  Consider the 

LTI state equations 

                                                        
[ ] [ ]

[ ] [ ]

dx
A x B u

dt

y C x D u

= +

= +

r
r r

r r r
                                   (8) 

 

with a nonsingular matrix [A].  Assuming that ( )u ∞
r

, ( )x ∞
r

 and ( )y ∞
r

 exist, we have 

for t → ∞ , that 0
dx

dt
→

r
r

 (the system becomes algebraic), and (8) leads to 

                                
1( ) ([ ] [ ][ ] [ ]) ( ) [ (0)] ( )y D C A B u H u−∞ = − ∞ = ∞

r r r
,          
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that is, 

                                                 
1[ (0)] [ ] [ ][ ] [ ]H D C A B

−= − . 

 

This can also be obtained by setting s = 0 in the general transfer matrix of the system 

                                             
1[ ( )] [ ][ ] [ ] [ ]H s C sI A B D

−= − +  . 

 

    In the context of the averages, the substitution s = 0 has a deeper meaning than it is 

seen at first.  Namely, we argue below (Section 3) that, for physical processes with 

bounded variables (the components of ( )x t
r

), 
( )

0
dx t

dt
< > =

r
r

.  Then we obtain 

( )x t< >
r

by averaging the first equation of (8):  

 

                                                    
1( ) [ ] [ ] ( )x t A B u t

−= −
r r

. 

 

It is interesting to note that in order for ( )x t< >
r

to exist it is sufficient to require 

boundedness of the components of ( )x t
r

, because from this boundedness the equality 

( )
0

dx t

dt
< > =

r
r

 simply follows.  This observation becomes even more essential in the 

case of an LTV system (e.g. [9]) described by the equations 

  

                                              
[ ( )] ( ) [ ( )] ( )

( ) [ ( )] ( ) [ ( )] ( )

dx
A t x t B t u t

dt

y t C t x t D t u t

= +

= +

r
r r

r r r
   .                      

 

 For the same assumption of 
( )

0
dx t

dt
< > =

r
r

, we obtain from the first equation  

 

                                               [ ( )] ( ) [ ( )] ( )A t x t B t u t= −
r r

                             

 

which is an integral condition for x
r

 that can be used for checking any approximation 

to this vector-function, or be a constraint to a variational method of finding x
r

.     
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Returning to the LTI case, let us illustrate it the with an RLC (resistors, 

inductors, capacitors) circuit example. Figure 2 shows a scalar (one port and one 

input) circuit.  Here, vin(t) is the input function and vout(t) is the output function. It is 

immediately seen that H(0) = 1/3, that is, vout(∞) = (1/3)vin(∞) if vin(∞) exists, and, 

more generally, <vout(t)> = (1/3)<vin(t)>, regardless of what are the values of the 

capacitances and inductances. 

 

                    

R

R

R

+

-

Vout(t)Vin(t)

+

-
 

 

  Fig. 2:  By disconnecting the capacitors and short-circuiting the inductors, which 

corresponds to the values of the impedances sL and (sC )
-1

 at s = 0, we obtain the simple 

series circuit composed of 3 resistors, each of resistance R.  Obviously H(0) = 1/3.   

 

3.  Irrational functions 

       

      We turn now to the two main suggestions of [10]: to consider the cases of infinite 

f(∞) and irrational functions. The first suggestion is supported by the fact that a 

solution of a differential equation, linear or not, often has an infinite final value. An 

example is the queueing process, considered in Section 4, which is unstable, and tends 

to infinity.  However, the suggestion to use irrational functions is more constructive 

for physical applications, and we focus on it in this section. 

   

3.1. The irrational degree   

   While analyzing the cases when both ( )f ∞  and lim ( )
0

sF s
s→

 are infinite, work [10] 

considers some f(t) for large t, employing formulae that are useful for obtaining 

asymptotic expressions for f(t) as t → ∞.  In particular, it is used that for λ not 

necessarily integer,  
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( ) 1 1

lim lim ( )
( 1) 0

f t
s F s

t st

λ
λ λ

+=
Γ +→∞ →

,      λ > -1,                 (9) 

 

where Γ(.) is the gamma function.   

    Equality (9) deserves some analytical commenting. Denoting the common value of 

the right and left hand sides of (9) as ( )K λ , we have on the one hand  

 

                                                      ( ) ~ ( ) ,f t K t t
λλ → ∞  , 

and, on the other hand, 

                                                  
( 1)

( ) ~ ( ) , 0
1

F s K s
s

λ
λ

λ
Γ +

→
+

 . 

 

We may redefine f and F by dividing them both by K(λ), and keeping the same 

functional notations, we obtain the following result. 

Theorem 1:  Let F(s) be the Laplace transform of f(t).  Then, in terms of the 

asymptotic features of these functions we have the equivalence (" ⇔ ") 

 

                                ( ) ( 1)
( ) ~ , ( ) ~ , 0

1
f t t t F s s

s

λλ
λ

 Γ +
→ ∞ ⇔ →  + 

 .        (10)          

 

            We stress that we speak here only about the asymptotic parts of functions that 

need not be precisely equal to t
λ  or 

( 1)

1s

λ
λ

Γ +
+

 for all t and s respectively.     

Below, we need the following result. 

Theorem 2:   If for the ratio of the Laplace Transforms F(s) and G(s) 

 

                                                             
( )

~
( )

F s
s

G s

λ−
                                   (11) 

 

with a non-integer λ, then at least one of the respective originals, f(t) and g(t), is 

asymptotically irrational.   



 

 

 

11 

 

Proof:  Assume that both f(t) and g(t) are rational.  Then, as is known from the theory 

of Laplace Transforms, the functions F(s), G(s), and thus their ratio, are rational, 

which contradicts (11).  

The question remains whether or not irrational functions, which cannot be 

introduced by the use of simple LTI circuits, are practically significant. We therefore 

now observe how such functions can appear in the analysis of physical systems. 

 

3.2. The degrees characterizing the irrationality 

     Assume that f(t) is some meaningful physical variable related to the description of 

a medium, and thus this variable is bounded.  Then, the time average of df/dt, which 

usually appears in the dynamic description of the medium, is zero.  Indeed, since f(t) 

is bounded, 

 

         
1 ( ) 1 ( ) (0)

lim lim ( ) lim 0

0 0

t tdf d f f t f
d df

dt t d t tt t t

µ
µ µ

µ
−

< > = = = =
→∞ →∞ →∞

∫ ∫  .       (12) 

 

The boundedness of f(t) is even an excessive requirement for (12), since for, say, 

1/ 2( ) ~f t t  (12) is still correct.  For instance, for a random walk type of process, such 

that each step takes the same time, we have for the distance Rn from the origin after n 

steps that  |Rn| ~ √n and thus, according to (12), < Rn+1 - Rn > = 0, with the average 

taken over all natural n.  Thus, (12) leads to physically interesting conclusions.  

     Next, assume that df/dt is also bounded, which is realistic for many physical 

processes.  The GFVT can then be used on <df/dt> in (12), which leads to 

  

                                                          2lim ( ) 0
0

s F s
s

=
→

 .                                       (13) 

 

This formula allows us to set some assumptions regarding the asymptotic behavior of 

F(s) as 0s →  or, equivalently, regarding the asymptotic behavior of  f(t) as t → ∞ , 

for such realistic processes.  Let us consider, for simplicity, a power-law dependence: 

 

                                                            ( ) ~F s s
α−

 . 
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Then (13) requires α < 2.  For instance, 
3 / 2( ) ~F s s−

 is permitted, which means, 

according to (10), that f ~ t
1/2

 as t → ∞ . We note that for 1 < α < 2 we 

obtain lim ( )
0

sF s
s

= ∞
→

, that is, an infinite <f>, which is relevant to the discussion in 

[10], and for α < 1, we have <f> finite which is relevant to the discussion in [6].  

The hypothesis that we put here forward is that, in many physical problems, 

the only requirement a priori is the boundedness of f and df/dt.  This hypothesis would 

allow us to consider many problems with irrational f(t).  However, since the rational 

case of 1( ) ~F s s
−  is still included, this hypothesis is too general for a decision 

regarding existence of irrational functions in reality.  We thus approach, in the sequel 

of this section, appearance of irrationality more constructively, stressing the physical 

side in parallel to the purely mathematical, more straightforward (less restricting λ) 

reasoning. 

 

3.3. Non-integer integration and differentiation     

     Non-integer integration and differentiation [14-18] is a source of irrational 

functions.  Let us start by recalling some necessary basics.  For n ∈� , the formula 

 

              
11 1

1 2
0 0 0 0

1
... ( ) ( ) ( )

( 1)!

nt t
n

n nd d f d t f d
n

µµ
µ µ µ µ µ µ µ

−
∫ ∫ ∫ ∫

−= −
−

      (14) 

 

illustrates the important fact that the solution of an LTI equation can be presented as a 

convolution.  Indeed, the n
th

-order derivative of each side equals f(t), or, alternatively 

explained, since 1/s
n
 is the Laplace transform of  t

n-1
/(n-1)!, the transform of each side 

of (14) is (1/s
n
)F(s).  Thus, the n

th
-order integration of f(t), that is the solution x(t) of 

the differential equation ( )
n

n

d x
f t

dt
=  with zero initial conditions,  is identical to the 

first-order integration with the kernel 
1

( )
n

t µ −− .  

      By using a non-integer λ (Re λ� > 0) instead of the integer n in the convolution in 

the right-hand side of (14), and noting that the Laplace transform of 
1

( )

t
λ

λ

−

Γ
 is 

1

s
λ , the 
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integer-order integration in (14) is generalized to a non–integer (fractional) λth
-order 

integration                      

                       
1

0

1
( ) ( ) ( )

( )

t
D f t t f dλ λµ µ µ

λ
∫

− −= −
Γ

 .              (14a) 

Next, the non–integer differentiation ( )D f t
λ

is introduced as the inverse operation.  

       As an example, consider the non-integer differential equation  

 

                                                            
1/ 2

1/ 2

d x
t

dt
=  . 

According to (14a) we have  

 

                          3 / 2

0 0

1 1 4
( )

(1/ 2) 3

t t t
x t d d t

t

µ µ
µ µ

µ π µ π
−

= = =∫ ∫
Γ −

 .          

 

    The obtained relation 3 / 2( ) ~x t t might be expected from the consideration of the 

physical dimensions, since (d
1/2

x)/(d
1/2

t) = t  can be rewritten for some small finite 

differences as (∆x)/(∆
1/2

t) = t,  that is, 1/ 2( )x t t∆ = ∆  which has the dimension of 3/ 2
t . 

     More generally, the integral in (14a) has the physical dimension of [ ][ ]t f
λ . 

     Summarizing, integration and differentiation of non-integer order lead to irrational 

functions. However, the mathematical freedom in the choice of λ, does not eliminate 

the engineering importance of ascribing physical sense to these operations.     

Therefore, the attempt of [17] to use such integration in control theory is important.  

In what follows, we treat the example of [17], showing that the degree s
1/2

 can appear 

in a physically meaningful 2D problem, described by a linear partial differential 

equation (PDE), and stress the role of a spatial degree of freedom in this problem.  

 

3.4. The physical example 

      In this example, a semi-infinite cable having distributed (per unit length) 

resistance R and capacitance C is considered, that is, there are two independent 

variables, the distance x along the cable, and the time t.  Contrary to [17], we allow 
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not only a voltage but also a current source to be the driver at the beginning of the 

line, since in modern electronics current sources are commonly met.  

     The describing equations  

                                                           
v

Ri
x

∂
− =

∂
                                        (15a) 

                                                         
i v

C
x t

∂ ∂
− =

∂ ∂
                                       (15b) 

 

are the distribution versions of the usual equations  v=Ri  and  i=Cdv/dt  for lumped 

circuits, while the minuses before 
x

∂

∂
 appear because the positively defined ( , )v x t  

and ( , )i x t  are decreasing with the distance from the source that is placed at x = 0. 

     It is important to observe that (15a,b) yield a diffusion (or heat propagation) type 

of equation for ( , )i x t ,  

                                                              
2

2

i i
RC

tx

∂ ∂
=

∂∂
 ,                                  (16) 

 

which means that the mathematical features of the process in the cable are typical for 

a diffusion process.  Diffusion-type processes are a wide class of natural processes, 

and in some problems, for instance the present one and those associated with 

radiation, we can speak about the diffusion of energy only.  As the point, diffusion-

type processes help us to observe the different problems where irrational functions 

can appear.   

     Before going further, we note that R and C are spatially distributed parameters and 

therefore, the expression RCx
2
 (and not RC as for a lumped circuit) is measured in 

seconds.  Thus RCx
2
/t is a non-dimensional variable in terms of which the similarity 

of the cable problem to different diffusion systems or processes can be considered.    

 

3.4.1. The unusual input impedance 

      Performing Laplace transforms with respect to t of (15a,b), we obtain for the 

transforms V(x,s) and I(x,s) the equations 
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dI dV

CsV RI
dx dx

− = − = . 

 

Dividing the left equation by the right one, we obtain 

 

                                                            
dI sC V

dV R I
= ,                                   

 

from which (assuming that V and I can be zero only simultaneously) 

 

                                                              2 2sC
I V

R
=  , 

that is  

                                                                ~I s V  .                                       (17) 

 

The current thus appears to be a derivative of order 1/2 of the voltage.  According to 

Theorem 2, such a situation must yield an irrational dependence on time in at least 

one of the functions i(x,t) and  v(x,t). 

     Relation (17) is noted in [17], but [17], [18], and some other works considering the 

semi-infinite cable do not mention the similarity of the electrical process in this 

system with diffusion-type phenomena. We emphasis the observation that the reason 

for the irrationality is the additional (spatial) degree of freedom. 

      The solution of (16) is given by the convolution [19]  

 

                                                

2
1/ 2

4
3/ 2

( )
( , ) (0, )

2

RCx

t
RC x

i x t i t e
tπ

−
= ∗                      (18) 

 

where (0, )i t  is the input current source, ( )si t .  Having the form of a zero-state 

response, (18) corresponds to the case when the source is connected at t = 0 to the line 

without any current; i.e. ( ,0) 0i x ≡ .  Observe also that the unit of ampere is obtained 

because the integration by t in the convolution adds second to the dimension (while 

(RC/t)
1/2

x = (RCx
2
/t)

1/2
 is non-dimensional). 
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     As the main point of this example, for any rational source-function (0, )i t , the 

solution function ( , )i x t  is irrational.  This is the feature of the cable as a diffusive 

system. For an input voltage source ( ) (0, )sv t v t= , the problem of the semi-infinite 

cable is solved similarly.  (See also [17].)  

 

3.4.2. Comparison with other physical systems 

       That V/I ~ s
−1/2

 in (17), means that the input impedance of the semi-infinite cable 

in terms of the frequency response equals Z(ω) ~ ω−1/2
 . It is interesting to note, for 

comparison, that a lumped inductor L having an iron core composed of insufficiently 

thin layers, has ZL(ω) ~ ω1/2
.  The latter is because the depth of penetration (or decay) 

of electromagnetic field into iron (the known skin effect) is proportional to ω−1/2
.  

Since the thick layers are not completely filled by the magnetic field, the inductance is 

proportional to the depth of the penetration, and thus is frequency-dependent; which 

yields ZL(ω) = jωL ~ ωω−1/2 = ω1/2
 (more precisely, | ZL(ω)| ~ ω1/2

,  because for such 

inductor Re[ZL(ω)] ≈ Im[ZL(ω)]), instead of  ZL(ω)  ~ ω  for the usual inductor.  Note 

that the decaying of electromagnetic field in any conductive medium (here of the 

inductor's core) is also a diffusion-type process.  

       Some works in which irrationality of the type s
1/2

 is obtained in other physical 

systems, are cited in [18].   

       The role of the spatial degree(s) of freedom, observed in the diffusion equation, is 

also well seen in the problem of Brownian movement; more generally, in the "1/f-

noise" systems problems.  In such problems, the power spectrum of a time function, 

i.e. the square of F(jω), or F(s), is observed to be proportional to 1/s, which means 

that F(s) is proportional to s
−1/2

.   The time processes in such systems are associated 

with the spatial movement of some particles; the processes in these additional degrees 

of freedom cause the irrationality in the time-dependence. 

     A relevant physical outlook on the possible irrationality of the solution of such a 

spatially-temporally is obtained when we consider the role of time inversion, as 

follows. 
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3.4.3 The degree of irrationality and time-inversion 

     In the field of PDE, irrational functions are obtained not only for the diffusion-type 

equation, but also for the wave equation with a dissipation (friction) term. Consider 

 

                                                     
2 2

2

2 2

u u u
a b

tt x

∂ ∂ ∂
= +

∂∂ ∂
                                 (19) 

 

where a and b  are positive constants.  Work [19] treats this equation by describing 

the oscillations of a string with a damping given by b.   It is shown in [19] that for any 

fixed x, the oscillations of the string, caused by a pinch, are decaying as t
−1/2

.  The 

irrationality can be explained by the role of the terms in (19) and (16), which include 

t

∂
∂

, responsible for the dissipation of energy.  Such a term is associated with the 

irreversibility of the dissipation process; reversibility would contradict the fact of the 

heating that causes the damping, that is, the law of increase of entropy.  Contrary to 

that, the undamped wave equation (b = 0) is not changed by t → -t, and the undamped 

wave would propagate as it is with the time inversion in the back direction, which 

means reversibility of the process.  

      It is most interesting to observe, however, how simply the mathematics 

"formalizes" the fact of irreversibility of the process described by such equation. 

Since such factors as t
±1/2

 or  t
±3/2

, appearing in the solution functions, include √t, the 

physical requirement of realness of the solution function quite formally prohibits 

negative t, that is, time inversion. For this reason, we can also expect, for instance, 

such a degree as t
3/4

, but not as t
1/3

 or t
3/5

, to arise in physics problems with 

irreversibility: in statistical theories, hydrodynamics, and non-stationary problems of 

quantum mechanics.     

     The above arguments suggest, furthermore, to consider PDE-s having a term which 

is not necessarily diffusive, but which reverses its sign with inversion of time, for 

instance 
2

2

u
t

t

∂

∂
, or 

2
3

2

u
t

x

∂

∂
.   
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3.5. Ordinary equations with singular coefficients 

    For our last, and again purely mathematical, example of obtaining irrational 

functions, we return to ordinary (1D) differential equations, again dealing with 

functions of only time.  

      It is known from the analytical theory of ordinary (generally, complex) differential 

equations [19] that, if the coefficients in the equations are singular functions, the 

solution function can include non-integer degrees.  For instance, seeking solution of 

the equation 

                                                      
2

2 2
0

d f a df b
f

t dtdt t
+ + = ,                                 

 

with a and b constants, of the form t
λ , we obtain for λ  the characteristic equation 

2 ( 1) 0a bλ λ+ − + = . The roots 1λ and 2λ  (needed to form f(t) = 1 2At Bt
λ λ+ , with A 

and B constants) need not be integers. Thus, ordinary differential equations including 

derivatives of integer order, but having singular coefficients also can be a source of 

irrational functions.  

    We conclude that realization of irrational functions is an interesting research 

direction.           

                                            

3.6. Some further comments on [10] 

1. Being concerned with composition of functions, one notes that the usual 

partial fraction expansion of F(s), appearing in the theory of the LTI circuits [7,8], is a 

composition of f(t) using some linearly independent functions.  The rational {F(s)} 

form a (mathematical) field [20] since summation and multiplication operations, and 

the inverse operations subtraction and division, always preserve the rational structure. 

Contrary to this, irrational functions do not form any linear space, since the terms 

responsible for irrationality can be mutually canceled with additions or subtractions. 

The irrational functions are treated in [10] as some individual objects, and 

investigation of how such functions can compose each other, that is, how the sets of 

such functions can be used effectively for particular problems in control theory, 

should also be a research continuation on the line of [10].   
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2. Circuit specialists use the frequency response ( )H jω  ( ( )H s , s jω→ , 

ω ∈ R ) only for systems possessing a finite and stable impulse response h(t), when 

( )h ∞  exists and is finite.  Thus, the cases when f(t) is the impulse response of a 

system have to be carefully separately considered as regarding application of the 

conclusions of [10] related to ( )f t → ∞ .   

3. Results of [10] relate only to continuous functions and should be 

generalized to the important discrete case, that is, to sequences and their z-transforms.  

In the section 4, we encounter a discrete sequence nf → ∞ , with fractional degree. 

 

4.  Time average instead of final value  

 

       In this last section, we present some elements relevant to the use of the GFVT.  

We provide some proofs, discuss the discrete case and go into some applications. 

 

4.1 Proofs 

4.1.1 Periodic functions 

    Following [6], let us first prove the GFVT (equation (2)) for periodic functions that 

(when not constant) have no ( )f ∞ , using the known formula for the Laplace transform 

of a T-periodic function, f(t+T) = f(t),  
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∫
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−

=

.            (20) 

 

At the last step of this derivation, we used that for a T-periodic function <f(t)>T = 

<f(t)> .   

     It is obvious from (20) that, for any periodic function, lim ( )
0

sF s
s→

 and <f> exist 

simultaneously.    
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4.1.2. On the spectral composition of  f(t)  

     An alternative way to obtain (20) is given by employing a constant function 

together with sinusoidal functions, and using the Fourier expansion of any periodic 

function.  This possibility is more far-reaching since then the use of the linearity of 

the operator sF(s) with regard to F(.) and the approaching F(.) as a composition, 

allows us to consider any real-valued almost periodic function 

  

                                                            ( ) k
t

f t c ek
k

λ= ∑                                      (21) 

 

with any { }kλ  (when complex, in conjugated pairs).  For instance, 

sin sin 2A B t C tω ω+ +  is also included. Such functions can be relevant to different 

stochastic-processes applications, as those in [1-5].   

      It is seen from the above construction that when spectral analysis of an f(t) (not 

necessarily periodic) is possible, then lim ( )
0

sF s
s→

 and <f(t)> exist simultaneously, and 

for such functions the GFVT is also proved. 

 

4.1.3. Comments 

1. While for the case of ( )f ∞  existing (and then also
2 2( ) ( )f t f→ ∞ ), we 

have for the dispersion of  f(t) 

                                             

2 2 2

2 2

( )

( ) ( ) 0

f f f f

f f

− < > ≡ < > − < >

= ∞ − ∞ =
 ' 

 

for ( )f ∞  not existing, any non-constant bounded asymptotic form of f(t), for instance 

that given by equation of the type (21), always provides a nonzero dispersion. 

2. For a uniformly limited (not tending to infinity) f(t), the non-existence of 

( )f ∞  always means some oscillations of f(t).     

3. In many physical systems, large-scale time processes are not stabilized, and 

we can speak just about <f(t)>.  An example can be, for instance, intensity of wind 

velocity at a certain spatial point in the atmosphere.  This parameter can be important, 

for wind stations generating electrical energy, where the pressure and the energetic 
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action are defined by square of the velocity function v(t), and the Laplace transform of 

v
2
(t) should be considered.         

 

4.2. The discrete case 

    Using arguments, similar to those that led to (2), work [6] also suggests the discrete 

analog of (2) for the z-transform F(z) of a sequence { , 0}nf n ≥ ,  

 

                                                        
0

( ) n
nF z f z

∞ −
∑= , 

namely 

                                                    lim (1 ) ( )
1

z F z fn
z

− =
→ +

 ,                             (2a) 

 

which generalizes the classical discrete final value theorem [3]     

 

                                                     lim (1 ) ( )
1

z F z f
z

− = ∞
→ +

  .                             (1a) 

 

Thus, sequences fn not having a limit f∞  can be considered.  When f∞  exists, 

f fn = ∞ , i.e., (1a) is included in (2a), as is the case for continuous functions. 

However, many sequences have average value fn , but not a final value f∞ .  For 

instance, the sequence {1,-1,1,-1, ..} has a zero average but no limit value, and the 

same goes for {1,0,0,1,0,0,1, …} with <fn> = 1/3.  All these cases fit (2a).       

 

4.3. Applications of the GFVT 

     Quoting [6], works [1,2] apply (2a) to the theory of queueing (in particular in the 

Internet), and works [3-5] apply (2) to the theory of Brownian motion.  In all these 

works, long-term time processes are considered. 

 

4.3.1. Brownian motion 

     The motivation in [3-5] is associated with ergodicity of some physical systems, 

that is, with the equality of statistical (ensemble) averages and time averages over the 

trajectory of a single particle. Allowing calculation of a time average of a variable 
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over a trajectory, the GFVT gives the statement of ergodicity a constructive meaning.  

Namely, a time function, for which the time average is treated as in [6], is associated 

in [3-5] with such a trajectory, and then the ergodicity helps in calculating 

thermodynamic properties of a physical medium, which, by definition, are based on 

the ensemble averages. We will not go here into further details about this application 

of the GFVT.      

 

4.3.2. Use of the GFVT in queueing theory  

      The application of the GFVT in [1,2] relates to a queueing problem in the Internet. 

Since this application is relevant also to [10], it is therefore chosen to be considered in 

more detail. 

     Queueing theory is the mathematical study of queueing phenomena which occur in 

many daily applications. Modern applications of queueing theory are the design and 

operation of telecommunication and computer networks, such as the Internet. 

    In abstract terms, a queueing system is composed of one or more service units and a 

queue. The service units perform some kind of service to customers, whereas the 

queue is used by customers to wait until a service unit can service them. Customers 

arrive in the queueing system, wait in the queue until a service unit becomes 

available, are served by one of the service units, and leave the queueing system (see 

Figure 3).  

        

 

Fig. 3: A queueing system consists of servicing units and a queue. Customers require the 

service of the servicing units and go through 4 consecutive stages: they arrive in the queueing 

Arriving 

customers 

Customers 

in queue 

Servicing 

units Leaving 

customers 
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system, wait in the queue until one of the servicing units becomes available, are served by this 

service unit and finally leave the queueing system. 

 

   In the study of a particular queueing system, three steps are distinguished. First, the 

queueing system is transformed to a mathematical queueing model. This step 

encompasses modeling of the arrival and service process. The arrival process 

describes the way in which customers arrive to the queueing system, while the service 

process summarizes the way in which customers are serviced. It is important to note 

that we assume a stochastic framework. In general, all the variables are stochastic. 

Second, we determine the performance measures we want to calculate. Popular 

performance measures are the expected values of the number of customers in the 

system and of the sojourn time of a customer. Third, the queueing model is analyzed.  

    The transform technique is one of the most popular analysis techniques. With this 

technique, the equations that relate the output to the input are transformed to the 

Laplace and/or z-transform domain, and solved in this domain. Finally, performance 

measures are calculated from the transforms.  

   To clarify the use of the FVT and GFVT in queueing theory, let us consider an 

example taken from [1], introducing first the mathematical terminology. 

 

4.3.2.1 Some basic concepts for the modeling 

    In the queueing model, time is discretized.  It is divided into slots, all of equal 

length. The number of customer arrivals, ek, in the k-th slot is independent of the 

numbers of customer arrivals in other slots. The ek (k≥1) have a common probability 

generating function (PGF) E(z), defined as E[z
e
k], with E[.] the expected value 

operator of a stochastic variable. Note that E(z) characterizes the arrival process 

completely. We further assume one service unit that services all the customers in a 

First-In-First-Out manner. When customers are present in the system at the beginning 

of a certain slot, the service unit starts to service the customer that is waiting the 

longest in the queue.  This service ends at the end of the slot. As a final input, we 

characterize the sojourn time of the first arriving customer. A natural assumption is 

that the first customer arrives in a system with no customers present.  He can then be 

served directly and his sojourn time is equal to exactly one slot. However, in [1] we 
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allow for a more general sojourn time of the first arriving customer.  We merely 

assume that its PGF, D1(z), is given.  

    The performance measure of interest is the expected sojourn time, E[dn], of the n-th 

arriving customer in the system. More precisely, we want to know the number of slots 

the n-th arriving customer is expected to be present in the queueing system. The 

expected sojourn times can be regarded as a sequence {fn, n≥1}, with fn= E[dn].  Since 

the calculation of the complete sequence {fn, n≥1} is not straightforward, calculation 

of f∞ (if it exists) or of < fn > is of great interest.  This is where the (G)FVT comes into 

play. 

 

4.3.2.2 Thus the mathematics works 

     In order to calculate the average expected sojourn time  

< fn >, we start from the z-transform of the sequence {fn, n≥1}.  It is obtained in [1] as 
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with f1 the expected sojourn time of the first customer, E(z) the PGF of the number of 

arrivals in a slot, D1(z) the PGF of the sojourn time of the first customer, and Y(z) the 

unique solution of the equation x-E(xz) = 0, inside the complex unit disk of the x-

plane for all z, |z|<1. Here, D1(z), f1 and E(z) are input functions and F(z) is the output 

function. Using the GFVT [6] to the above expression for F(z), we can calculate < fn > 

explicitly as 
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Here, E’(1) and E”(1) are the first and second derivative of E(z) at z = 1.  Note that 

l’Hopital’s rule is used multiple times in the case E’(1)<1, since E(1)=Y(1)=1, by 

definition.  Equation (22) shows that if E’(1)<1 and f∞ exists, the above formula yields 

the final value f∞ of the sequence {fn, n≥1}.   
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   In queueing-theoretic terms, f∞ is called the steady-state value, or the expected 

sojourn time when the system has reached a steady state.  This value can be found by 

the standard FVT.  However, the GFVT is more generally applicable as it yields the 

average expected sojourn time if E’(1)<1 also for f∞ not existing [6]. Furthermore, it 

correctly shows the tendency to infinity if E’(1)≥1, which is relevant to [10].  In the 

latter case, we have an unstable queueing system.  This can be understood as follows: 

on average more customers arrive in the system than can be serviced.  The number of 

customers waiting in the queue therefore increases unboundedly in time. The expected 

sojourn time of customers is also increasing and fn  → ∞  for n → ∞.  Some 

illustrating examples for the three distinguished cases are shown in Figure 4. 
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Fig. 4:  Three illustrative examples of the sequence {fn, n≥1}, with fn the expected sojourn 

time of the n-th arriving customer in the queueing system.  The red sequence has a final value 

f∞ equal to 2. The green "two-level" sequence does not converge to a final value, but its 

average < fn > equals 2 as well.  The blue sequence is unbounded and thus fn  → ∞ for n → ∞.  

More precisely, fn ~ n1/2 in this case. The red sequence can be treated with the standard FVT; 

the green sequence is an example where the GFVT comes in handy, while the blue sequence 

is related to the irrational functions treated in [10].    
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5.  Conclusions 

 

      Two generalizations of the final value theorem [6,10] were considered. In both 

cases, the final value theorem is extended to cases when the final value of the function 

of interest does not exist.  Both extensions trigger some interesting research questions, 

which we have touched upon in this paper. For the line of [10], we have suggested the 

consideration of compositions of irrational functions, the exploration of the physical 

origination of these functions, and the extension to the discrete case.  For the line of 

[6], we have focused on the role of transfer functions and on applications in the fields 

of classical and stochastic control. The whole field of possible applications of the 

GFVT is shown to be interesting and promising, especially for stochastic problems.  

    We hope to have given the reader a taste of possible future research directions 

originating from the treated generalizations of the final value theorem. 
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