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Abstract—The decrease of IC feature size and the increase of retaining the important physical features of the original system
operating frequencies require3D electromagnetic methods, such [4]-[7]. The development of a reduced order model (ROM)
as the Partial Element Equivalent Circuit (PEEC) method, for of EM systems has become a topic of intense research over

the analysis and design of high-speed circuits. Very large systems . L . .
of equations are often produced by3D electromagnetic methods the last years, with applications to vias, high-speed packages,

and model order reduction (MOR) methods were proven to be interconnects, and on-chip passive components [8]-[11]. An
very effective in combating such high complexity. During the increasing popularity among electromagnetic compatibility
circuit synthesis of large-scale digital or analog applications, it engineers has been achieved by the Partial Element Equivalent
is important to predict the response of the circuit under study Circuit (PEEC) method, since it is able to transform the
as a function of design parameters, such as geometrical and P . .
substrate features. Traditional MOR techniques perform model E_M system under examlrjathn _|nt0 a pas_swe RLC eqU'Va'?”t
order reduction only with respect to frequency, therefore the Circuit. PEEC uses a circuit interpretation of the Electric
computation of a new electromagnetic model and corresponding Field Integral Equation (EFIE) [12], thus allowing to handle
reduced model is needed each time a design parameter iscomplex problems involving EM fields and circuits [2], [13],
modified, reducing the CPU efficiency. Parameterized model 1141 Nonlinear circuit devices such as drivers and receivers are
order reduction (PMOR) methods become necessary to reduce . . Lo . .
large systems of equations with respect to frequency and other usuallly c.onngct.ed with PEEC equivalent circuits US|_ng a t_lme
design parameters of the circuit, such as geometrical layout or domain circuit simulator (e.g. SPICE [15]). However, inclusion
substrate characteristics. of the PEEC model directly into a circuit simulator may be
We propose a novel PMOR technique applicable to PEEC computationally intractable for complex structures, because
analysis which is based on a parameterization process of matrices ihe number of circuit elements can be in the tens of thousands.
generated by the PEEC method and the projection subspace In this case, a first solution consists in the use of fast multipole
generated by a passivity-preserving MOR method. The proposed ' . . P
PMOR technique guarantees overall stability and passivity of Methods [16], [17]. The drawback of these techniques relies on
parameterized reduced order models over a user defined range of the fact that they are dependent on the Green’s function of the

design parameter values. Pertinent numerical examples validate problem. Another option is represented by MOR techniques

the proposed PMOR approach. which are adopted to reduce the size of the PEEC model [7],
Index Terms—Partial Element Equivalent Circuit method [18], [19].

(PEEC), parameterized model order reduction (PMOR), inter-  Traditional MOR techniques perform model reduction only

polation, passivity. with respect to frequency. However, during the circuit syn-

thesis of large-scale digital or analog applications, it is also

|. INTRODUCTION important to predict the response of the circuit under study

. . as a function of design parameters, such as geometrical and
EIeptromagpeﬂc (EM) methqu [1]_[3]. have become Substrate features. A typical design process includes optimiza-
creasingly indispensable analysis and design tools for a vari

fioh and design space exploration, and thus requires repeated

Ofs C;Pqﬁlsg l?ég:Speiedlasryztimssté;zeof Sée <;ft_;c)r:]esse hnlith% ulations for different design parameter values. Such de-
usually resulls in very large sy quatl which an activities call for parameterized model order reduction
prohibitively expensive to solve. Hence, model order reducti MOR) methods that can reduce large systems of equations

(MOR) techniques are crucial to reduce the complexity of E ith respect to frequency and other design parameters of the

models and the computational cost of the simulations, Wh'ﬁl?rcuit, such as geometrical layout or substrate characteristics.
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The authors in [22] propose to approximate the system transéapanded into a series of basis functions. Pulse basis functions
function by low-order polynomials of process parameterare usually adopted as expansion and weight functions. Such
instead of the projection subspace and/or the reduced ordkoice of pulse basis functions corresponds to assume constant
system matrices. The algorithm described in [22] computearrent density and charge density over the elementary volume
the projection subspace and generates parameterized R{ductive) and surface (capacitive) cells, respectively.

such that the multiparameter moments are matched. However-ollowing the standard Galerkin's testing procedure, topo-
the structure of such method may present some computatiologiical elements, namely nodes and branches are generated
problems, and the resulting parameterized ROMs usually safidd electrical lumped elements are identified modeling both
fer from oversize when the number of moments to mattche magnetic and electric field coupling.

is high, either because high accuracy (order) is required orConductors are modeled by their ohmic resistance, while
because the number of parameters is large. The Compact Onlefectrics requires modeling the excess charge due to the
Reduction for parameterized Extraction (CORE) algorithmiielectric polarization [29]. Magnetic and electric field cou-
[23] applies a two-step explicit-and-implicit scheme for multipling are modeled by partial inductances and coefficients of
parameter moment matching. It is numerically stable, bpbtential, respectively.

unfortunately it does not preserve passivity. The Parameterized’ he magnetic field coupling between two inductive volume
Interconnect Macromodeling via a two-directional Arnoldcells « and 3 is described by the partial inductance

process (PIMTAP) algorithm presented in [24] is numerically po 1 1
/ / ——dugdug
7T e Jus Bap

stable, preserves the passivity of parameterized RLC net- Lpap = 1)
works, but, such as all multiparameter moment-matching based
PMOR techniques, it is suitable only to a low-dimensionavhereR.; is the distance between any two points in volumes
design space. uo andug with a, andag their cross sections. The electric
This paper proposes a PMOR method applicable to PEH€Id coupling between two capacitive surface céllandy is
analysis which is based on a parameterization process®deled by the coefficient of potential
matrices generated by the PEEC method and the projection 1 1 1
subspace generated by a passivity-preserving MOR method. Poy=1-353 745505, )
The Laguerre-SVD MOR method [19] is used in this paper. . ) 07 IS5 Sy oy )
Overall stability and passivity of parameterized ROMs af¥heréfis, is the distance between any two points on surfaces
guaranteed by construction over the design space of interdsgnd”, while S5 and.S, denote the area of their respective
PEEC models and parameterized ROMs describe an admik!faces. _ _
tance ) representation. However, it should be noted that the Generalized Kirchoff's laws, for conductors, can be rewrit-
proposed PMOR technique is not bound to the Laguerre-S\VE) @S

Anap

method, other passivity-preserving MOR techniques based on p-1 dv(t) AT 4 i (8) =0 3a
a projection subspace approach can be used, such as the dt i) + 1) (3a)
PRIMA method [7]. Cav) 1 A0 pe o 3b

The paper is organized as follows. Section Il describes v(t) Poat i(t) (3b)

the modified nodal analysis (MNA) equations of the PEEGhere A is the connectivity matrixv(t) denotes the node
method. Section Il describes the proposed PMOR methqsbtentials to infinity,i(t) and i.(t) represent the currents
Finally, some pertinent numerical examples validate the prlowing in volume cells and the external currents, respectively.
posed technique in Section IV. When dielectrics are considered, the resistance voltage drop
Ri(t) is substituted by the excess capacitance voltage drop that
Il. PEECFORMULATION is related to the excess charge by(t) = C;'qu(t) [29].
The PEEC method [2] stems from the integral equation formence, for dielectric elementary cells, equations (3) become

of Maxwell's equations. dv (t)

The main difference of the PEEC method with other integral P*17 —ATi(t) +i.(t) =0 (4a)
equation based techniques such as the Method of Moments di(t)
(MoM) [1] resides in the fact that it provides a circuit inter- —Av(t) - L, T vq(t) =0 (4b)
pretation of the EFIE [12] in terms of partial elements, namely

) e e : . dva(t)
resistances, partial inductances and coefficients of potential. i(t) =Cy o (4c)

Thus, the resulting equivalent circuit can be studied by means ) . )
of SPICE-like circuit solvers [15] in both time and frequenC\'@ selection matrixK is introduced to define the port voltages

domain. y selecting node potentials. The same matrix is used to obtain
Over the years, several improvements of the PEEC methi}§ €xternal currents(¢) by the currentd (#) which are of
have been performed thus allowing to handle complex proBPPOSite sign with respect to the, port currentsi, ()
lems involving both circuits and electromagnetic fields [2], vp(t) = Kv(t) (5a)
In the standard approach, volumes and surfaces are dis- ¢ A
cretized into elementary regions, hexahedra and patches reAn example of PEEC circuit electrical quantities for a
spectively [27] over which the current and charge densities arenductor elementary cell is illustrated, in the Laplace domain,
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in Fig. 1 where the current controlled voltage souregs;;1;
and the current controlled current sourcés; model the
magnetic and electric field coupling, respectively
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Then, potentials/(t) are expressed in terms of charges as

v(t) =Pq(?) ®)
. _ o _ B Hence, equation (6) can be recast as
Fig. 1. lllustration of PEEC circuit electrical quantities for a conductor
elementary cell. P Onmm Onn,nd Onn,,np q(t)
Oniann LP 0"1: nd Oni7np i i(t) —
A. Descriptor representation of PEEC circuits Ongnn Ongmi Ca Oy, | dt Yd(t)
Let us assume that the system under analysis consists=__"*"" "™ Onyina Onyiny ()
of conductors and dielectrics. Let the current and charge C x(t)
density be defined in volumes and surface of conductors and [ 0, ,, -PAT o0, ,, PK? ] q(t)
dielectrics, respectively. The Galerkin’s approach is applied to AP R P 00, ,n, i(t)
convert the continuous electromagnetic problem described by | 0,,,, —®7 0,,., 00y, v4(t) *
the EFIE to a discrete problem in terms of electrical circuit -KP 0,,n; Onpng Onpn, | is(t)
quantities, e.g. current§?) and node potentials(t). Let us
denote withn,, the number of nodes and; the number of G x(®)
branches where currents flow. Among the latter, we denote Onptnitnan, | [ vp(t) ] (9)
with n. and ng the number of branches of conductors and L, m, ——
dielectrics, respectively. Furthermore, let us assume to be B u(t)

interested in generating an admittance representation havin% a more compact form, the previous equations (9) can be

n,, output currentd,,(¢) under voltage excitatiow,(t). Since . ritten as
dielectrics require the excess capacitance to model the po-
larization charge [30], additional; unknowns are needed in

addition to currents. Hence, if the MNA approach [31] is used,

the global number of unknowns is, = n; + ng + ny, + np.

In a matrix form, the previous equations (3)-(5) read where x(t)

Cd);igf) = —Gx(t) +Bu(t) (10a)
i,(t) = LTx() (10b)
[q(t) i(t) va(t) i(t)]". Since this is an

ny-port formulation, whereby the only sources are the voltage

Innvnn Onn»ni Onn,nd Onn,np V(t)
0717:-,nn LP Oniﬂld Onianp i l(t) —
Ond,nn Ond,ni Cd Ond,np dt Vd(t) B Scallng
Onp,n" TopsThi Onmnd Onp,np i3<t)
c x(t)
Onnann _PAT Onn,nd PKT ] V(t)
| A R & 0, i) |,
O"d)"n -7 Ond7nd Ond,np Vd(t)
—K Onp,n'i Onpvnd 0”1’7"7’? J ié(t)
G x(t)
{ e NEAORC
-1 P
Np,Mp N——

e u(t)

C. Properties PEEC formulation

sources at they,-port nodesB = L whereB € " *"»,

The system of equations (9) is typically ill-conditioned
because charges are usually much smaller than currents and
voltages. Correspondingly, the entries of the matfixare
larger than other elements in matric€sand G by several
orders of magnitude. The ill-conditioning of (9) prevents MOR
methods to be efficiently applied. In order to mitigate such a
problem, scaling can be adopted. The units of the electrical
guantities are changed consistently as shown in Table I.

) ) ) ) ) ) In order to apply the proposed PMOR technique, it is
wherel,, , is the identity matrix of dimensions equal to thghqrtant to specify the properties of the matrices involved

number of ports. Matri>x® is
q) Onc,nd :|

- [

()

nd,nd

in the PEEC formulation (9).
Both matrices describing electric and magnetic field cou-
pling, P andL, respectively, are full symmetric matrices. In
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the case of orthogonal geometries, mutual partial inductanadsdescribing the system under study in points of the design
corresponding to orthogonal currents are equal to zero. Ev&grace previously not used for its construction. To clarify the
in this case, rows and columns can be recast so that the pansg of these two design space grids, we show in Fig. 2 a
inductance matrixL,, is block-diagonal. Since each block ispossible estimation and validation design space grid in the
symmetric positive definite, the overall matiy, is symmetric case of two design parameteys= (g(V), g(?).

positive definite as well. The coefficient of potential matix

is also symmetric positive definite [32].

When pulse basis functions are used, as is in the standard ‘ ‘ ‘
PEEC formulation [2], resistance and excess capacitance ma- O Validation gid
trices, R and C, respectively, are diagonal and symmetric 1 ’ ’ ’ ’ ]
positive semidefinite and definite. The mati is diagonal, ° ° ° ° °
with positive diagonal elements corresponding to conductor  *° : ’ ’ ’ ]
elementary cells, while the diagonal elements corresponding _ ° ° ° ° °
to dielectric elementary cells are equal to zero. The magjx "o 06F ) ) ) ) ]
is diagonal with all the diagonal elements positive. © © © © ©

Assuming the previous matrix properties, it is easy to prove %[ ) - - - 1
that the matriceC, G satisfy the following properties © © ° © ©

0.2% X x X X 4
(@] O () (@] O
c=cCc">0 (11a) 0 ] X X X
G_ + GT Z O (llb) 0 0.2 0.4 g(l) 0.6 0.8 1

The properties of the PEEC matric# = L, C= o 2 Fig. 2.  An example of estimation and validation design space grid.
0, G+ G7” > 0 ensure the passivity of the PEEC admittance
model Y(s) = LT (sC + G)~'B [33] and allow to exploit
the passivity-preserving capability of the Laguerre-SVD MOR .
algorithm [19]. When performing transient analysis, stabilityo" PMOR algorithm

and passivity must be guaranteed. It is known that, while aConsidering the influence of the design parametgrs-
passive system is also stable, the reverse is not necessdly’; - g™")), the MNA formulation (10a)-(10b) becomes
true [34], which is crucial when the reduced model is to

be utilized in a general-purpose analysis-oriented nonlinear dx(t,g) B
simulator (e.g. SPICE). Passivity refers to the property of (9) dt Glg)x(t.g) + Bu(t)  (123)
systems that cannot generate more energy than they absorb i,(t,g) = L7x(t,g) (12b)

through their electrical ports. When the system is terminat@lge assume that a topologically fixed di tisati hi
on any arbitrary passive loads, none of them will cause the oo pologically fixed discretisation mesh 1S
used and it is independent from the specific design param-
system to become unstable [35], [36]. . .
eters values. It preserves the size of the system matrices as
well as the numbering of the mesh nodes and mesh edges.
Il. PARAMETERIZED MODEL ORDER REDUCTION The mesh is only locally stretched or shrunk, when shape
In this section we describe a PMOR algorithm that is abjgarameters are modified. In general, the global coordinates
to include, in addition to frequency, N design parameters the nodes as well as the length and orientation of the edges
g = (gW,...,g™) in a parameterized ROM, such as thef the topologically fixed mesh change when shape parame-
layout features of a circuit (e.g. lengths, widths,...) or thiers change; however, these changes are neither introducing
substrate parameters (e.g. thickness, dielectric permittivingw state variables nor eliminating existing state variables.
losses,...). The main objective of the PMOR method is fthe matricesB, L’ are uniquely determined by the circuit
accurately approximate the original scalable system (havitgpology and therefore remain constant, while the matrces
a high complexity) with a reduced scalable system (havirend G are defined as functions of the design parameters. At a
a low complexity) by capturing the behavior of the originatleeper level in the MNA equations (12a)-(12b), the previous
system with respect to frequency and other design paramassumptions lead to hal®g),L,(g), C4(g), R(g), while the
ters. The design spac®(g) is considered as the parameteother internal PEEC matriceA, ¢, K are constant. The pro-
spaceP (s, g) without frequency. The parameter spags,g) posed PMOR method starts from computing the multivariate
contains all parameters, g). If the parameter space is (N+1)-modelsP(g),L,(g), Ca(g), R(g) guaranteeing some matrix
dimensional, the design space is N-dimensional. The propogedperties, as explained in Section Il1-B.
algorithm guarantees stability and passivity of a parameterizedVhen the multivariate model®(g),L,(g), Ca(g), R(g)
ROM over the entire design space of interest. Two data gridee computed, instead of assembling a PEEC model and
are used in the modeling process: an estimation grid angerforming a MOR step for each point of interegt =
validation grid. The first grid is utilized to build parameterizecag,(i), ...,gg}l\’)) in the design space, the Laguerre-SVD MOR
ROMs, while the second grid, more dense than the previooethod [19] is applied to each PEEC model related to the
one, is utilized to assess the capability of parameterized RORimation design space grid
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« choose a value forx (positive scaling parameter of B. Multivariate interpolation of the internal PEEC matrices

Laguerre basis functions) and the reduced order Starting from multivariate data samples
» Solve(G +aC)Qo = B; {91, P(91), Lp(9,), Ca(gr), R(g,), Kr(g) g, the
e for k = 1,....9 — 1 solve (G + aC)Qx = (G — multivariate  models P(g),L,(g), Ca(g), R(g), K (g)
aC)Qy-1 are built. While the interpolation process of the set of
o K, =1[Qo;---, Qqg1l; Krylov matrices is performed without any constraint,

and a corresponding set of Krylov matricKs. is computed. the multivariate models of the internal PEEC matrices
Then, this set of Krylov matrices is interpolated and modelquteserve the positive definiteness®fg), L,(g), Ca(g) and
asK.,.(g). The sampling density in the estimation design spatiee positive semidefiniteness dR(g). Consequently, the
grid is important to accurately describe the parameterizedoperties (11a)-(11b) of an admittance PEEC model and its
behavior of an EM system under study over the entire desigglated passivity are satisfied for any point (g,(cll), ...,g,i'jv))
space of interest. A technique to choose the number @fer the design space. Since the matrifdg) and C,(g)
points in the estimation grid can be found in [37]. Oncare diagonal, only the diagonal elements are interpolated
the multivariate model®(g),L,(g), Ca(g),R(g),K.(g) are by means of a positivity-preserving interpolation scheme.
built, a PEEC model (s,§) = LT (sC(g) + G(@))"'B can Multivariate interpolation schemes that belong to a class
be assembled and a projection maftiXg) can be computed of positive interpolation operators [39] can be used, e.g.
by means of the singular value decomposition [38]K0f(G) Shepard’s method [40], multilinear and simplicial methods

[19] for any pointg = (g,(i% ...,g,@'v)) [41]. Such interpolation schemes have interpolation kernel
functions that only depend on the design space grid points. In
U@)=@V(@©)" = SVDK,(9).. (13) the case of multilinear interpolation, each interpolated matrix

T(g™,...,¢g™)), being in turnCy(g), R(g), can be written
Finally, a congruence transformation is applied o08S
C(9). G(9), L, B usingU(g) [19]

T(g",....g"™)) = (15)

C.(§) = U@)7C@U®EG 14a U

9 =iy CouvE S Y T eyl ()
Gr(g) = U(g) G(g)U(g) (14b) k=1 kn=1 k177 OTkN
B,(9)=U(Q)"B (140)  where T(gm ) are in turn

= T ky 2t kn
L.(@=U@ L 14d) ¢ W VR ooy, therefore the  discrete

d,(gk PPN N ) iy sy, )

to obtain the parameterized reduced model. A flowchart thft of Ca, R matrices related to the estimation design space
describes the different steps of the proposed PMOR meth@@d- Each interpolation kernefy,(¢t), i = 1,..,N is

is shown in Fig. 3. Concerning the reduced order, whictelected as in piecewise linear interpolation

represents the column dimension Kf.(g) and U(g), it is

chosen by a bottom-up approach: it is increased as long asy (i) _g’i?)_l ] @) )

a certain RMS-error threshold is satisfied in the validation 75— g e {gki—hgki} ; ki =2,..,K;, (16a)

design space grid. ki — k-1
_— . . @ _ @) ' 4 }
Compute multivariate models of the internal PEEC matrices g;(g;;rl g(i) , g(’) c [gl(;i)7 g;(;)ﬂ} k=1, Ki—1,

P(g),L,(g), Ca(g),R(g), g= (g, ..., g™) Ihi+1 — i,

(16b)

’ 0 , otherwise (16¢)

Compute multivariate model of the Krylov matrix . . ) )
Hence, the interpolation kernels, (¢(?), i = 1,...,N are

K. (g) (Laguerre-SVD MOR method) independent from the matrices used in the interpolation pro-
cess and depend only on the design space grid points. Other
interpolation schemes have kernel functions that depend on the
matrices used in the interpolation process, e.g. multivariate
cubic spline interpolation [42]. It is a useful technique to
interpolate multivariate data points due to its stable and smooth
characteristics and it performs elementwise interpolation. Un-
fortunately, although ordinary spline schemes are generally
Fig. 3. Flowchart of the proposed PMOR method. well behaved, they do not prevent overshoot and undesired
oscillations at intermediate points, that can violate inherited
data features as positivity. Some modified spline interpolation

MOR step Y (s,g) — Y, (s,g) by means of

a congruence transformation
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schemes that are able to preserve positivity of the data sampdesnentwise using the ordinary splines. Finally, the matrices
in the univariate case are described in [43]-[45]. Anotha@re mapped back by the matrix exponential operator which
simpler and straightforward approach to preserve positivitgsults in symmetric positive definite matrices, therefore the
using the ordinary splines is proposed in this paper andaitiginal properties of the matricd®(g), L, (g) are preserved.
is composed of three steps: 1) an analytical mapping Wfe propose a multivariate interpolation process that is able to
the data samples is performed, 2) the new data samples pmeserve the positive definiteness®fg), L,(g), C4(g) and
interpolated using ordinary splines without any constraint, #)e positive semidefiniteness BRf(g). Consequently, the prop-
the interpolated data samples are transformed back by #rées (11a)-(11b) of the admittance PEEC moWdls, g) =
inverse mapping. The mapping function has to be able I¢'(sC(g) + G(g)) !B and its related passivity are satisfied
ensure the positivity of the interpolated data samples after toe any pointg = (gl(cll)""’gl(cl?lv)) over the design space.
inverse mapping. For any positive diagonal matrix enttg) The overall computational complexity of the presented PMOR
of the matricesC,(g), R(g) under modeling, the following algorithm can be divided into: 1) complexity of computing the
mapping function is used multivariate models ofP(g),L,(g), Ca(g), R(g),K,(g) by
interpolation, 2) complexity of the SVD operation &6, (g)
M(g) = log (Jc(g)> . g€ {gk}i{:“it (17) to obtain the projection matriU(g), 3) complexity of the
min(f(g)) congruence transformation by meanstfg). Which step is
Once the transformed data samples are modeled by usihg most computationally expensive cannot be established in
multivariate splines, the inverse mapping function advance, since the computational complexity of the interpo-
lation process depends on the chosen interpolation scheme.
) Kiot imton Concerning the SVD operation, it can be replaced by cheaper
Miny(g) = min(f(g))exp(M(g)), g € {gi}p1 """ modified Gram-Schmidt (MGS) and Householder QR (HQR)

_ ) _ ) operations [19], [38], which are computationally cheaper.
is used for the back transformation. It is straightforward

to verify that the following procedure ensure the positivity . ) i

of the final interpolated values. While a diagonal matrix iS- Passivity assessment considerations

positive definite if and only if all the diagonal elements The properties of the PEEC matrices, the multivariate in-
are positive, a non-diagonal matrix requires more genetarpolation approach and the Laguerre-SVD MOR algorithm
conditions. The matrixP(g) is full, symmetric and positive ensure overall stability and passivity for a parameterized ROM
definite, while the matridL, (g) is symmetric, positive definite Y,(s,g) by construction. Although no passivity check is
and in general a certain degree of sparsity can be preseatuired forY, (s, g), the authors describe in this section a
due to orthogonal elementary cells. It is easy to show thpassivity test for the sake of completeness. Let us assume that
multivariate interpolation schemes that belong to a class ¥.(s, g) is obtained and one wants to perform a passivity test
positive interpolation operators [39]-[41] are able to preserfer a specific pointg in the design space. If the descriptor
the positive definiteness property, when they are applied matrix C, of Y.(s,g) is singular, the procedure described in
positive definite matrices. When the interpolation of positivigt8] is used to convert the descriptor system into a standard
definite non-diagonal matrices is performed elementwise bfate-space model

schemes with kernel functions that depend on the matrices

used in the interpolation process (e.g. multivariate cubic spline dx(t

(t)
interpolation), the following procedure can be used to guaran- — = A=)+ Bu() (21a)
tee the positive definiteness property. Let us denote y(t) = Cx(t)+ Du(t) (21b)

S(R) ={Q e M(R),Q” =Q} (19) otherwise the standard state-space model can be obtained by
the space of alR x R real symmetric matrices witthM(R) .
the space oR x R real matrices and A=-C." Gy
B=C, 'B,
P(R) = {Q € S(R),Q > 0} (20) c—B,T

the space of alR xR real symmetric positive-definite matrices. D =D, (22)

It is well known that the matrix exponential is a one—to—on% Y (s3] ‘ qi dard ;
map fromS(R) to P(R). In other words, the matrix exponen-—"€ T.(‘.S’g) Is transformed into a standard state-space form,
its passivity can be verified by computing the eigenvalues of

tial of any real symmetric matrix is a real symmetric positive _ L ;
definite matrix, and the inverse of the matrix exponential (i.ee.l,n associated Hamiltonian matrix [49]

principal matrix logarithm) of any real symmetric positive- . A BR-1C BR-1BT

definite matrix is a real symmetric matrix [46], [47]. Exploiting H=| "_orp-1¢ _AT L cTR-1BT (23)
such property of the exponential map, the matriddg),

L,(g) that are symmetric and positive definite are mappenth R = D + D”. The systenY, (s, g) is passive ifH has
from P(R) to S(R) using the principal matrix logarithm oper-no purely imaginary eigenvalues. This passivity test can only
ator, then only the lower or upper triangular part is interpolatdze applied ifD+ D7 is not singular. If such singularity exists,
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. I . . TABLE I
the modified Hamiltonian-based passivity check proposed in PARAMETERS OF THE COUPLED MICROSTRIPS
[50] should be used.
Parameter Min Max
IV. NUMERICAL RESULTS Frequency freq) | 1 kHz | 4 GHz
Spacing £) 1 mm| 4 mm

This section presents two numerical examples that validate
the proposed PMOR method. Let us define the weighted RMS-
error as:
values and with a CPU time equal @6 s. Then, the
bivariate ROMY,.(s,S) is obtained with a reduced order
g = 38.Fig. 5 shows the magnitude of the parameterized

Nport K, 2 ROM of Yi4(s,5), while Fig. 6 compares the magnitude of
PP ‘in(S’“’g) (Yr’i(s’“’g) B Yi(s’“’g>)‘ Yii(s, 9), YEQ(S,)S) and their parameterized ROMs for the

Err(g) =

(Nport)2 K spacing valuess = {1.125,2.375,3.875} mm. These specific
(24) spacing values have not been used during the construction
with of the multivariate model®(g), L, (g), Ca(g), R(g), K. (g),
nevertheless an excellent agreement between model and data
wy, (s,9) = |(Yi(s,g)) "} (25) can be observed. The worst case RMS-error defined in (27) is

equal to1.8 - 10~2 and it occurs forg,,., = S = 3.875 mm.
where Ny, is the number of system ports ard; is the Fig. 7 shows the minimum absolute value of the real part of
number of frequency samples. The worst case RMS-error oygé Hamiltonian matrix eigenvalues over a dense sweep of the
the validation grid is chosen to assess the accuracy and #ign space. Since there are no purely imaginary eigenvalues,
quality of parameterized ROMs the parameterized ROM is passive over the design space of

interest. As clearly seen, the parameterized ROM captures the
(26) behavior of the system very accurately, while guaranteeing

.= E lidati id - ) X .
Imaz argglax rr(g), g € validation gri stability and passivity over the entire design space.

Errmaw = E/r,r‘ (gT)'L(L.'L') (27) >

and it is used in the numerical examples. The proposed PMOR
algorithm was implemented in Matlab2B09A [51] and all 10°
experiments were carried out on Windows platform on Intel £

Core Extreme CPU ®300 2.53GHz machines with8GB

i \‘
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A. Two coupled microstrips with variable spacing 4 \\
Two coupled microstrips (lengtl. = 2 cm) have been ‘

modeled in this example. The cross section is shown in Fig.
4. The conductors have widthW” = 500 um and thickness

t = 50 pm, the dielectric is800 pm thick. A bivariate ROM  spacing [mm] 4 1 2 3 4
is built as a function of the spacing between the microstrips 0 Frequency [GHZ]
in addition to frequency. Their corresponding ranges are shown
in Table II. Fig. 5. Magnitude of the bivariate ROM & 11 (s, S).
w S w
-t
t4 B. Spiral inductor with variable horizontal and vertical length
I An integrated spiral inductor has been modeled in this

example. The structure is shown in Fig. 8. The conductors
width is equal to46 ym. A trivariate ROM is built as a
function of the horizontalL, and verticalL, length of the
spiral inductor in addition to frequency. Their corresponding
ranges are shown in Table Ill.

The PEEC method is used to compute tGeG,B,L The PEEC method is used to compute (BeG, B, L ma-
matrices in (10a)-(10b) foR5 values of the spacing. Thetrices in (10a)-(10b) foil values ofL, and11 values ofL,,.
order of all original PEEC models is equal ig, = 2640. The order of all original PEEC models is equalitg = 801
The multivariate modelsP(g),L,(g), Cu(g), R(g),K,(g) The multivariate modelsP(g),L,(g), Ca(g), R(g9),K,(g)
are computed by spline mterpolatlon using orlyspacing are computed by spline |nterpolat|on using ordyvalues

Fig. 4. Cross section of the coupled microstrips.
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2
10 1
—— Data e x >
; Model A
0 ' 08
10 nEE g, 1
\ nm B
\ S =3.875mm 71 \/"\‘
o IR 0.6
) —_
= -2 IS
= 10 °t £
— —_ Ly
= 04
10"
0.2
10° ‘ 0 |
0 1 2 3 4 0O 02 04 06 08 1
Frequency [GHz] x [mm]
2 T
107 ¢ ——Data Fig. 8. Structure of the spiral inductor.
\ Model
[l 1
10° TR ] TABLE Il
"" i i) i PARAMETERS OF THE SPIRAL INDUCTOR
AN
& S=3.875mm / A ,”“\' \
— \ %4 -
— -2fA\ e AN Parameter Min Max
>-ﬁ 10 N~ - f;;" e > o Frequency freq) 10 kHz | 30 GHz
- SISO S~ < T < -== Horizontal length {;) | 0.46 mm | 0.93 mm
NN Vertical length () 0.46 mm | 0.93 mm
1074 \ LYY, S=1.125mm g
vl
v 7
]
10-60 : . . ) Fig. 11 compares the magnitude (s, L., L,) and its
Frequency [GHZ] parameterized ROM for the horizontal and vertical length
values L, = 0.63 mm, Ly = {0.50,0.63,0.76} mm.
Fig. 6. Magnitude of the bivariate ROMs &, (s, S) and Y12(s,S) These specific horizontal and vertical length values have not

(S = {1.125,2.375,3.875} mm).

10
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Fig. 7.
eigenvalues.

2

2.5

3

Spacing [mm]

3.5

P(g),L,(g),Ca(g),R(g),K.(g), nevertheless an excellent
agreement between model and data can be observed. The worst
case RMS-error defined in (27) is equal io 10~2 and it
occurs forg,, .. = {Ls,L,} = {0.86,0.76} mm. Fig. 12
shows the minimum absolute value of the real part of the
Hamiltonian matrix eigenvalues over a dense sweep of the
design space. Since there are no purely imaginary eigenvalues,
the parameterized ROM is passive over the design space of
interest. As in the previous example, the parameterized ROM
is able to accurately describe the parameterized behavior of
the system, while preserving overall stability and passivity.

been used during the construction of the multivariate models

V. CONCLUSIONS

We have presented a new PMOR technique applicable to
PEEC analysis which is based on a parameterization process

Minimum absolute value of the real part of the Hamiltonian matriéf matrices generated by the PEEC method and the projec-

tion subspace generated by the Laguerre-SVD MOR method.
Overall stability and passivity of parameterized ROMs are
guaranteed by construction over the design space of interest.

of L, and 6 values of L, and with a CPU time equal Numerical examples have validated the proposed PMOR ap-
to 43.7 s. Then, the trivariate ROMY,(s,L,,L,) is ob- proach on practical application cases, showing that it is able
tained with a reduced ordey = 91. Figs. 9-10 show the to build very accurate parameterized ROMs of highly dynamic
magnitude of the parameterized ROM ¥ (s, L., L,) for EM systems, while guaranteeing stability and passivity over
the vertical length valued, = {0.46,0.93} mm, while the entire design space of interest.
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Y ,IS]

20
Lx [mm] 04 o 10
Frequency [GHZz]
Fig. 9. Magnitude of the trivariate ROM oY1 (s, Lz, Ly) (Ly = 0.46

mm).

Y ,IS]

20
Lx [mm] 04 o 10
Frequency [GHZz]
Fig. 10. Magnitude of the trivariate ROM & 11(s, Ly, Ly) (Ly = 0.93
mm).
10° :
—— Data
Model
10° I ]
Ly =0.76 mm n |l'| l"‘
1
] 'J [} Ly = 0.50 mm
| ]
]
1076 . . . . .
0 5 10 15 20 25 30
Frequency [GHz]
Fig. 11. Magnitude of the trivariate ROM & 11 (s, Lo, Ly) (Le = 0.63

mm, Ly = {0.50,0.63,0.76} mm).
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