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Abstract We consider the Rao geodesic distance (GD)
based on the Fisher information as a similarity measure on
the manifold of zero-mean multivariate generalized Gaus-
sian distributions (MGGD). The MGGD is shown to be an
adequate model for the heavy-tailed wavelet statistics in mul-
ticomponent images, such as color or multispectral images.
We discuss the estimation of MGGD parameters using var-
ious methods. We apply the GD between MGGDs to color
texture discrimination in several classification experiments,
taking into account the correlation structure between the
spectral bands in the wavelet domain. We compare the per-
formance, both in terms of texture discrimination capabil-
ity and computational load, of the GD and the Kullback-
Leibler divergence (KLD). Likewise, both uni- and multi-
variate generalized Gaussian models are evaluated, charac-
terized by a fixed or a variable shape parameter. The model-
ing of the interband correlation significantly improves clas-
sification efficiency, while the GD is shown to consistently
outperform the KLD as a similarity measure.
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1 Introduction

The visual description of texture has been a major research
topic during more than twenty years and still is a matter
of intensive ongoing research. An important challenge is
the automated discrimination of textured images or regions.
Texture discrimination techniques form a significant part of
many classification and machine learning frameworks, with
applications in medical imaging, remote sensing and numer-
ous other practical domains. The present work deals with
the discrimination and classification of multicomponent tex-
tured images, with a specific application in content-based
image retrieval.

The advent of the Internet and extensive digital image
libraries has entailed the development of rapid and efficient
computer-based image searching and browsing techniques.
The term content-based image retrieval (CBIR) (for a re-
view, see Datta et al, 2008) refers to the automatic retrieval
of images from a database based on a set of graphic features
that qualify the images and that are, loosely speaking, sim-
ilar to the characteristics of a given query image. The goal
is to match the applied notion of similarity as well as pos-
sible with the human perception of image resemblance. The
essence of the task of CBIR is captured by two main steps.
One is the process offeature extraction, involving the gen-
eration of a set of features (the imagesignature) that charac-
terize the image information accurately and concisely. The
latter is an important quality for guaranteeing the computa-
tional efficiency of the retrieval system and for storage and
transmission of images. In this work, texture and color in-
formation is used collectively for deriving image signatures.
The second main step in CBIR, calledsimilarity measure-
ment, concerns the calculation of a distance function mea-
suring the similarity of two images based on their respective
set of features. This allows the ranking of the images in the
database according to their similarity to the query image.
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Naturally, the choice of feature set and similarity measure
largely determines the performance of the retrieval system.
Moreover, since querying an image database is often an on-
line activity, the evaluation of the distance measure should
be sufficiently fast. In practice, this typically means thata
closed-form expression for the distance function should be
used.

In many existing texture discrimination schemes the sig-
natures are obtained from the images after some suitable
linear transform. The rationale is the observation that the
image information in the transformed domain is often sim-
pler to model. For instance, the discrete wavelet transform
applied to an image results in a set of multiscale oriented
subbands that are sensitive to horizontal, vertical and diag-
onal edges in the original image (Mallat, 1999). Several ap-
proaches to texture characterization in the wavelet domain
assume that the wavelet representation accurately charac-
terizes texture (see e.g. Manjunath and Ma, 1996; Van de
Wouwer et al, 1999). In addition, physiological studies of
the visual cortex suggest that the wavelet decomposition isa
natural way of structuring the image information (Daugman,
1980). The foregoing arguments provide the motivation to
conduct our work in the wavelet domain.

We will work within a parametric probabilistic frame-
work, modeling the wavelet detail coefficients through ap-
propriate probability distributions. This yields a compact de-
scription of the texture information in the images, prevent-
ing the entire image from having to be stored or transmitted.
Now, the wavelet transforms of real-world images tend to be
sparse, yielding a large number of small wavelet detail co-
efficients and a small number of large coefficients (Mallat,
1989). Therefore, the wavelet histograms can be character-
ized through unimodal probability distributions. In addition,
the distributions have zero skewness (symmetry around the
mean) and have mean zero because the wavelet detail coeffi-
cients are at the output of a high-pass filtering process of the
original image. When considering single-valued images and
assuming the wavelet coefficients from different subbands to
be independent, univariate distributions can be used. In this
case, the free parameters of the distributions for all subbands
serve as image features. The sparseness of the wavelet coef-
ficients prevents the Gaussian distribution to provide a satis-
factory fit to the respective histograms in every single case.
Indeed, often a distribution is needed marked by a more
peaky and heavy-tailed behavior compared to the Gaussian
distribution, i.e. a leptokurtic distribution. Thegeneralized
Gaussian distributionis frequently used in this setting (see
Mallat, 1989; Van de Wouwer et al, 1999; Do and Vetterli,
2002), but some other possibilities are the Gaussian Scale
Mixture (Scheunders and De Backer, 2007), the alpha-stable
distributions (Tzagkarakis et al, 2006) and the Student-t dis-
tribution (Synyavskyy et al, 2001).

The intention of this work is to include both texture and
color information in a single probabilistic model. The mod-
eling of color features is an active subject in the field of tex-
ture discrimination. Color histograms have been used exten-
sively for color characterization, within various color spaces.
An overview of several color descriptors that have proved to
lend themselves for image retrieval purposes was presented
by Manjunath et al (2001). However, in addition we want
to make use of the information residing in the rich corre-
lation structure between the color bands, since we expect
that the classification and retrieval tasks will benefit from
these additional data. To this end, in a probabilistic frame-
work we model the spectral bands jointly through a mul-
tivariate probability distribution. At the same time, we as-
sume independence among the wavelet subbands belonging
to a single color component. Moreover, our model is not
restricted to color images, but can handle multicomponent
images in general. For example, the techniques for multi-
component texture similarity measurement developed in this
work, can also be used in applications involving multispec-
tral and hyperspectral imagery, which is used increasinglyin
remote sensing of the earth’s surface (Chang, 2007; Mercier
and Lennon, 2002).

The joint modeling of multivalued wavelet images has
been considered before. For instance, although in this work
we neglect any existing correlation between wavelet sub-
bands, other approaches have allowed interdependencies
across subbands in a joint Gaussian model, e.g. in a denois-
ing application (Micak et al, 1999), while Tzagkarakis et al
(2006) fit a joint alpha-stable sub-Gaussian distribution to
the wavelet coefficients in order to better capture the tail
statistics in a retrieval experiment. In the latter work, with
the aid of the KLD, good retrieval rates were obtained, but a
computationally complex gaussianization step was required.
In addition, the process of wavelet-based multivariate im-
age denoising has been treated recently by several authors
(Benazza-Benyahia and Pesquet, 2005; Pižurica and Philips,
2006; De Backer et al, 2008). In these works, multivariate
probability density functions of the images were proposed
that account for the correlations between the image bands.
Particularly heavy-tailed models were found to be efficient.
These models were applied as priors in a Bayesian frame-
work.

In our work, for the joint modeling of multicomponent
wavelet images we use a particular case of the multivariate
Kotz-type distribution, which we call the(multivariate) gen-
eralized Gaussian distribution ((M)GGD), also sometimes
called the multivariate exponential power distribution. Other
possible extensions of the univariate generalized Gaussian
density towards multiple dimensions were given by Cho and
Bui (2005) and Boubchir and Fadili (2005), but the def-
inition that we use has the advantage that it is relatively
well documented (see e.g. Gómez et al, 1998; Fang et al,
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1990). The MGGD probabilistic model is characterized by
a sufficient number of degrees of freedom to suitably handle
both the interband correlation structure as well as the heavy-
tailedness of the wavelet distributions. Thus, an MGGD
serves as an excellent descriptor of texture information, since
the tails of the wavelet distribution contain most of the rel-
evant information on the occurrence of edges in an image,
characterizing the texture over multiple scales. Furthermore,
we present a fairly detailed discussion of several procedures
for estimating the parameters of the best-fit MGGD from
wavelet data. We treat both the method of moments and the
maximum likelihood (ML) method, the latter implemented
by recursive solution of the ML equations on the one hand,
and on the other hand through the Fisher scoring algorithm.
We also consider the measurement of the goodness of the
MGGD fit.

Just as several candidate probabilistic models exist for
describing wavelet detail statistics, there are also many pos-
sible choices for the distance function between textures. In
the probabilistic setting, distance measures between prob-
ability distributions are required. It turns out that the Eu-
clidean distance as a first common choice is not a natu-
ral similarity measure between probability distributions, al-
though its application in a CBIR context may yield accept-
able retrieval performances (Do and Vetterli, 2002). In ad-
dition, good retrieval performances for gray-level images
have been reported using the Kullback-Leibler divergence
(KLD) between generalized Gaussian densities (Do and Vet-
terli, 2002; Mathiassen et al, 2002; Bonet and Viola, 1998).
In the experimentation section, Section 4, we will compare
with the retrieval results obtained by Do and Vetterli (2002).

In this work, as a similarity function we use the Rao ge-
odesic distance (GD) derived from the Fisher information.
The GD between probability distributions is defined in the
context of information geometry, which expresses probabil-
ity theory in terms of geometric concepts (see e.g. Amari
and Nagaoka, 2000; Murray and Rice, 1993; Kass and Vos,
1997). Cramér (1946) and Rao (1945) observed that the Fisher
information can be regarded as a Riemannian metric on a
manifold of probability distributions.̌Cenkov (1982) showed
that this Fisher-Rao metric is the unique intrinsic metric on
such a manifold, invariant under some basic probabilistic
transformations. Thus, probability theory can be described
in terms of geometric structures invariant under coordinate
transformations, to which the methods of differential ge-
ometry can be applied. For an introduction to differential
geometry and Riemannian geometry the reader may refer
to O’Neill (1982) and do Carmo and Flaherty (1992). The
corresponding
geodesics between probability distributions have a property
of length minimization; they are the ‘straight lines’ of the
geometry. The GD is a natural, intrinsic distance measure
on the manifold of probability distributions.

Several authors have studied the Fisher-Rao metric and
the geodesics for the multivariate normal model. Relevant
publications include those by Burbea (1986), Burbea and
Rao (1982), James (1973), Skovgaard (1981) and Skovgaard
(1984). The GD between multivariate normal distributions
with fixed mean and differing covariance matrices was first
derived by Jensen1 and independently by Skovgaard (1984).
Mitchell (1989) derived the Fisher-Rao metric for general
multivariate elliptical distributions, with the multivariate nor-
mal distribution as a special case. A closed expression for
the associated GD, in the case of elliptical distributions dif-
fering only in their dispersion matrix, was obtained by James
(1973) and Berkane et al (1997) (see also Calvo and Oller,
2002). We have derived a closed-form expression for the GD
between MGGDs in the case of a fixed MGGD shape pa-
rameter and have proposed a suitable approximation to the
geodesics on the manifold of MGGDs with varying shape
parameters2. Although the latter approximation does not re-
sult in an analytic form for the GD, as we will show, it still
allows to compute the distance relatively fast. It should be
noted that the GD and KLD, as similarity measures between
probability distributions, are useful in any texture discrimi-
nation application employing a statistical description oftex-
ture.

The GD as a similarity measure between probability dis-
tributions has several important advantages compared to, e.g.
the KLD. First, since a geodesic is a geometric object with a
rather clear intuitive meaning, it becomes possible to convey
a measure of distance between points on the probabilistic
manifold (i.e. between distributions), through visualization
of the geodesic path by plotting its coordinate functions. In
turn, this allows straightforward evaluation of a geodesicap-
proximation strategy, in contrast with the KLD, which can-
not be visualized in a similar way. Therefore, if computa-
tional demands of the application are an issue, as in the case
of e.g. image retrieval, a trade-off between accuracy and
speed of the similarity measurement can be readily made in
the numerical calculations. In this work, for the case of vari-
able MGGD shape parameters, we apply a linear approx-
imation to the geodesic coordinate functions and show that
this still yields good classification results, while maintaining
a reasonable computational load. In addition, the visualiza-
tion of the geodesics, possibly supplemented with the calcu-
lation of geometric quantities such as the curvature, allows
one to develop a useful geometric intuition of the MGGD
manifold.

Second, the GD is, in contrast to the KLD, a genuine
distance measure, symmetric in its arguments and obeying

1 S.T. Jensen, private communication in (Atkinson and Mitchell,
1981), 1976.

2 G. Verdoolaege and P. Scheunders, On the Geometry of Multivari-
ate Generalized Gaussian Models, submitted to Journal of Mathemati-
cal Imaging and Vision, 2010.
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the triangle inequality. The latter is a useful property, not
shared by the KLD, for significantly reducing the computa-
tional demands in an image retrieval application, by compar-
ing a query image to a predefined set of key images that ef-
fectively summarize the visual characteristics of all images
in the database (Berman and Shapiro, 1999; Burkhard and
Keller, 1973). Indeed, supposeIq represents a query image,
Id a database image andIki the key images (i = 1, . . . ,K),
then the triangle inequality requires

GD(Iq||Id)≥ max
1≤i≤K

|GD(Iq||Iki)−GD(Id||Iki)|, (1)

where GD(.||.) is a shorthand notation for the GD between
two images, based on their respective probabilistic model.
This yields a lower bound on the distance GD(Iq||Id). The
distances GD(Id||Iki) can be precomputed for all database
and key images. Now, if, for example, we wish to find all im-
agesId in the database that are closer to the query image (in
terms of GD) than a certain thresholdT, i.e. GD(Iq||Id)≤ T,
all we have to do is calculate the distances between the query
image and each of the key images, apply (1) and reject the
database images for which the lower bound on GD(Iq||Id)
is larger thanT. Optionally, we can then conduct a further
query among the reduced set of database images. The bot-
tom line is that this way the triangle inequality permits to
considerably decrease the number of required evaluations of
the similarity measure at the time of the query submission.

Third, calculating the KLD involves solving a multidi-
mensional integral over the data space. For this reason
closed-form expressions for the KLD are difficult to find or
may not exist at all. So far we did not obtain an analytic ex-
pression for the KLD between two MGGDs in general. One
may attempt a numerical evaluation of the KLD integral, but
it is clear that this drastically increases computational load
and, in practice, renders e.g. a retrieval system impractical to
be used in real-time. In contrast, as we will show, the above
mentioned analytic expression for the GD and, in the case of
variable shape parameter, the linear approximation to the ge-
odesic coordinate functions, permit a practicable, relatively
fast evaluation of the GD.

Finally, recent observations suggest that the GD is a more
natural and more accurate similarity measure between prob-
ability distributions, compared to the KLD (Verdoolaege etal,
2008; Lenglet et al, 2006a,b; Castano-Moraga et al, 2007).
This will be confirmed by the experiments outlined in the
present work, where the (approximated) GD exhibits good
results in a texture classification experiment, superior to
those obtained via the KLD.

In this paper we illustrate the performance of both the
generalized Gaussian model and the geodesic distance, as
compared to the Gaussian distribution and the KLD, in sev-
eral classification and retrieval experiments on textured color
images. We start with the discussion of a simple experiment
for texture classification on a small texture database and we

next conduct the same experiment in a texture retrieval con-
text. We usek-nearest neighbor classification and we vali-
date the classifier via the leave-one-out method. We gradu-
ally build up the complexity of the model for the wavelet
statistics, first using univariate distributions on gray-level
textures, obtained from the luminance of the RGB color im-
ages. Next we consider the three color bands in parallel,
without modeling the interband correlation. We then demon-
strate the performance of both the GD and the KLD in an
experiment where the correlation between the three color
bands of an image is modeled pairwise by a bivariate dis-
tribution. We recently obtained a closed expression for the
KLD between bivariate GGDs (Verdoolaege et al, 2009),
which we put into practice here. We proceed with the full
joint modeling of the wavelet coefficients corresponding to
the three color bands and we show that the information in
the interband correlation structure leads to a significant in-
crease in texture discrimination performance. In addition,
we demonstrate the superior capability of a heavy-tailed dis-
tribution to adequately describe the image wavelet statistics.
We compare the heavy-tailed Laplace distribution with the
Gaussian model, both MGGDs with a fixed shape parameter.
In turn we show that the enhanced flexibility of the MGGD
model with its variable shape parameter results in several
situations in still better classification performance. Finally,
the GD is shown to outperform the KLD in terms of cor-
rect classification rate. The computational load of each of
the methods is evaluated as well. The classification exper-
iments are then repeated in the context of image retrieval,
showing similar trends as for classification. We next show
that our techniques are competitive with a state of the art
method for gray-scale texture classification based on image
patch exemplars. We examine the impact of corruption of
the images by additive Gaussian noise as well as the influ-
ence of the color space that is used (RGB or HSV). Finally,
we demonstrate our methods in a more realistic experimen-
tal setting for image retrieval. We use a considerably larger
database then in the first series of experiments, the images
consisting of multiple patches of several colored textures.
Again we compare different statistical models and similar-
ity measures.

This paper is organized as follows. In Section 2 we in-
troduce the class of multivariate generalized Gaussian dis-
tributions and we discuss several methods to estimate the
parameters. Section 3 summarizes the techniques that allow
the calculation of the GD and KLD between MGGDs, while
Section 4 presents the results of several classification and
retrieval experiments on gray-level and color images. We
also provide an outlook toward possible improvements of
the methods presented in this work and suggest some top-
ics for future research. Finally, Section 5 concludes the pa-
per. The main contributions of this paper lie in the definition
of the MGGD, its application to the modeling of multivari-
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ate wavelet histograms, the discussion on model fitting and
goodness of fit testing, the approximation of GDs between
MGGDs with variable shape parameter and the application
of the MGGD and the GD to texture classification.

2 Modeling of wavelet statistics through a (multivariate)
generalized Gaussian distribution

We start by introducing the distribution that we use to model
wavelet statistics, namely the (multivariate) generalized Gaus-
sian distribution. We proceed with a discussion on the esti-
mation of the MGGD parameters from a wavelet data set,
treating also the goodness of the resulting fit.

2.1 The multivariate generalized Gaussian distribution

With a view to modeling wavelet detail coefficients we con-
sider only zero-mean distributions. For the definition of a
multivariate GGD, we seek inspiration with the univariate
zero-mean GGD, which has the following density function:

f (x|α,β ) =
β

2αΓ [1/β ]
exp

[
−(|x|/α)β

]
,

whereΓ (.) denotes the Gamma function. Clearly,α is a
scale parameter, playing the role of a variance that deter-
mines the ‘width’ of the PDF, whileβ > 0, called theshape
parameter, controls the fall-off rate in the vicinity of the
mode (the higherβ , the lower the fall-off rate). Note that
β = 2 results in the Gaussian distribution andβ = 1 yields
the Laplacian PDF. There does not appear to exist a gen-
erally agreed upon multivariate extension of the univariate
generalized Gaussian distribution. However, here we define
a multivariate generalized Gaussian distribution throughthe
following density function:

f (x|Σ ,β ) =
Γ
(

m
2

)

π
m
2 Γ

(
m
2β
)
2

m
2β

β
|Σ |

1
2

×exp

{
−

1
2

[
x′Σ−1x

]β
}
, (2)

wherem is the dimensionality of the probability space, e.g.
m= 3 for three-band color images. This is a particular case
of the multivariate Kotz-type distribution (see Gómez et al,
1998 and Fang et al, 1990 for details) and it is also some-
times called themultivariate exponential power distribution.
Again, we callβ the shape parameter, which controls the
peakedness of the distribution and the heaviness of its tails.
Note however that now the Gaussian PDF is retrieved by
settingβ = 1, while by analogy with the univariate case,
we will call the distribution withβ = 1/2 the multivariate
Laplace distribution.Σ is a dispersion matrix, equal to the
distribution covariance only in the Gaussian case. Ifβ < 1,

the distribution (2) has heavier tails (leptokurtic) compared
to the multivariate Gaussian distribution. As an example,
Fig. 1 shows the histogram for the wavelet coefficients cor-
responding to a real world gray-scale image from the MIT
Vision Texture (VisTex) database (MIT Vision and Model-
ing Group, 2010) (used in our experiments, see Section 4),
together with the fit via maximum likelihood of a Gaus-
sian and a generalized Gaussian (see also the next subsec-
tion). The latter clearly describes best the peakedness and
the heavy tails of the histogram.

2.2 MGGD parameter estimation

The estimation of the mean, dispersion and shape parameter
of aunivariategeneralized Gaussian distribution was treated
by Varanasi and Aazhang (1989). Three parameter estima-
tion methods were compared in that work, viz the method
of moments (MM), the maximum likelihood method (ML)
and a moment method followed by an optimization through
a single Fisher scoring (Newton) step (MM-Fisher). It was
observed that for small values of the shape parameterβ
(strongly leptokurtic distributions) the ML method performs
best, while asβ increases, both the moment method and the
MM-Fisher technique perform increasingly well compared
to the ML method. For large values of the shape parameter
(β > 1), the MM-Fisher algorithm yields the best results. We
now proceed with an investigation of the three above men-
tioned methods for the case of the estimation of the multi-
variate generalized Gaussian model.

2.2.1 Method of moments

In the multivariate setting the parameters of a zero-mean
MGGD to be estimated from a sample ofn m-dimensional
vectorsxi , i = 1, . . . ,n, are (the non-redundant elements of)
the dispersion matrixΣ and the shape parameterβ . In the
present work the moment method was implemented by equat-
ing the population variance and kurtosis of an MGGD dis-
tributed random vectorX to the sample variance and sample
kurtosis, respectively. The population variance and kurtosis
(according to Mardia et al (1982)) are given by

Var(X) =
21/βΓ

(
m+2
2β

)

mΓ
(

m
2β
) Σ , (3)

γ2(X) =
m2Γ

(
m
2β
)
Γ
(

m+4
2β

)

[
Γ
(

m+2
2β

)]2 −m(m+2),
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Fig. 1: (a) Histogram for the wavelet coefficients for a real world VisTex gray-scale image, together with the best-fit Gaussian
and GGD (β = 0.48) obtained via ML. (b) Zoomed display of (a), clearly showing the better fit of the tails by the GGD
compared to the Gaussian fit.

whereas estimators of the variance and kurtosis from the
samplexi , i = 1, . . . ,n are calculated as

V̂ar(X) =
1
n

n

∑
i=1

xix′i ,

γ̂2(X) =
1
n

n

∑
i=1

{
x′i
[
V̂ar(X)

]−1
xi

}2

−m(m+2).

This procedure results in a nonlinear equation forβ , which
can be solved numerically. Using this result together with
the sample variance directly allows to calculateΣ via (3).

In practice, the estimates found using the MM were used
as an initialization for both the ML and Fisher methods, re-
sulting in MM-ML and MM-Fisher methods, respectively.

2.2.2 Maximum likelihood

The ML method for estimating the parameters of an MGGD
proceeds by setting the differential to zero of the logarithm
of f in (2). This results in the following equations forΣ and
β , respectively:

Σ =
β
n

n

∑
i=1

uβ−1
i xi ·x′i , (4)

n

∑
i=1

{
β
2

ln(ui)u
β
i −

m
2β

[
ln(2)+Ψ

(
m
2β

)]
−1

}
= 0.

Here, ui ≡ x′iΣ−1xi andΨ(.) denotes the digamma func-
tion. These equations can be solved recursively, although
we found convergence to be rather slow, especially when no
proper initialization using the moment method was applied.

2.2.3 Fisher scoring

The Fisher scoring method is in principle a Newton-Raphson
numerical optimization algorithm for maximizing the like-
lihood by searching for a zero of the gradient of the log-
likelihood L (see e.g. Lehmann and Casella, 2003). How-
ever, instead of using the negative Hessian of the log-
likelihood (observed information matrix) for the optimiza-
tion, the expected negative Hessian, or Fisher information
matrix, is applied. The Fisher information matrixgµν is de-
fined through the relations

gµν(θ ) =−E

[
∂ 2

∂θ µ∂θ ν ln f (X|θ )
]
, µ ,ν = 1. . .N,

with N the number of non-redundant parameters, arranged
in a vectorθ , parametrizing the distribution. Given a starting
value of the parameters, arranged in anN-dimensional vec-
tor θ k, the next approximationθ k+1 can be found by solving
the following equations:

n
N

∑
ν=1

(θ ν
k+1−θ ν

k )gµν(θ k) =
∂L(θ k)

∂θ µ , (5)

with θ µ
k denoting componentµ of the vectorθ k. Since this

is a linear set of equations, the solution can be obtained very
fast. The disadvantage is the possibility for the algorithmto
leave the allowed part of parameter space, returning e.g. a
negative definite dispersion matrix. In the case of MGGD
estimation, this was observed in our experiments to occur
primarily for small shape parameters (practicallyβ < 0.5).

SinceΣ is symmetric and hence containsm(m+ 1)/2
non-redundant elements, the corresponding Fisher informa-
tion is a matrix of sizeN = 1+ m(m+ 1)/2. In Section
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3.1 we discuss the calculation of geodesic curves between
MGGDs, deduced from the Fisher-Rao metric tensor on the
N-dimensional MGGD manifold. We have derived expres-
sions for the entries of the MGGD Fisher matrix and the
details of this calculation will be published elsewhere3. The
components can be obtained by calculating the line element,
defined by

ds2 = ∑
µ,ν

gµνdθ µdθ ν .

This results in the following expressions in terms of the dif-
ferential forms dβ and dΣ :

β β -component:
1

β 2



1+

(
m
2β

)2

Ψ1

(
m
2β

)

+
m
β

[
ln(2)+Ψ

(
m
2β

)]
+

m
2β

[
[ln(2)]2

+Ψ
(

1+
m
2β

)[
ln(4)+Ψ

(
1+

m
2β

)]

+ Ψ1

(
1+

m
2β

)]
dβ 2, (6)

β Σ -component: −
1
β

[
1+ ln(2)+Ψ

(
1+

m
2β

)]

× tr
(
Σ−1dΣ

)
dβ ,

ΣΣ -component: 2bhtr
(
Σ−1dΣΣ−1dΣ

)

+

(
bh−

1
4

)[
tr
(
Σ−1dΣ

)]2
.

In the expression for theβ β -component,Ψ1(.) is the
trigamma function. In order to derive the equations (5), we
need to express the information metric into the differential
forms dβ and dΣi j , with Σi j the(i, j)-th non-redundant (i.e.
i ≤ j) element ofΣ . Introducing, for alli and j, the matrix
E(i, j) by

E(i, j) =

{
Ē(i,i) i = j

Ē(i, j)+ Ē( j ,i) i 6= j
,

whereĒ(i, j) denotes them×mmatrix with the(i, j)-th entry
1 and 0 elsewhere, we obtain theβ Σi j components (i ≤ j) of
the Fisher information:

−
1

2β
tr
[
Σ−1E(i, j)

][
1+ ln(2)+Ψ

(
1+

m
2β

)]
, i ≤ j.

3 G. Verdoolaege and P. Scheunders, On the Geometry of Multivari-
ate Generalized Gaussian Models, submitted to Journal of Mathemati-
cal Imaging and Vision, 2010.

Similarly, theΣi j Σrs components (i ≤ j, r ≤ s) can be derived
as

2bhtr
[
Σ−1E(i, j)Σ−1E(r,s)

]

+

(
bh−

1
4

)
tr
[
Σ−1E(i, j)

]
tr
[
Σ−1E(r,s)

]
, i ≤ j, r ≤ s.

Finally, the gradient of the log-likelihood forn observations
is given by

∂L
∂β

=
n
β
+

nm
2β 2

[
ln(2)+Ψ

(
m
2β

)]

−
1
2

n

∑
i=1

[
ln(x′iΣ−1xi)(x′iΣ−1xi)

β
]

and

∂L
∂Σr,s

=−
n
2

tr(Σ−1E(r,s))

+
1
2

β
n

∑
i=1

[
(x′iΣ

−1xi)
β−1(x′iΣ

−1E(r,s)Σ−1xi)
]
, r ≤ s.

This allows us to solve the equations (5) for the case of an
MGGD. In practice, we noticed that an initial estimate by
the moment method followed by a single step of the Fisher
scoring algorithm suffices for obtaining sufficiently accurate
parameter estimates.

2.3 Goodness of fit

In order to assess the performance of the various estima-
tion methods, we measured the goodness of the MGGD fits
through classical null hypothesis significance testing. How-
ever, we split up the main goodness of fit hypothesis into
several subhypotheses on the basis of the stochastic rep-
resentation of an MGGD random vectorX. Indeed, it can
be proved that ifX is distributed according to a zero-mean
MGGD with parametersβ andΣ , thenX can be written as

X = RA′V, (7)

whereR2 ≡ U ≡ X′Σ−1X, A′A ≡ Σ (i.e. A is the matrix
square root ofΣ ) andV is anm-dimensional random vec-
tor independent ofR and distributed uniformly on the unit
sphere (Fang and Zhang, 1990). It is easily shown thatR2β

has a gamma distribution with shape parameterm/(2β ) and
scale parameter 2 (Gómez et al, 1998). Given a set of data
X i , i = 1, . . . ,n, and estimated MGGD parametersΣ andβ ,
one may derive the associatedR2β

i andV i as follows:

R2β
i = (X′

iΣ
−1X i)

β ,

V i =
A−1X i

‖ A−1X i ‖
.

Then, to test the goodness of fit of an MGGD in the particu-
lar case ofm= 3, we carried out a set ofm+2= 5 hypoth-
esis tests as follows:
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1. Test whetherR2β is distributed according to a gamma

distributionΓ
(

m
2β ,2

)
(associated null hypothesis H0,1).

This was done via Pearson’s chi-square test.
2. Test whetherV is distributed uniformly on the unit sphere

(H0,2). The points on the unit sphere can be seen as vec-
tors pointing from the origin of the sphere. We chose the
lengthT of the sample resultantT of all vectorsV i as
a statistic. Indeed, if the points are truly distributed uni-
formly on the sphere, then ideally, asn → ∞, T should
vanish. In addition, we used the fact that in the limiting
case for largen (Stephens, 1964; Watson and Williams,
1956):

3
n

T2 ∼ χ2
3.

Thus, again a chi-square test could be used.
3. Finally, performm= 3 tests of independence (H0,3, H0,4,

H0,5) betweenRand each of themcomponents ofV. To
do this we employed Kendall’sτ, with the normal distri-
bution as an approximation to the sampling distribution
of τ.

This collection of significance tests was applied to a subset
of the data employed in our classification experiments. The
details of the image database used in this work are given
in Section 4; suffice it to say for now that we checked the
goodness of fit of an MGGD for each of the estimating al-
gorithms on a data set consisting of the horizontal wavelet
detail coefficients at scale 3 of 640 color (m= 3) texture im-
ages. Wavelet histograms at higher scales are, compared to
lower scales, typically harder to fit due to the lower num-
ber of samples available. This motivates our choice for con-
ducting the goodness of fit study at scale 3. The correspond-
ing p-values were derived and compared to a significance
level of α = 5%. For a certain wavelet detail image, if none
of the five tests leads to a significant deviation from the
null hypothesis, the MGGD fit can be deemed good. Next,
for each test the percentage was obtained, among the 640
wavelet images, of images for which the null hypothesis
could be accepted. These percentages are displayed in Ta-
ble 1 for the MM, MM-ML and MM-Fisher fit algorithms.
Note that we are only concerned about relative differences
in percentages, since the absolute percentage of accepted
null hypotheses depends, amongst others, also on the sample
size. On the whole set of 640 images, for which, naturally,
β > 0, the MM-ML method clearly performs best, result-
ing in the highest percentage of accepted null hypotheses
for each test. The difference with the pure moment method
is, however, rather small. Nevertheless, the MM-ML method
was used for routine estimation of MGGDs for the purpose
of the retrieval experiments outlined in Section 4. We re-
peated the goodness of fit analysis for medium to large val-
ues of the shape parameter (β > 0.5, as estimated via ML),
yielding a modestly enhanced performance of the MM and

MM-ML methods, but a considerable improvement for the
MM-Fisher method. This trend is confirmed for even higher
values of the shape parameter (β > 0.7), although the ef-
fect on the performance of the MM-Fisher method is less
clear. This result corresponds to the observation by Varanasi
and Aazhang (1989) (univariate case) that the fit accuracy
of the MM-Fisher method increases relative to the ML per-
formance for successively larger values ofβ . In addition,
as mentioned above, the Fisher scoring step may occasion-
ally enter forbidden regions of parameter space. In order to
judge the result of this effect on the H0 acceptance percent-
ages, the entire analysis was rerun on the subset of images
for which the Fisher step produced allowed estimates ofΣ
andβ . As far as this resulted in a change of percentage ac-
cepted null hypotheses, the corresponding values are given
between parentheses in Table 1. We may conclude that for
β > 0 a large proportion of MGGD parameters estimated by
the MM-Fisher method lies in the forbidden region of pa-
rameter space. However, as we restrict our attention to larger
values ofβ , this effect becomes negligible. Nevertheless, on
the whole the Fisher step does not appear to succeed in aug-
menting the goodness of fit for the MGGDs in the data set
under study, compared to the initial estimates obtained via
the MM.

Furthermore, we should mention that also the moment
method does not always lead to acceptable parameter esti-
mates as the numerical algorithm for derivingβ may fail
to converge. The reason is the occurrence of outliers in the
data that strongly affect the kurtosis and the tail behavior
and that lead, again, to small values ofβ (. 0.5). If the mo-
ment method is used to initialize the parameters for subse-
quent fine-tuning by ML or Fisher scoring, and if it fails,
default initial parameter values have to be assumed (usually
β = 0.5, Σ = Im, them×munit matrix). These initial values
in general are far away from the optimal parameters. There-
fore, in such cases the linearity of the equations to be solved
in the Fisher step, compared to the nonlinearity of the ML
equations, results in a substantial difference in time it takes
to estimate the parameters. Typically, in our experiments if
the MM fails, the Fisher step is about an order of magnitude
faster than the ML method. This effect, together with other
factors, renders the MM-Fisher method on the entire data set
about three times faster than the MM-ML method, both of
which are substantially slower than the moment method in
itself.

As an aside, we note that even in case of smallp-values
(this depends also on the sample size) the MGGD fit in prac-
tice still provides a not too bad description of the wavelet
statistics. To see this, note that from Table 1 it can be con-
cluded that, first there is a good correlation between thep-
values for the five different tests. Second, thep-value for
H0,1 (fit of the gamma distribution) appears to be a more sen-
sitive measure of the overall MGGD goodness of fit, com-
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Method β range Percentage of H0 accepted

H0,1 H0,2 H0,3 H0,4 H0,5

MM
β > 0 82 (87) 90 95 94 95
β > 0.5 84 (86) 92 94 93 96
β > 0.7 94 75 94 94 94

MM-
ML

β > 0 87 (89) 91 95 94 95
β > 0.5 89 (88) 92 95 94 96
β > 0.7 94 75 94 94 94

MM-
Fisher

β > 0 44 (79) 51 (91) 53 (95) 53 (95) 53 (95)
β > 0.5 76 (83) 83 (91) 86 (95) 85 (93) 87 (95)
β > 0.7 69 75 94 94 94

Table 1: Percentage, in a database of 640 color texture images, of accepted null hypotheses for the goodness of fit tests
(α = 5%) of a trivariate MGGD to horizontal wavelet detail coefficients at scale 3. The percentages were calculated for
different MGGD fit methods: the Method of Moments (MM), MM followed by an optimization using maximum likelihood
(MM-ML) and finally MM followed by a single Fisher scoring step (MM-Fisher). Different regions of the parameter space
were considered, depending on the range of values of the shape parameterβ (estimated using MM-ML). The analysis
was repeated for all MGGDs where the MM-Fisher method led to estimates within the allowed parameter space. Numbers
between parenthesis indicate any resulting changes in percentages compared to the full data set.
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Fig. 2: Examples of a fit of a gamma distributionΓ
(

m
2β ,2

)
to theR2β histogram, withΣ andβ estimated via maximum

likelihood. (a) Case where thep-value for H0,1 is 0.92. (b) Case with an H0,1 p-value of 0.01.

pared to thep-values of the other tests. The consequence is
that, in order to get a quick first idea of the MGGD good-
ness of fit, we may monitor only thep-value correspond-
ing to H0,1. Alternatively, we can judge the goodness of fit
by visual inspection of the histogram forR2β , together with

the PDF of the gamma distributionΓ
(

m
2β ,2

)
. Two exam-

ples are shown in Figure 2, one where H0,1 was accepted
(p = 0.92) and one where H0,1 was rejected (p = 0.01).
Clearly, in the second case the fit of the gamma distribu-
tion is not optimal, although it still represents a fairly good
summary of the histogram.

Finally, we will want to use models for the wavelet statis-
tics characterized by a fixed value of the shape parameter

as well. Specifically, we will use the Gaussian (β = 1) and
Laplacian (β = 1/2) distributions. Focusing on the maxi-
mum likelihood method for estimating these models, we can
directly calculate the dispersion matrixΣ from (4). Again,
we checked the goodness of the Gaussian and Laplacian
fits on the same data set introduced above. The percent-
ages of accepted null hypotheses are given in Table 2, to be
compared with the fits by the MM-ML method for the case
β > 0 in Table 1. Whereas the percentages for H0,2, . . . ,H0,5

are clearly similar to the case with variableβ , by contrast
the more sensitive H0,1 is substantially more rejected for
the Laplacian and especially the Gaussian, relative to the
MGGD with variableβ . Thus, the multivariate Gaussian
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Model Percentage of H0 accepted

H0,1 H0,2 H0,3 H0,4 H0,5

Gauss 19 90 95 94 95
Laplace 75 90 95 95 94

Table 2: Similar as in Table 1, but for a fit of a multivari-
ate Gaussian and Laplacian using MM-ML on the complete
data set of 640 wavelet images.

is in many cases an inferior model for multispectral image
wavelet statistics, while the Laplacian, with its heavier tails,
is much better suited. The MGGD model with variable shape
parameter provides an even better description of the wavelet
statistics, with a downside of a more complicated fitting pro-
cedure.

We may conclude that, in order to optimize both good-
ness of fit together with computational load, the moment
method suffices as a good first approximation. A subsequent
fine-tuning of the distribution parameters by recursive solu-
tion of the ML equations, may bring useful additional ac-
curacy to the fit, although this adds to the computational
complexity of the fitting procedure. On the contrary, in our
experiments the Fisher algorithm did not appear to give an
advantage in comparison with the moment method, at least
as far as the database under study in the present work is con-
cerned. Indeed, the Fisher step has proved to be counterpro-
ductive in many instances, not least because this technique
might produce values outside the allowed parameter space.
Also by means of significance testing, we have positively
determined that the heavy-tailed MGGD model provides in-
deed a better description of the wavelet data than the Lapla-
cian distribution, and even more so than the Gaussian.

Incidentally, the stochastic representation (7) also allows
to sample from an MGGD by successively sampling a vec-
tor V and a gamma variateR2β . There are several methods
to sample from a uniform distribution on the unit sphere (see
Marsaglia, 1972), but one of the simplest is to sample inde-
pendently fromm univariate standard normal distributions,
arrange the samples in a vector and normalize the result
(Muller, 1959). E.g. form= 3 we get

V =
1√

x2+ y2+ z2




x
y
z


 ,

with x, y and z sampled from a standard normal distribu-
tion. Sampling from an MGGD can be useful in simulation
studies, with another application being the calculation ofthe
KLD between MGGDs through Monte Carlo integration, as
outlined below.

3 MGGD similarity measures

We now consider two similarity measures between MGGDs,
the geodesic distance and the Kullback-Leibler divergence,
and we outline how to calculate them relatively fast. In both
instances, we draw a distinction between the cases of a fixed
and variable MGGD shape parameter.

3.1 Geodesic distance

As mentioned above, within the framework of information
geometry the Fisher information can be seen as a Rieman-
nian metric tensorgµν on anN-dimensional probabilistic
manifold (Cramér, 1946; Rao, 1945). The manifold formed
by zero-mean MGGDs (m-variate) is in principle
parametrized byβ andΣi j , the(i, j)-th element of the matrix
Σ , i ≤ j, so thatN = 1+m(m+1)/2. However, it turns out
that a more elegant parametrization can be found, with the
geodesic in mind between a specific pair of MGGDs(β1,Σ1)

and(β2,Σ2)
4. In this parametrization the Fisher-Rao metric

depends only onβ , so it is easy to tabulate the metric for a
range ofβ values, which needs to be done only once.

Given a metric one can calculate geodesics on the man-
ifold. A geodesic path between two points (MGGDs) on the
manifold is the curve lying within the manifold that con-
nects the points and has minimum length. Geodesics can
be found by solving the geodesic equations, whereupon the
length of the geodesic, i.e. the geodesic distance between
the two points, can be computed. In the case of a fixed shape
parameterβ , the geodesics take the form of straight lines in
R

m (Berkane et al, 1997). As a result, the geodesic distance
between two MGGDs characterized by(β ,Σ1), respectively
(β ,Σ2), exists in a closed form. Denoting this specific dis-
tance by GD(β ,Σ1||β ,Σ2), we have:

GD(β ,Σ1||β ,Σ2) =
[(

3bh−
1
4

)
∑
i

(r i
2)

2+2

(
bh−

1
4

)
∑
i< j

r i
2r j

2

]1/2

, (8)

with r i
2 ≡ lnλ i

2 and λ i
2, i = 1, . . . ,m, the m eigenvalues of

Σ−1
1 Σ2. In addition,bh is defined by

bh ≡
1
4

m+2β
m+2

.

If on the other handβ is allowed to vary, the geodesic
equations are more difficult to solve and we did not obtain a
closed-form solution. Instead, through numerical optimiza-
tion, polynomial solutions can be obtained for the coordi-
nates as a function of the geodesic’s parametert (i.e. the

4 G. Verdoolaege and P. Scheunders, On the Geometry of Multivari-
ate Generalized Gaussian Models, submitted to Journal of Mathemati-
cal Imaging and Vision, 2010.
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coordinate functions)4. In practice only a few iterations of a
BFGS Quasi-Newton method usually suffice to obtain sub-
stantial information on the geodesics. However, this scheme
still is computationally too intensive to be practical for e.g.
real-time image retrieval. Therefore, in this paper we use a
linear approximation to the geodesic coordinate functions5.
The calculation of the geodesic distances via integration along
the geodesic was then carried out using a simple (and fast)
trapezium rule.

3.2 Kullback-Leibler divergence

The KLD between two distributionsp1(x|θ1) andp2(x|θ 2),
denoted by KLD(p1||p2), is defined by

KLD(p1||p2) =

∫
p1(x|θ1) ln

p1(x|θ 1)

p2(x|θ 2)
dx, (9)

where the integral is over the whole data space. A closed-
form expression for the KLD between two univariate zero-
mean generalized Gaussians was obtained by Do and Vet-
terli (2002). In the terminology that we use, and introduc-
ing the dispersionsσi , i = 1,2 (Σi reduces toσ2

i in the uni-
variate case), the KLD between two GGDs characterized by
(β1,σ1) and(β2,σ2) (shortly KLD(β1,σ1||β2,σ2)) is given
by

KLD(β1,σ1||β2,σ2) = ln




β12
1

2β2 σ2Γ
(

1
2β2

)

β22
1

2β1 σ1Γ
(

1
2β1

)




+


2

1
2β1 σ1

2
1

2β2 σ2




2β2 Γ
(

2β2+1
2β1

)

Γ
(

1
2β1

) −
1

2β1
.

An analytic expression for the KLD between multivari-
ate zero-mean Gaussian distributions (β = 1 in (2)) is also
known since long (Kullback, 1968). It is given by

KLD(Σ1||Σ2) =
1
2

[
ln

|Σ2|

|Σ1|
+ tr(Σ−1

2 Σ1)−m

]
, (10)

with Σ1 andΣ2 the respective covariance matrices.
The obvious generalization of these results to an ana-

lytic expression for the KLD between two multivariate zero-
mean GGDs is not straightforward. Recently, we obtained a
closed form for the KLD between two bivariate zero-mean
GGDs parametrized by(β1,Σ1) and(β2,Σ2) (Verdoolaege

5 Note that the geodesic itself still lives on the curved MGGD man-
ifold.

et al, 2009), given by

KLD(β1,Σ1||β2,Σ2) =

ln




Γ
(

1
β2

)

Γ
(

1
β1

)2

(
1

β2
− 1

β1

)(
|Σ2|

|Σ1|

) 1
2 β1

β2




−
1
β1

+

[
2

( β2
β1

−1
)Γ

(
β2+1

β1

)

Γ
(

1
β1

)

×

(
γ1+ γ2

2

)β2

2F1

(
1−β2

2
,−

β2

2
;1;A2

)]
. (11)

Here,γi ≡ (λ i
2)

−1, i = 1,2, with againλ i
2 the eigenvalues of

Σ−1
1 Σ2, while A ≡ γ1−γ2

γ1+γ2
. 2F1(., .; .; .) represents the Gauss

hypergeometric function (Abramowitz and Stegun, 1965),
which may be tabulated for−1 < A < 1 and for realistic
values ofβ . In the case of two Gaussians,β1 = β2 = 1, the
hypergeometric function in (11) becomes identically 1 and
it can easily be verified that (11) reduces to the familiar ex-
pression (10).

However, we were unable to find an analytic expression
for the KLD between two multivariate zero-mean GGDs in
general, i.e. for dimension greater than 2. Therefore, in the
general case the KLDs have to be estimated through numer-
ical evaluation of the integral in (9). This is usually carried
out via Monte Carlo integration, by viewing (9) as an expec-
tation overp1 of the logarithm in the integrand. This can be
done reliably and reproducibly only if a sufficient amount of
samples fromp1 is available. These samples can be obtained
from the data (images) itself or, alternatively, the samples
may be drawn directly fromp1 via the procedure for sam-
pling from an MGGD outlined in Section 2.3. Nevertheless,
we must point out that Monte Carlo integration in general is
a too slow process to be useful in many applications, such
as image retrieval. Moreover, the calculation of the KLD in
itself yields little geometric insight concerning the MGGD
space. As a result, the accuracy of approximations of the
KLD via Monte Carlo integration can only be adjusted in
a less controlled way, compared to the approximation of a
geodesic path. For these reasons we did not carry out the
Monte Carlo integration to estimate the KLD in the cases
where no closed expression was available.

As an aside, we note that for distributions that lie in-
finitesimally close on the probabilistic manifold, it can be
proved that the Kullback-Leibler divergence equals half of
the squared geodesic distance between the distributions (see
e.g. Kullback, 1968; Lenglet et al, 2006a). Hence, in such
a case the KLD and GD yield similar results, but in gen-
eral they are quite different measures of similarity between
distributions.
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3.3 Multiple wavelet subbands

So far we have considered the calculation of the GD and
KLD between single MGGDs. However, with a view to our
application of texture discrimination, we will want to de-
compose the images in a multiscale representation, namely
through the wavelet transform. After the example of Do and
Vetterli (2002), we will assume independence among the
B wavelet subbands, modeling the spectral components be-
longing to each subband via an independent MGGD. More
precisely, we will neglect the dependence of wavelet sub-
bands compared to the correlation structure associated to
the spectral bands. To check whether this approximation is
indeed valid, we calculated the correlation coefficient be-
tween wavelet data (resulting from the stationary wavelet
transform) belonging to different directions (horizontal, ver-
tical, diagonal) for every level. In addition, for every direc-
tion we computed the correlation between wavelet data as-
sociated to different levels. We compared this with the cor-
relation between spectral bands, for every wavelet subband.
We performed this check for wavelet data obtained from ev-
ery image in the database of 640 images described below.
Overall, the median of the absolute value of the correla-
tion coefficient between directions was 0.037 (interquartile
interval [0.013,0.075]) and between levels this was 0.022
([0.004,0.062]). However, the correlation between spectral
bands was substantially stronger, resulting in a median ab-
solute value of 0.986 ([0.968,0.994]) between red and green,
0.965 ([0.925,0.985]) between red and blue and 0.987
([0.963,0.995]) between green and blue. Thus, we may safely
neglect the correlation between wavelet directions and lev-
els, compared to the correlation between spectral bands and
we will also neglect any higher-order dependence between
directions and levels.

If independence among wavelet subbands is assumed,
the joint distribution of the image over allB subbands is just
the product of the MGGDs corresponding to the individ-
ual subbands. It is not difficult to see that the correspond-
ing Fisher matrix is block diagonal and that the geodesic
equations becomeB mutually independent systems ofm+1
equations each. TheB systems can be solved along the same
lines as described above. For the case of a fixed shape pa-
rameter, this yields a sum of terms of the form under the
square root in (8), corresponding to the respective subbands.
For a variable shape parameter, we make use of the fact that
a geodesic is a curve on the manifold not only with min-
imum length, but also with minimum squared length (en-
ergy). Therefore, one may just sum thesquaredgeodesic
distances for the respective subbands. Regarding the KLD,
when dealing with multiple independent wavelet subbands,
the respective KLDs may just be summed according to the
chain rule (Kullback, 1968; Do and Vetterli, 2002).

Naturally, in the case where the independence assump-
tion of the wavelet subbands is not justified, a better model
that takes into account the dependence of both the spectral
bands and the wavelet subbands may well yield still en-
hanced results in a texture classification experiment.

4 Classification and retrieval experiments

Equipped with techniques to calculate the GD and KLD be-
tween MGGDs, we proceed with the discussion of a series
of experiments on the classification and retrieval of textured
color images based on texture discrimination. We start with
an overview of our experimental setup.

4.1 Experimental setup

We first conducted a series of classification experiments on
gray-level and color textures. We next repeated the experi-
ments in an image retrieval application. We started the ex-
periments on a small database that is meant to provide a
bench-mark for the comparison of different statistical mod-
els as well as comparison of the GD with the KLD. This
database was the same as the one used by Do and Vetterli
(2002), which allows easy comparison to the retrieval results
on gray-level images obtained by Do and Vetterli (2002).
The database comprised a set of 40 images from the Vis-
Tex database. These are real world 512×512 color images
from different natural scenes (textures), displayed in Fig. 3,
selected because of their sufficient homogeneity. The im-
ages were expressed in the RGB color space. Every image
was divided in sixteen nonoverlapping 128× 128 subim-
ages, constituting a database of 640 subimages. Gray-level
images were obtained from the original color images by cal-
culating their luminance. In order to render the retrieval task
sufficiently challenging, every color (or gray-level) compo-
nent of each subimage was individually normalized to zero
mean and unit variance. As a result, the gray scales of subim-
ages from the same original image were generally not in the
same range. Then, on every component individually a dis-
crete wavelet transform was applied with three levels using
the Daubechies filters of length eight. The wavelet detail co-
efficients of every subband over the three color components
(or the gray-level) were modeled by an (M)GGD using the
MM-ML approach. The parameters of the (M)GGD models
for all subbands comprise the feature set for a single subim-
age. The experiments were carried out once using only one
wavelet scale and once using all three wavelet scales. In or-
der to get an idea of the range of values for the shape pa-
rameterβ in our data set, a histogram ofβ , over all nine
wavelet subbands, is given in Figure 5a for the gray-level
images. Figure 5b shows a similar histogram for the case of
RGB images modeled by trivariate MGGDs. For gray-scale
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images the meanβ is about 0.58, while for correlated color
images it is slightly lower: 0.48 (about Laplacian). Again,
this is an indication that the Laplacian is much more suit-
able as a model than the Gaussian.

The classification experiments were carried out by means
of ak-nearest neighbor classifier validated by the leave-one-
out method. In practice, we considered one of the 640 subim-
ages (the test image), to be assigned to one of the 40 original
texture classes. The class labels of the other subimages were
assumed to be known, which constitutes the training phase
of the classifier. Then, the similarity of the test image to each
of the remaining images was determined and the test image
was assigned to the class most common among thek = 15
nearest neighbors of the test image. We chosek = 15 since
ideally the 15 nearest neighbors of the test image should be
the 15 subimages originating from the same original texture
class to which the test image belonged in reality. We next
compared the assigned class label with the true class label of
the test image. We repeated the procedure, successively us-
ing every subimage once as a test image (hence every time
leaving out one of the subimages in the training phase of
the classifier). We then determined the rate of correct clas-
sification and used this as a performance measure for the
classifier.

The classification experiment can easily be applied in
a retrieval context, again by sequentially presenting every
subimage as a query image. The retrieval effectiveness is
then measured by calculating the averageretrieval rate, i.e.
the ratio of relevant images in the top 15 images (excluding
the query image). Here, a subimage is considered relevant if
it is part of the same original 512×512 image as the query
subimage.

We conducted both the classification and retrieval exper-
iments for various choices of the statistical model and using
the GD and KLD as a similarity measure. We started the ex-
periments on the gray-level equivalent of the 640 color im-
ages and we next treated the corresponding full RGB color
images assuming no interband correlation (hence univari-
ate modeling, referred to as ‘UV’). In this case, the GD
and KLD for the joint (product) distribution over the color
bands can be calculated remembering the comments above
on the calculation for independent wavelet subbands. Then,
color images were considered where the (bivariate) correla-
tion was modeled pairwise between the color bands (bivari-
ate modeling, referred to as ‘MV-2’). Since a closed expres-
sion for the KLD between bivariate GGDs is available, this
procedure allows us to explicitly compare the GD with the
KLD in the bivariate case. Finally, color images considering
the full (trivariate) correlation structure between the spectral
bands (referred to as ‘MV-3’) were used (recall that in ev-
ery case the wavelet subbands were considered to be mutu-
ally independent). For each of these instances, we employed
several MGGD models, with fixed and with variable shape

parameter. In the case of fixed shape parameter, we chose
two models, vizβ = 1, i.e. the (multivariate) Gaussian and
the multivariate Laplacian, characterized byβ = 1/2. For a
variable shape parameter, the GD was evaluated using a lin-
ear approximation for the geodesic coordinate functions, as
mentioned above. In the cases where a closed expression is
available for the KLD, we compared its performance as a
similarity measure with the results using the GD.

We then compared our retrieval results for gray-level im-
ages to a recent state of the art method that employs image
features based on image patch exemplars (Varma and Zisser-
man, 2003, 2009), questioning the advantage of filter banks.
We applied this method to retrieval on our database of 640
subimages as follows. First, for every texture each pixel in
the corresponding 16 subimages was represented by a vector
consisting of the normalized gray-level values in the pixel’s
surrounding 3× 3 region. Ak-nearest neighbor clustering
algorithm was then applied in this vector space, resulting in
10 cluster centers called textons. The total collection of 400
textons (40 textures) was then used to build a texton dictio-
nary. In the learning stage, each pixel in the 640 database
images was then converted to its closest texton and a texton
histogram was generated for each subimage. In the classifi-
cation stage, the texton histogram of each query image was
compared to all database histograms (neglecting the small
influence of the query image itself on the dictionary that was
used for translation) using theχ2 statistic (the GD could be
applied here as well). Finally, again the images were ordered
according to their distance to the query image and average
retrieval rates were calculated. We refer to this method as
the ‘texton method’. We did not extend this method to color
texture discrimination.

We next examined the influence of Gaussian noise added
to the images and studied the impact of image conversion to
a less correlated color space, namely HSV space.

Finally, in order to demonstrate the texture discrimina-
tion capabilities of our techniques in a realistic retrieval set-
ting, we conducted several texture retrieval experiments in a
database of 100,000 images of size 256×256.Every database
image was made up of about four to five irregularly shaped
patches of different colored textures. These textures were
chosen randomly from a set of 198 relatively homogeneous
base textures, obtained from the VisTex database and from
an online image repository (Image⋆After, 2010). Some ex-
ample images are displayed in Figure 4. During construc-
tion of the database images, for every base textureTi (i =
1, . . . ,198) the total number of timesNi was counted that
this specific base texture was used in a patch in a database
image. The image features were defined as follows. Every
image was divided in 16 nonoverlapping 64×64 subimages
and MGGD features were calculated for each of the subim-
ages, just as in the previous experiment, except that the color
components were not normalized. In addition, we used only
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Fig. 3: The 512× 512 texture images from the VisTex database used in our experiments. From left to right and top to
bottom the images are: Bark0, Bark6, Bark8, Bark9, Brick1, Brick4, Brick5, Buildings9, Fabric0, Fabric4, Fabric7, Fabric9,
Fabric11, Fabric14, Fabric15, Fabric17, Fabric18, Flowers5, Food0, Food5, Food8, Grass1, Leaves8, Leaves10, Leaves11,
Leaves12, Leaves16, Metal0, Metal2, Misc2, Sand0, Stone1,Stone4, Terrain10, Tile1, Tile4, Tile7, Water5, Wood1 and
Wood2.

one wavelet scale in order to reduce the computational load.
The set of MGGD features for all 16 subimages, constituted
the features for a single database image. A query consisted
of the presentation of a random 64×64 patch chosen from
one of the base texturesTi . For every database image, the
similarity of the MGGD features of this query image to the
features of each of the 16 subimages was calculated. The
similarity of the query image to the database image was then
defined as the smallest of the 16 similarities. Next, theNi

closest database images were considered. Ideally, each of
theseNi images should contain a patch filled with textureTi .
In reality, our success rate for a single query was the ratio
of database images in the topNi that contained textureTi .
We conducted 1000 queries and finally computed the aver-
age success rate. This experiment was carried out for gray-
scale images (univariate GGD) and RGB color images (with
correlated spectral bands, trivariate MGGD), using a fixed
shape parameter (Gaussian, Laplacian) or a variable shape
parameter and applying the GD or KLD as a similarity mea-
sure.

4.2 Computational demands

The performance of a classifier or a retrieval system is not
only expressed in terms of its actual classification efficiency,
but is also a function of its speed. Depending on the ap-
plication, a trade-off needs to be considered between clas-
sification effectiveness and computational demands. In or-
der to estimate the computational resources required by any
combination of models and similarity functions introduced
above, we measured the amount of time necessary for the
evaluation of the similarity measure between two images,
characterized by in total nine wavelet subbands at three scales.
This duration was obtained on the machine on which all cal-
culations in this work were performed, namely a Dell Opti-
plex 755 equipped with an Intel Core Duo Quad CPU at 2.7
GHz and 8 GB of RAM, running the 64-bit version of the
Windows Vista operating system. The codes for the clas-
sifier and the retrieval system were implemented and run
in MATLAB (version 7.6, R2008a, 64 bit (The Mathworks,
2008)). The durations are summarized in Table 3 (two sig-
nificant digits were considered in every case).
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(a) (b)

(c) (d)

Fig. 4: Example images from a database of size 100,000. Everyimage (256×256) consists of arbitrarily shaped patches of
random colored textures.
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Fig. 5: Histograms of the (M)GGD shape parametersβ obtained via MM-ML over the nine wavelet subbands (three scales)
in an image database of 640 color texture images. (a) For gray-scale images and (b) for three correlated RGB color bands.

.

Several points in this table are noteworthy. First, clearly
the calculation of similarities between gray-level imagesis
the fastest, followed by color images without correlation
between the spectral bands. Evaluating distances between
color images with the correlation between the spectral bands
modeled pairwise (MV-2) takes considerably more time. The
reason is that for each comparison in effect 27 (3× 9) dis-

tances between bivariate GGDs have to be computed. How-
ever, the durations obtained by computing the distances be-
tween trivariate MGGDs (MV-3), characterizing the full cor-
relation structure between the three color bands, are again
somewhat lower because here effectively only nine KLDs
or GDs have to be evaluated. Further tests on synthetic data
have pointed out a quadratic asymptotic scaling of the com-
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Measure Model

Gray UV MV-2 MV-3

KLD
Gauss 0.021 0.023 0.96 0.37
Laplace 0.018 0.020 1.7 –
GGD 0.066 0.089 2.2 –

GD
Gauss 0.053 0.074 0.99 0.57
Laplace 0.053 0.074 0.99 0.57
GGD 1.9 5.5 7.3 2.8

Table 3: Time, in ms, necessary for the calculation of the
similarity between two textured images (nine wavelet sub-
bands) characterized by different models (Gray = gray-level,
UV = univariate color, MV-2 = multivariate color with pair-
wise correlation between the spectral bands, MV-3 = multi-
variate color with full correlation structure) using the KLD
and GD.

putational time as a function of the number of spectral bands,
both for the fixed and variableβ cases.

A second observation is that it takes consistently more
time (except for the MV-2 Laplace) to evaluate the GD, com-
pared to the corresponding KLD. However, in most cases
the durations are of the same order of magnitude. An excep-
tion is formed by some of the GD calculations for variable
shape parameter, which take several milliseconds, in general
much longer than is necessary to evaluate the KLD for cor-
responding models and for variable shape parameter as well.
Hence, in order to render the effort of computing the GD for
a variableβ worthwhile, the associated correct classification
rates and retrieval rates will need to be significantly higher
than any of the rates obtained using other models and/or the
KLD. In the next subsection, we will see that for classifi-
cation and retrieval on the present database, this is convinc-
ingly the case for univariate models. In the multivariate case
it will become clear that the application of the Laplace dis-
tribution as a model and the GD as a similarity measure,
yields the best classification results with the additional ben-
efit of an acceptable computational load.

4.3 Results and discussion

4.3.1 Main experiments

Our experiments enable a study of the influence on the cor-
rect classification rate (CCR) and the average retrieval rate
(RR) of the image model as well as the similarity measure
used. The results of all classification and retrieval experi-
ments on the database of 640 images are discussed below
and summarized in Tables 4 and 5, respectively. The main
conclusions that can be drawn from these tables are the fol-
lowing.

– When the three colors in an image are described individ-
ually by a univariate distribution, instead of using only
the gray-level information, both the CCR and RR in-
crease significantly. However, the most substantial per-
formance improvement compared to gray-level model-
ing is obtained by taking into account the correlation
structure between the spectral bands. The downside is
a substantially increased demand for computational re-
sources, as discussed in Section 4.2. Note that the re-
trieval result on gray-scale textures using the KLD and
GGD was already obtained by Do and Vetterli (2002).

In order to assess the associated specific gain in re-
trieval performance, a comparison was made, as a func-
tion of each texture class separately, of the cases with
and without correlation. To do this, within every texture
class the mean was taken of the average retrieval rate ob-
tained by successively presenting each of the subimages
in the respective class to the retrieval system. Since the
Laplace distribution gives the highest retrieval rates in
three dimensions (see also below), the comparison was
made by means of the Laplacian model, using the GD.
The results are displayed in Figure 6a (three wavelet
scales) for the first 20 texture images shown in Figure 3,
while the other images are analyzed in Figure 6b. The
differences are in some cases spectacular, implying strong
correlation between the color bands. These figures may
also be compared to the corresponding results by Do and
Vetterli (2002) on gray-level textures.

The same situations were compared in terms of their
corresponding average retrieval rate as a function of the
number of retrieved images considered. This is shown
in Figure 7. At 16 retrieved images considered, natu-
rally we obtain the respective retrieval rates that are men-
tioned in Table 5. In order to reach the same average re-
trieval rate, typically more than 2.5 times the number of
images need to be considered when the correlation is not
modeled, compared to the case where the correlation in-
formation is taken into account. Again these findings can
be compared to the results by Do and Vetterli (2002).

– The Laplace distribution yields in all cases (both KLD
and GD) a higher CCR and RR than the Gaussian. This
corroborates our findings in Section 2.3, where it was
concluded that the Laplace distribution describes image
wavelet statistics more effectively than the Gaussian. Fur-
thermore, the highest rates in our series of experiments
are obtained by means of a trivariate Laplace distribu-
tion, employing the GD as a distance measure. Accord-
ing to Section 4.2 the computational cost is still reason-
able in this situation. Also note that in this case there is
no closed expression available for the KLD, nor for a
trivariate GGD with variable shape parameter.

– The (M)GGD, characterized by a variable shape param-
eter in turn may lead to superior classification and re-
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trieval performance compared to the Laplacian (both
KLD and GD). However, this effect is most clearly no-
ticed when using univariate distributions, but diminishes,
or even marginally reverses, as the correlation between
color bands is taken into account and as we include more
wavelet scales. This is partly understandable since, first,
enhancing the complexity of the model, hence increas-
ing the classification performance, it becomes more and
more difficult to still improve on the results. Second, we
have to keep in mind that the accuracy of the calcula-
tion of the GD between variableβ MGGDs depends on
the degree to which the linear approximation of the geo-
desic coordinate functions remains valid. As a third pos-
sible cause we may point out that the estimation of the
MGGD shape parameter is a difficult task, particularly
for low values of the shape parameter, as is evident from
the discussion in Section 2.3. As a result, the estimated
shape parameter might yield a suboptimal MGGD de-
scription of the wavelet statistics. On the other hand, fit-
ting a Laplace distribution (hence fixedβ ) to wavelet
data is easier and it may well be that in the end in some
cases the estimated Laplace distributions provide, on the
average over the entire database, a better description of
the data than the hard to fit MGGD models with vari-
able β , thus explaining the better performance of the
Laplace distribution in a classification experiment. As
a result, although the reason is not entirely clear as yet,
we have to conclude that evidently, on the present im-
age database, for multivariate distributions a variableβ
model provides no significant advantage over a Laplace
distribution. This is especially apparent considering the
substantially higher computational load both during es-
timation and classification using the variableβ distribu-
tions in comparison with fixedβ models.

Incidentally, we also carried out a classification ex-
periment using the GD on trivariate GGDs with variable
shape parameter, this time calculating a polynomial ap-
proximation of higher degree (degree 10) to the geodesic
coordinate functions, as we have described elsewhere6.
However, we did not observe any resulting significant
increase in classification performance.

– The GD is in all cases more effective as a similarity
measure than the KLD. The largest disparity is obtained
when the colors of the image are taken into considera-
tion as opposed to using only the gray levels. However,
as noted in Section 4.2, the superior classification per-
formance of the GD comes at the cost of higher compu-
tational demands.

– The modeling of the full correlation structure using trivari-
ate distributions yields slightly better results than through

6 G. Verdoolaege and P. Scheunders, On the Geometry of Multivari-
ate Generalized Gaussian Models, submitted to Journal of Mathemati-
cal Imaging and Vision, 2010.

pairwise bivariate modeling of the color bands. Note,
however, that since at this point no analytic expression
is available for the KLD between trivariate GGDs (ex-
cept for the Gaussian), leaving only the possibility of
computationally intensive multidimensional integration,
the KLD between such distributions was not computed
in this work. This is one of the advantages of the GD
over the KLD.

4.3.2 Comparison to state of the art

Using the texton method, again average retrieval rates for
gray-level images were considered as a function of the num-
ber of retrieved images considered. At 16 images retrieved,
this yielded a rate of 78.7%, somewhat more than using the
GD on three wavelet scales of the gray-level images. How-
ever, at only a slightly higher number of retrieved images,
the texton method performs inferior to the wavelet methods
used in this paper, as can be seen in Figure 7.

4.3.3 Influence of noise

We next examined the influence of noise on the classifica-
tion results. For that purpose we added Gaussian noise to all
images in the database of size 640, before carrying out the
wavelet transform (three scales). We chose a signal-to-noise
ratio (ratio of the standard deviations) of 1 and we repeated
the classification experiments using the gray-scale and MV-
3 features. The corresponding CCRs are given in Table 6.
Overall the classification rates are lower than those for the
original images, but there is no dramatic drop in classifica-
tion efficiency, despite the relatively high noise level. Sec-
ond, the KLD appears to be slightly more robust against the
noise compared to the GD, except in the case of the univari-
ate Laplace distribution. Third, in this case there is a merit
of the trivariate MGGD with variable shape parameter, com-
pared to the trivariate Laplace distribution. The other trends
are similar as in the unperturbed case.

4.3.4 Influence of color space

It is interesting to study the effect of the particular color
space that is used to compute the wavelet features from.
For instance, the dimensions in HSV space (with cylindri-
cal coordinates hue, saturation and value) are much less cor-
related than in RGB space. Indeed, as an example we con-
verted the images in the database of size 640 into HSV space
and then performed a wavelet transform independently on
each coordinate (three scales). In this space, the correla-
tion between wavelet directions and levels (for the stationary
wavelet transform) turned out to be comparable to that ob-
tained in RGB space. However, for the correlation between
the hue and saturation we computed a median absolute value
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Measure Model

One scale Three scales

Gray UV MV-2 MV-3 Gray UV MV-2 MV-3

KLD
Gauss 68.0 78.1 89.2 90.5 77.8 83.8 94.4 95.9
Laplace 69.4 79.2 91.3 – 81.4 85.9 95.2 –
GGD 78.4 82.2 91.9 – 87.5 89.2 94.5 –

GD
Gauss 68.4 78.9 89.5 92.7 79.5 85.8 96.4 97.0
Laplace 70.3 83.9 92.0 93.4 83.6 90.0 96.7 97.5
GGD 80.0 84.5 93.4 93.0 88.9 91.3 96.1 97.3

Table 4: Correct classification rates (%) using different models (Gray = gray-level, UV = univariate color, MV-2 = multi-
variate color with pairwise correlation between the spectral bands, MV-3 = multivariate color with full correlation structure)
for a single and for three wavelet scales, using the KLD and GDas similarity measures in a database of 640 color texture
images.

Measure Model

One scale Three scales

Gray UV MV-2 MV-3 Gray UV MV-2 MV-3

KLD
Gauss 53.7 62.6 79.2 80.2 63.6 70.2 85.8 87.4
Laplace 54.5 64.3 81.5 – 65.5 71.2 87.8 –
GGD 66.4 71.2 82.3 – 76.6 77.1 87.6 –

GD
Gauss 53.9 63.4 80.2 81.2 64.4 71.5 87.7 89.6
Laplace 56.8 67.6 83.3 84.1 68.3 74.9 89.9 91.7
GGD 66.7 73.4 84.1 84.7 77.8 79.9 89.5 91.3

Table 5: Same as Table 4, but with application in a retrieval experiment. The average retrieval rates (%) are mentioned.

of only 0.119 (interquartile interval[0.045,0.274]), between
hue and value this was 0.110 ([0.038,0.260]) and between
saturation and value we obtained 0.70 ([0.45,0.82]). Thus,
only the saturation and value coordinates display an appre-
ciable correlation, while the correlation between hue and the
other coordinates is much weaker than between the RGB
bands. In fact, we would expect a substantially enhanced
classification efficiency primarily by modeling the correla-
tion between saturation and value. Also, since obviously
there lies less information in the HSV correlation structure
compared to the case of the RGB space, there should be
more information in the individual hue, saturation and value
dimensions, without considering the correlation. Indeed,in
Table 7 the CCRs and RRs for different GGDs modeling
the HSV coordinates independently (UV) are compared to
the case where correlation between all coordinates is taken
into account (MV-3). As is to be expected, the classification
and retrieval performance of the UV case is better compared
to UV modeling in RGB space. On the contrary, the MV-3
results are worse for HSV relative to RGB space. Never-
theless, the best results are still obtained in the multivariate
context. We also noted that in HSV space it is more diffi-
cult to fit a model with variable shape parameter, due to the
extreme leptokurtic behavior of particularly the hue coordi-
nate. This is the cause of the reduced classification perfor-

Measure Model

Gray MV-3

KLD
Gauss 60.5 81.1
Laplace 61.1 –
GGD 68.8 –

GD
Gauss 59.8 80.8
Laplace 62.5 81.3
GGD 67.8 83.0

Table 6: Correct classification rates (%) using different mod-
els (Gray and MV-3) for three wavelet scales, using the KLD
and GD as similarity measures in a database of 640 color
texture images, with added Gaussian noise (SNR = 1).

mance of the models with variable shape parameter. This ef-
fect is even more apparent with the GD than using the KLD,
since the GD with variable shape parameter is an approx-
imation. Comparing with the results obtained in the RGB
space, we conclude that for multivariate modeling using an
MGGD, the RGB space provides a better representation than
a less correlated space such as the HSV space.
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Fig. 6: Comparison of the average retrieval rates over each
texture class in the database, between univariate modeling
(UV) of the colors individually on the one hand and model-
ing of the three correlated color bands (MV-3) on the other
hand. Three wavelet scales were used, modeled by Laplace
distributions, and the GD was applied as a similarity mea-
sure.
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Fig. 7: Average retrieval rate as a function of the number of
top retrieved images (excluding the query image) for gray-
level modeling (Gray, variableβ ), univariate modeling of
the colors individually (UV, variableβ ) and modeling of the
three correlated color bands (MV-3, Laplace model) using
the GD on three wavelet scales. The rates obtained via the
texton method are also shown.

Classification Retrieval

Measure Model

UV MV-3 UV MV-3

KLD
Gauss 85.8 91.6 70.7 79.4
Laplace 88.1 – 75.1 –
GGD 90.5 – 73.5 –

GD
Gauss 87.3 93.9 72.6 81.3
Laplace 90.6 94.5 77.2 83.9
GGD 82.5 72.5 64.7 59.5

Table 7: Correct classification rates and average retrieval
rates (%) using different models (UV and MV-3) for three
wavelet scales, using the KLD and GD as similarity mea-
sures in a database of 640 color texture images in HSV
space.

Measure Model

Gray MV-3

KLD
Gauss 28.0 60.1
Laplace 32.5 –
GGD 35.8 –

GD
Gauss 30.1 62.4
Laplace 33.9 68.8
GGD 37.4 64.2

Table 8: Average retrieval rates (%) using different models
(Gray and MV-3) for a single wavelet scale, using the KLD
and GD as similarity measures in a texture retrieval experi-
ment. The database consists of 100,000 color images, every
image containing multiple textures.

4.3.5 Large database of multiple texture images

Finally, Table 8 contains the success rates, as defined above,
for the retrieval experiment consisting of 1000 queries of
random texture patches in a database of 100,000 multiple
texture images. Only gray-level textures and the correspond-
ing color images were treated and one wavelet scale was
used. Again, similar trends can be noticed as in the exper-
iments on 640 images. This shows that our methods can
be applied successfully in realistic experimental settings in-
volving large databases.

4.3.6 Practicalities and future research

We next would like to formulate several considerations that
are relevant to the implementation in practical applications
of the techniques introduced in this paper. At the same time
we suggest various possible improvements to the methods as
well as some topics deserving further study. First, we have
stressed upon the additional computational demands asso-
ciated with some of the improvements in classification rate
observed in our study. Although an elevated computational
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complexity of the similarity measurement can be prohibitive
in real-time applications of e.g. a retrieval system, this does
not exclude the usefulness in other or related applicationsof
even the most computationally demanding methods applied
in the present work. For instance, a practical retrieval mech-
anism might start querying the database using a computa-
tionally lightweight method (e.g. by means of the KLD on
the gray-level component modeled by a GGD), and subse-
quently, in a reduced set of retained images, refine the search
by means of a more advanced technique (e.g. using the GD
and a trivariate Laplace model). The GD in conjunction with
complicated multivariate data models can be fruitful as well
in a database search using key images. Moreover, the higher
classification rates obtained with the GD and an advanced
model, may also be an indication of good, and perhaps more
distinctive performance in other applications, where compu-
tational load is less an issue. For example, it was noted above
that for two distributions that are close on the probabilistic
manifold, the GD and KLD are comparable similarity mea-
sures. However, the more distant two distributions, the larger
the disparity between the GD and the KLD. Therefore, it
would be worth studying an application where mainly large
distance are involved (e.g. a classification problem with ex-
tensive but mutually close clusters in feature space), and
check the relative performance of the GD and KLD, com-
pared to their performance observed in the present applica-
tion or database.

Another possible topic for future research concerns the
classification results using a distribution with variable shape
parameter, relative to fixed shape parameter models. Indeed,
the variable shape parameter induces a significant additional
model flexibility and this is in fact reflected by the substan-
tial increase of the classification rate for univariate models.
However, the reason why a similar large improvement is not
observed in the multivariate case (except in the experiment
with added Gaussian noise), at least on our data set, is not
entirely clear, although we have identified several possibil-
ities above. Similarly, the lack of an increased performance
when using a more accurate higher-degree polynomial ap-
proximation to the geodesic coordinate functions, is defi-
nitely a matter for further investigation. First, this behavior
could be different in other applications. Second, the effect of
a linear geodesic approximation on classification effective-
ness should be studied in more detail. Third, the hypothesis,
which we have stated, should be examined that the fact that
multivariate models with variable shape parameter do not
result in a significantly enhanced classification performance,
is related to a suboptimal estimation of the distribution. This,
in turn, could trigger the search for improved algorithms for
parameter estimation, or even other distribution familiesthat
provide a still better description of multivariate waveletdata,
and to which the methods outlined in this work can be ap-
plied.

As a final recommendation to practitioners as far as clas-
sification performance is concerned, we would like to pro-
pose to use the GD (with linear approximation for the coor-
dinate functions) together with the GGD with variable shape
parameter in the case of gray-level texture discrimination.
For the trivariate case where the correlation between the
spectral bands is modeled, we recommend the GD together
with the Laplacian distribution.

As an aside we still mention that for the calculation of
the GD between the distributions modeling the images in the
present databases, it was verified that the resulting geodesic
distances are symmetric in the order of the arguments. In
addition, for the case of a Gaussian and Laplacian, the nu-
merically computed GDs using linear geodesic coordinate
functions correspond very well to the exact results obtained
via the analytic expressions for the GD. The reason is that
for the distributions with fixed shape parameter, in the coor-
dinate system used in this work, the linear approximation is
exact, see Section 3.1.

5 Conclusion

In this paper, we have studied the measurement of multi-
component image texture similarity through a statistical ap-
proach in the wavelet domain. We applied this in several ex-
periments for the classification of color textures in a database,
relying solely on the actual image content. We used ak-
nearest neighbor classifier evaluated via the leave-one-out
method. We chose image retrieval as a specific application
of the classifier. We proposed to profit by the information
residing in the rich spectral band correlation structure, by
jointly modeling, through a heavy-tailed multivariate gen-
eralized Gaussian distribution (MGGD), the wavelet detail
coefficients corresponding to the respective spectral bands in
an image. We tested several methods for fitting an MGGD to
multiband wavelet data, concluding that the moment method
provides a good approximation to the wavelet histograms,
with the possibility of subsequent fine-tuning through recur-
sive solution of the ML equations.

A second accomplishment of the present work is the
use in a series of classification and retrieval experiments
of the geodesic distance (GD) as a similarity measure be-
tween MGGDs (hence between the corresponding images).
The GD has several interesting advantages compared to the
Kullback-Leibler divergence (KLD), a traditional measure
of similarity between probability distributions. An initial set
of experiments was conducted using a small image database
serving as a bench-mark system. Models of varying com-
plexity were employed for characterizing the wavelet data.
The classification effectiveness for all models, using both
the GD and KLD, was evaluated by on the one hand the
actual correct classification rates, and on the other hand by
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the computational complexity. A substantial gain in classi-
fication efficiency was obtained when considering the inter-
band correlation (both pairwise and trivariate) as opposed
to univariate modeling. In the univariate case, the use of a
GGD with variable shape parameter, compared to a Gaus-
sian or a Laplacian, produced a distinct benefit in terms of
correct classification rate. Another important observation is
the clearly superior classification performance of the GD in
comparison with the KLD, particularly for multivariate dis-
tributions. The highest correct classification rates, in combi-
nation with a manageable computational complexity, were
obtained using the GD on trivariate Laplace distributions.
For gray-scale images, our method performs better than a
state of the art technique employing image patch exemplars.

Next, the impact of perturbation of the images through
additive Gaussian noise was examined and the KLD was
found to be slightly more robust against the noise than the
GD. Nevertheless, the best classification results were still
obtained using the multivariate Laplace distribution or the
MGGD with variable shape parameter, in conjunction with
the GD.

We also repeated the experiments in the HSV color space,
which is a less correlated representation compared to the
RGB space. Although the classification results via univari-
ate modeling improve in a less correlated space such as HSV,
the efficiency of multivariate models deteriorates consider-
ably. Hence for multivariate modeling the RGB space is a
better alternative.

We then performed a more realistic set of texture re-
trieval experiments in a significantly larger database with
images containing multiple colored texture patches. Similar
tendencies were observed as in the initial series of experi-
ments on the smaller database, indicating that our methods
are scalable and suitable in realistic situations as well.

Finally, we identified some topics for future research,
including the relative performance of the GD and KLD, as
well as the impact of variable versus fixed MGGD shape
parameter models. To this end it would be advantageous to
investigate the behavior of the techniques developed in this
work on other data sets and in other applications.
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