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Abstract We consider the Rao geodesic distance (GD) Introduction

based on the Fisher information as a similarity measure on

the manifold of zero-mean multivariate generalized GausThe visual description of texture has been a major research
sian distributions (MGGD). The MGGD is shown to be antopic during more than twenty years and still is a matter
adequate model for the heavy-tailed wavelet statisticslih m of intensive ongoing research. An important challenge is
ticomponent images, such as color or multispectral imageshe automated discrimination of textured images or regions
We discuss the estimation of MGGD parameters using varfexture discrimination techniques form a significant pért o
ious methods. We apply the GD between MGGDs to colomany classification and machine learning frameworks, with
texture discrimination in several classification experitse applications in medical imaging, remote sensing and numer-
taking into account the correlation structure between theus other practical domains. The present work deals with
spectral bands in the wavelet domain. We compare the pethe discrimination and classification of multicomponertte
formance, both in terms of texture discrimination capabiltured images, with a specific application in content-based
ity and computational load, of the GD and the Kullback-image retrieval.

Leibler divergence (KLD). Likewise, both uni- and multi-  The advent of the Internet and extensive digital image
variate generalized Gaussian models are evaluated, eharggraries has entailed the development of rapid and efficien
terized by a fixed or a variable shape parameter. The modetomputer-based image searching and browsing techniques.
ing of the interband correlation significantly improvessela The term content-based image retrieval (CBIR) (for a re-
sification efficiency, while the GD is shown to consistentlyjew, see Datta et al, 2008) refers to the automatic retrieva

outperform the KLD as a similarity measure. of images from a database based on a set of graphic features
that qualify the images and that are, loosely speaking, sim-
Keywords geodesic distancemultivariate generalized ilar to the characteristics of a given query image. The goal
Gaussian distributiontexture discrimination multicom- is to match the applied notion of similarity as well as pos-
ponent images sible with the human perception of image resemblance. The

essence of the task of CBIR is captured by two main steps.
One is the process déature extractioninvolving the gen-
eration of a set of features (the imagjgnatureg that charac-
terize the image information accurately and concisely. The
latter is an important quality for guaranteeing the computa
G. Verdoolaege tional efficiency of the retrieval system and for storage and
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Naturally, the choice of feature set and similarity measure The intention of this work is to include both texture and
largely determines the performance of the retrieval systencolor information in a single probabilistic model. The mod-
Moreover, since querying an image database is often an orling of color features is an active subject in the field of tex
line activity, the evaluation of the distance measure ghoulture discrimination. Color histograms have been used exten
be sufficiently fast. In practice, this typically means that sively for color characterization, within various coloeses.
closed-form expression for the distance function should bé&n overview of several color descriptors that have proved to
used. lend themselves for image retrieval purposes was presented
by Manjunath et al (2001). However, in addition we want
In many existing texture discrimination schemes the sigy make use of the information residing in the rich corre-
natures are obtained from the images after some suitabjgiion structure between the color bands, since we expect
linear transform. The rationale is the observation that then; the classification and retrieval tasks will benefit from
image information in the transformed domain is often sim-hese additional data. To this end, in a probabilistic frame
pler to model. For instance, the discrete wavelet transformy,ork we model the spectral bands jointly through a mul-
applied to an image results in a set of multiscale orientegyariate probability distribution. At the same time, we as
subbands that are sensitive to horizontal, vertical ang-dia ;me independence among the wavelet subbands belonging
onal edges in the original image (Mallat, 1999). Several apgy 5 single color component. Moreover, our model is not
proaches to texture characterization in the wavelet domaipsstricted to color images, but can handle multicomponent
assume that the wavelet representation accurately Chara}ﬁiages in general. For example, the techniques for multi-
terizes texture (see e.g. Manjunath and Ma, 1996; Van dgomponenttexture similarity measurement developed n thi
Wouwer et al, 1999). In addition, physiological studies of\york can also be used in applications involving multispec-
the visual cortex suggest that the wavelet decompositian iStrg| and hyperspectral imagery, which is used increasiimgly

natural way of structuring the image information (Daugman,emote sensing of the earth’s surface (Chang, 2007; Mercier
1980). The foregoing arguments provide the motivation ton4 Lennon 2002).

conduct our work in the wavelet domain. - . . :
The joint modeling of multivalued wavelet images has

We will work within a parametric probabilistic frame- Peen considered before. For instance, although in this work

work, modeling the wavelet detail coefficients through ap-We neglect any existing correlation between wavelet sub-
propriate probability distributions. This yields a compde- bands, other approaches have allowed interdependencies
scription of the texture information in the images, prevent 8Cross subbands in a joint Gaussian model, e.g. in a denois-
ing the entire image from having to be stored or transmittedNd application (Micak et al, 1999), while Tzagkarakis et al
Now, the wavelet transforms of real-world images tend to bd2006) fit a joint alpha-stable sub-Gaussian distribution t
sparse, y|e|d|ng a |arge number of small wavelet detail Cothe wavelet coefficients in order to better Capture the tail
efficients and a small number of large coefficients (Ma”at’statistics in a retrieval experiment. In the latter workfhwi
1989). Therefore, the wavelet histograms can be charactefie aid of the KLD, good retrieval rates were obtained, but a
ized through unimodal probability distributions. In adii, computationally complex gaussianization step was reduire
the distributions have zero skewness (symmetry around tH8 addition, the process of wavelet-based multivariate im-
mean) and have mean zero because the wavelet detail coefilde denoising has been treated recently by several authors
cients are at the output of a high-pass filtering processeof th(Benazza-Benyahia and Pesquet, 2005; Pizurica and hilip
original image. When considering single-valued images and006; De Backer et al, 2008). In these works, multivariate
assuming the wavelet coefficients from different subbands tProbability density functions of the images were proposed
be independent, univariate distributions can be used.isn ththat account for the correlations between the image bands.
case, the free parameters of the distributions for all sntipa Particularly heavy-tailed models were found to be efficient
serve as image features. The sparseness of the wavelet cotfese models were applied as priors in a Bayesian frame-
ficients prevents the Gaussian distribution to provideia-sat work.

factory fit to the respective histograms in every single case In our work, for the joint modeling of multicomponent
Indeed, often a distribution is needed marked by a morgvavelet images we use a particular case of the multivariate
peaky and heavy-tailed behavior compared to the Gaussidfotz-type distribution, which we call thgnultivariate) gen-
distribution, i.e. a leptokurtic distribution. Thgeneralized eralized Gaussian distribution ((M)GGDalso sometimes
Gaussian distributioris frequently used in this setting (see called the multivariate exponential power distributiothé€r
Mallat, 1989; Van de Wouwer et al, 1999; Do and Vetterli, possible extensions of the univariate generalized Gaussia
2002), but some other possibilities are the Gaussian Scatensity towards multiple dimensions were given by Cho and
Mixture (Scheunders and De Backer, 2007), the alpha-stabBui (2005) and Boubchir and Fadili (2005), but the def-
distributions (Tzagkarakis et al, 2006) and the Studeig-td inition that we use has the advantage that it is relatively
tribution (Synyavskyy et al, 2001). well documented (see e.g. Gomez et al, 1998; Fang et al,



1990). The MGGD probabilistic model is characterized by ~ Several authors have studied the Fisher-Rao metric and
a sufficient number of degrees of freedom to suitably handléhe geodesics for the multivariate normal model. Relevant
both the interband correlation structure as well as theyreav publications include those by Burbea (1986), Burbea and
tailedness of the wavelet distributions. Thus, an MGGDRao (1982), James (1973), Skovgaard (1981) and Skovgaard
serves as an excellent descriptor of texture informationes  (1984). The GD between multivariate normal distributions
the tails of the wavelet distribution contain most of the rel with fixed mean and differing covariance matrices was first
evant information on the occurrence of edges in an imagelerived by Jensérand independently by Skovgaard (1984).
characterizing the texture over multiple scales. Furttoeen  Mitchell (1989) derived the Fisher-Rao metric for general
we present a fairly detailed discussion of several proasiur multivariate elliptical distributions, with the multiviate nor-

for estimating the parameters of the best-fit MGGD frommal distribution as a special case. A closed expression for
wavelet data. We treat both the method of moments and thiae associated GD, in the case of elliptical distributioifis d
maximum likelihood (ML) method, the latter implemented fering only in their dispersion matrix, was obtained by Jame
by recursive solution of the ML equations on the one hand(1973) and Berkane et al (1997) (see also Calvo and Oller,
and on the other hand through the Fisher scoring algorithn2002). We have derived a closed-form expression for the GD
We also consider the measurement of the goodness of thetween MGGDs in the case of a fixed MGGD shape pa-
MGGD fit. rameter and have proposed a suitable approximation to the

Just as several candidate probabilistic models exist fogeodesics on the manifold of MGGDs with varying shape
describing wavelet detail statistics, there are also masy p parameter$. Although the latter approximation does not re-
sible choices for the distance function between textures. ISult in an analytic form for the GD, as we will show, it still
the probabilistic setting, distance measures between- IorO@IIOWS to compute the distance relatively fast. It should be
ability distributions are required. It turns out that the-Eu Noted thatthe GD and KLD, as similarity measures between
clidean distance as a first common choice is not a natuRrobability distributions, are useful in any texture disur
ral similarity measure between probability distributipas ~ Nation application employing a statistical descriptioet
though its application in a CBIR context may yield accept-ture.
able retrieval performances (Do and Vetterli, 2002). In ad- The GD as a similarity measure between probability dis-
dition, good retrieval performances for gray-level imagegdtributions has severalimportant advantages comparedjto, e
have been reported using the Kullback-Leibler divergencéhe KLD. First, since a geodesic is a geometric object with a
(KLD) between generalized Gaussian densities (Do and Vetather clear intuitive meaning, it becomes possible to egnv
terli, 2002; Mathiassen et al, 2002; Bonet and Viola, 1998)a measure of distance between points on the probabilistic
In the experimentation section, Section 4, we will compardnanifold (i.e. between distributions), through visudiiaa
with the retrieval results obtained by Do and Vetterli (2002 of the geodesic path by plotting its coordinate functions. |

In this work, as a similarity function we use the Rao ge_turn, this allows straightforward evaluation of a geodegic

odesic distance (GD) derived from the Fisher informationProximation strategy, in contrast with the KLD, which can-
The GD between probability distributions is defined in the"©t P€ visualized in a similar way. Therefore, if computa-
context of information geometry, which expresses probabillional demands of the application are an issue, as in the case
ity theory in terms of geometric concepts (see e.g. AmarP €-:9- image retrieval, a trade-off between accuracy and
and Nagaoka, 2000; Murray and Rice, 1993; Kass and vosheed of the S|m|Iar|ty.measure.ment can be readily made in
1997). Cramér (1946) and Rao (1945) observed that theiFis numerical calculations. In this work, for the.case of-var
information can be regarded as a Riemannian metric on &°!¢ MGGD shape parameters, we apply a linear approx-
manifold of probability distributiongCenkov (1982) showed 'Mation to the geodesic coordinate functions and show that
that this Fisher-Rao metric is the unique intrinsic metric o this still yields good classification results, while maintag
such a manifold, invariant under some basic probabilisti@ réasonable computational load. In addition, the visaaliz
transformations. Thus, probability theory can be desdribe!io" Of the geodesics, possibly supplemented with the ealcu
in terms of geometric structures invariant under coordinat'2tion of geometric quantities such as the curvature, alow
transformations, to which the methods of differential ge-0n€ 0 develop a useful geometric intuition of the MGGD
ometry can be applied. For an introduction to differentiaiManifold.

geometry and Riemannian geometry the reader may refer Second, the GD is, in contrast to the KLD, a genuine
to O'Neill (1982) and do Carmo and Flaherty (1992). Thedistance measure, symmetric in its arguments and obeying
corresponding _ — _ _
geodesics between probability distributions have a ptgper 1 S.T. Jensen, private communication in (Atkinson and Miliche

L . . . , 1981), 1976.
of length minimization; they are the ‘straight lines’ of the G. Verdoolaege and P. Scheunders, On the Geometry of Mudtiva

geometry. The GD is a natural, intrinsic distance measurge Generalized Gaussian Models, submitted to Journal tidvizati-
on the manifold of probability distributions. cal Imaging and Vision, 2010.




the triangle inequality. The latter is a useful propertyt no next conduct the same experiment in a texture retrieval con-
shared by the KLD, for significantly reducing the computa-text. We usek-nearest neighbor classification and we vali-
tional demands in an image retrieval application, by compardate the classifier via the leave-one-out method. We gradu-
ing a query image to a predefined set of key images that e&lly build up the complexity of the model for the wavelet
fectively summarize the visual characteristics of all imsig statistics, first using univariate distributions on grayel
in the database (Berman and Shapiro, 1999; Burkhard artéxtures, obtained from the luminance of the RGB color im-
Keller, 1973). Indeed, supposgrepresents a query image, ages. Next we consider the three color bands in parallel,
lq a database image ang the key imagesi(=1,...,K),  without modeling the interband correlation. We then demon-
then the triangle inequality requires strate the performance of both the GD and the KLD in an
experiment where the correlation between the three color
GD(lgl[la) = fhax GD(lqlh) — GD(lg )l (1) bands of an image is modeled pairwise by a bivariate dis-
tribution. We recently obtained a closed expression for the

here GO.||.) i horthand notation for the GD bet T
where O.|1.) is a shor ahd notation for the 5 be Ween,(LD between bivariate GGDs (Verdoolaege et al, 2009),
two images, based on their respective probabilistic model.

This yields a lower bound on the distance @&f}jl4). The WhiCh we put into practice here. We proceed with th.e full
distances Glg||l) can be precomputed for all databasejo'nt modeling of the wavelet coefficients corresponding to

: . . . . the three color bands and we show that the information in
and key images. Now, if, for example, we wish to find all im-

agesly in the database that are closer to the query image (ilt,]he interband correlation structure leads to a significant i

fermsfGD) han aceriin eshie, Gyl <T, (2258 1 CXUIE dsermnaton portamare. i s
all we have to do is calculate the distances between the qu P P y VY

e . . ) L
image and each of the key images, apply (1) and reject th\{%butlon to adequately describe the image wavelet siedist

database images for which the lower bound on(ig[lg) e compare the heavy-tailed La_placg distribution with the
. : Gaussian model, both MGGDs with a fixed shape parameter.
is larger thanT. Optionally, we can then conduct a further

query among the reduced set of database images. The b(I)r;tl_turn we show that the enhanced flexibility of the MGGD

tom line is that this way the triangle inequality permits to model with its variable shape parameter results in several

. . situations in still better classification performance.dHin
considerably decrease the number of required evaluations ) :
o . .. the GD is shown to outperform the KLD in terms of cor-
the similarity measure at the time of the query submission. . }
. . ) . .. rect classification rate. The computational load of each of
Third, calculating the KLD involves solving a multidi-

. . . the methods is evaluated as well. The classification exper-
mensional integral over the data space. For this reasan

closed-form expressions for the KLD are difficult to find or |men§s are then repeated in the co_n.tex'F of image retrieval,
) . . , showing similar trends as for classification. We next show
may not exist at all. So far we did not obtain an analytic ex-

pression for the KLD between two MGGDs in general. Onethat our techniques are competitive with a state of the art

may attempt a numerical evaluation of the KLD integral, butmethod for gray-scale texture classification based on image

it is clear that this drastically increases computationatll patch exemplars. We examine the impact of corruption of

and, in practice, renders e.g. a retrieval system impraidtic the images by additive Gaussian noise as well as the influ-

) ) ; ence of the color space that is used (RGB or HSV). Finally,
be used in real-time. In contrast, as we will show, the above . I .
. . . . we demonstrate our methods in a more realistic experimen-
mentioned analytic expression for the GD and, in the case qQ . . . .
. . - tal setting for image retrieval. We use a considerably large
variable shape parameter, the linear approximation toghe g : : . ) :
database then in the first series of experiments, the images

odesic coordinate functions, permit a practicable, nedi e .
P P consisting of multiple patches of several colored textures

fast evaluation of the GD. . : -~ L
: . . Again we compare different statistical models and similar-
Finally, recent observations suggest thatthe GD is a moritey Measures

natural and more accurate similarity measure between prob
ability distributions, compared to the KLD (Verdoolaegelkt This paper is organized as follows. In Section 2 we in-
2008; Lenglet et al, 2006a,b; Castano-Moraga et al, 2007)toduce the class of multivariate generalized Gaussian dis
This will be confirmed by the experiments outlined in thetributions and we discuss several methods to estimate the
present work, where the (approximated) GD exhibits googbarameters. Section 3 summarizes the techniques that allow
results in a texture classification experiment, superior tdhe calculation of the GD and KLD between MGGDs, while
those obtained via the KLD. Section 4 presents the results of several classification and
In this paper we illustrate the performance of both theretrieval experiments on gray-level and color images. We
generalized Gaussian model and the geodesic distance, @also provide an outlook toward possible improvements of
compared to the Gaussian distribution and the KLD, in sevthe methods presented in this work and suggest some top-
eral classification and retrieval experiments on textuodorc  ics for future research. Finally, Section 5 concludes the pa
images. We start with the discussion of a simple experimerer. The main contributions of this paper lie in the defimtio
for texture classification on a small texture database and wef the MGGD, its application to the modeling of multivari-



ate wavelet histograms, the discussion on model fitting anthe distribution (2) has heavier tails (leptokurtic) comgzh
goodness of fit testing, the approximation of GDs betweeto the multivariate Gaussian distribution. As an example,
MGGDs with variable shape parameter and the applicatiofig. 1 shows the histogram for the wavelet coefficients cor-
of the MGGD and the GD to texture classification. responding to a real world gray-scale image from the MIT

Vision Texture (VisTex) database (MIT Vision and Model-

ing Group, 2010) (used in our experiments, see Section 4),
2 Modeling of wavelet statistics through a (multivariate) together with the fit via maximum likelihood of a Gaus-
generalized Gaussian distribution sian and a generalized Gaussian (see also the next subsec-

] ) R tion). The latter clearly describes best the peakedness and
We start by introducing the distribution that we use to model[he heavy tails of the histogram.

wavelet statistics, namely the (multivariate) generali@aus-
sian distribution. We proceed with a discussion on the esti-
mation of the MGGD parameters from a wavelet data set,

treating also the goodness of the resulting fit. o
2.2 MGGD parameter estimation

2.1 The multivariate generalized Gaussian distribution The estimation of the mean, dispersion and shape parameter
of aunivariategeneralized Gaussian distribution was treated

With a view to modeling wavelet detail coefficients we con-py Varanasi and Aazhang (1989). Three parameter estima-
sider only zero-mean distributions. For the definition of ation methods were compared in that work, viz the method
multivariate GGD, we seek inspiration with the univariateof moments (MM), the maximum likelihood method (ML)
zero-mean GGD, which has the following density function: and a moment method followed by an optimization through

B a single Fisher scoring (Newton) step (MM-Fisher). It was
f(xa,B) = Ziexp{—(lxl/a)ﬁ} : observed that for small values of the shape param@ter

al [1/B] T
(strongly leptokurtic distributions) the ML method penfos

where [l (.) denotes the Gamma function. Clearty,is a  best, while ag increases, both the moment method and the
scale parameter, playing the role of a variance that deteMM-Fisher technique perform increasingly well compared
mines the ‘width’ of the PDF, whilg@ > 0, called theshape to the ML method. For large values of the shape parameter
parameter controls the fall-off rate in the vicinity of the (B8 > 1),the MM-Fisher algorithm yields the best results. We
mode (the highep, the lower the fall-off rate). Note that now proceed with an investigation of the three above men-
B = 2 results in the Gaussian distribution gfid= 1 yields  tioned methods for the case of the estimation of the multi-
the Laplacian PDF. There does not appear to exist a gewariate generalized Gaussian model.
erally agreed upon multivariate extension of the univariat
generalized Gaussian distribution. However, here we define
a multivariate generalized Gaussian distribution throtingh

following density function: 2.2.1 Method of moments

¢ r(3) B In the multivariate setting the parameters of a zero-mean
x|Z,B) = e (m)z% BE MGGD to be estimated from a sample min-dimensional
2B vectorsxj, i = 1,...,n, are (the non-redundant elements of)

% exp{—} [X/le}ﬁ}’ ) the dispersion matriz and the shape parameigr In the
2 presentwork the moment method was implemented by equat-
wherem s the dimensionality of the probability space, e.g.I"d the population variance and kurtosis of an MGGD dis-
m= 3 for three-band color images. This is a particular casd/louted random vectoX to the sample variance and sample
of the multivariate Kotz-type distribution (see Gomez ket a KUrtosis, respectively. The population variance and laisto
1998 and Fang et al, 1990 for details) and it is also some@ccording to Mardia et al (1982)) are given by
times called thenultivariate exponential power distribution

Again, we call the shape parameter, which controls the
oo : o 21/BF (_2)
peakedness of the distribution and the heaviness of its ta'IVar(X) _ 2B s 3)
Note however that now the Gaussian PDF is retrieved by ml” %) ’
setting 8 = 1, while by analogy with the univariate case, w2F(m 4
we will call the distribution withB = 1/2 the multivariate (X) = r (@)I‘ (T) —m(m+2)
Laplace distributionZ is a dispersion matrix, equal to the B {,_ M)r ’
distribution covariance only in the Gaussian cas@ ¥ 1, 2
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Fig. 1: (a) Histogram for the wavelet coefficients for a reafld VisTex gray-scale image, together with the best-fit €an
and GGD 3 = 0.48) obtained via ML. (b) Zoomed display of (a), clearly showihe better fit of the tails by the GGD
compared to the Gaussian fit.

whereas estimators of the variance and kurtosis from th2.2.3 Fisher scoring
samplex;,i =1,...,nare calculated as
The Fisher scoring method is in principle a Newton-Raphson
\75r(X) _ 1 ixixi/7 r_iumerical optimi;ation algorithm for maximizing the like-
n.% lihood by searching for a zero of the gradient of the log-
10 . 1 32 likelihood L (see e.g. Lehmann and Casella, 2003). How-
B(X) == Zl{xi’ [Var(x)] xi} —m(m+2). ever, instead of using the negative Hessian of the log-
Nis likelihood (observed information matrix) for the optimiza

. _ . . . tion, the expected negative Hessian, or Fisher information
This procedure results in a nonlinear equationforhich o . . . . L
maitrix, is applied. The Fisher information matgyy is de-

can be solved numerically. Using this result together withfined through the relations
the sample variance directly allows to calculatgia (3).

In practice, the estimates found using the MM were used
as an initialization for both the ML and Fisher methods, re—g“"( )=-E 00619 6Y
sulting in MM-ML and MM-Fisher methods, respectively.

2
Inf(X|0)|, M,v=1...N,

with N the number of non-redundant parameters, arranged
in a vectord, parametrizing the distribution. Given a starting
2.2.2 Maximum likelihood value of the parameters, arranged inNsdimensional vec-

tor By, the next approximatioflx, 1 can be found by solving
The ML method for estimating the parameters of an MGGDthe following equations:
proceeds by setting the differential to zero of the logamith IL(B
of f in (2). This results in the following equations farand Z (81— 6Y)guv (6k) = ( k)’ (5)
B, respectively: V=1 a0

with Gﬁ‘ denoting component of the vectorfy. Since this

n
S = % Zluiﬁ’lxi X, (4) isalinear set of equations, the solution can be obtained ver
i= fast. The disadvantage is the possibility for the algoritom
n .
{E In(ui)uiﬁ _m {In(Z) Ty (ﬂ)} _ 1} —o leave _the allpvi/ed part of_ parameter space, returning e.g. a
G512 23 23 negative definite dispersion matrix. In the case of MGGD

estimation, this was observed in our experiments to occur
Here,ui = X/ =~1x; and ¥(.) denotes the digamma func- primarily for small shape parameters (practicgly: 0.5).
tion. These equations can be solved recursively, although SinceZX is symmetric and hence containgm-+ 1)/2
we found convergence to be rather slow, especially when noon-redundant elements, the corresponding Fisher informa
proper initialization using the moment method was appliedtion is a matrix of sizeN = 1+ m(m+ 1)/2. In Section



3.1 we discuss the calculation of geodesic curves betweesimilarly, theZ;; >.s components(< j,r < s) can be derived
MGGDs, deduced from the Fisher-Rao metric tensor on thas

N-dimensional MGGD manifold. We have derived expres-
sions for the entries of the MGGD Fisher matrix and the
details of this calculation will be published elsewherEhe
components can be obtained by calculating the line element,

2bptr [ZilE(i’j)ZilE(r’s)]

+ <bh — %) tr [ZilE(i’j)} tr [ZilE(r’S)} , 1<j,r<s

defined by Finally, the gradient of the log-likelihood farobservations
is given by
ds’ = 5 guvdetde".
v ﬂ_ﬂ nm In(2) + ¥ m
B B 2B2 2p
This results in the following expressions in terms of the dif 1N _— S 1 g
ferential forms @ and &=: ~5 zi {ln(XiZ Xi)(XiZ X))
and
1 m m
BB-component: {1+( ) Y (—) oL n_
2 2 - __
p? B B o5~ U 'Eus)
m m 1 2 _ _ _ _
5 {I <—B>} + EB-Z\ [(x;z )P E g S 1xi)}, r<s
I=
" () + @ This allows us to solve the equations (5) for the case of an
2[5 In4)+ 2[5 MGGD. In practice, we noticed that an initial estimate by

+ Y (1+ _) (6) scoring algorithm suffices for obtaining sufficiently acaier
2B parameter estimates.
BX-component: — 1 {14— In(2)+ Y (1+ ﬂ)}
- B 2p

x tr (£71dz) dB, _ _
_ e In order to assess the performance of the various estima-
Z3-component:  Bntr (X "dX3dX) tion methods, we measured the goodness of the MGGD fits
<b _ }) [tr (Z*ldz)]z through classical null hypothesis significance testingwHo
h ' ever, we split up the main goodness of fit hypothesis into
several subhypotheses on the basis of the stochastic rep-
In the expression for the3-component,44(.) is the resentation of an MGGD random vectdr Indeed, it can
trigamma function. In order to derive the equations (5), webe proved that iX is distributed according to a zero-mean
need to express the information metric into the differéntiaMGGD with parameter§ andZ, thenX can be written as
forms o8 and &, with % the (i, j)-th non-redundant (i.e.

} the moment method followed by a single step of the Fisher
dp?

2.3 Goodness of fit

o . _ _ _ =RAV, (7)
i < j) element of>. Introducing, for alli and j, the matrix
E. b whereR? = U = X'Z71X, AA= S (i.e. A is the matrix
(i.i) BY . : :
square root o) andV is anm-dimensional random vec-
E o tor independent oR and distributed uniformly on the unit
Eij) = { U ' - J , sphere (Fang and Zhang, 1990). It is easily shown f&at
' EBij)+Eqiiy 171 has a gamma distribution with shape paramet&23) and

_ scale parameter 2 (Gomez et al, 1998). Given a set of data
whereE; ;) denotes thenx mmatrix with the(i, j)-thentry  Xj,i=1,...,n, and estimated MGGD parametefsand3,

1 and 0 elsewhere, we obtain tA&j; componentsi(< j) of  one may derive the associatﬁﬁﬂ andV; as follows:
the Fisher information: 5
R = (X[z7'X)P,

-1
L, [1+|n2+w(1+—)] i<j. AKX
2B [ (I,J)} (2) 2B Vi TA X
3 G. Verdoolaege and P. Scheunders, On the Geometry of Mitiva Then, to test the goodness of fit of an MGGD in the particu-

ate Generalized Gaussian Models, submitted to Journal tidvizati-  1ar case ofn= 3, we carried out a set o+ 2 =5 hypoth-
cal Imaging and Vision, 2010. esis tests as follows:
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1. Test whetheR?? is distributed according to a gamma MM-ML methods, but a considerable improvement for the
distributionl” (%72) (associated null hypothesigl).  MM-Fisher method. This trend is confirmed for even higher
This was done via Pearson’s chi-square test. values of the shape paramet@ % 0.7), although the ef-

fect on the performance of the MM-Fisher method is less

2. TestwhetheY is distributed uniformly on the unit sphere _ ) )
(Ho2). The points on the unit sphere can be seen as ve&lear. This result corresponds to the observation by Vaiana

tors pointing from the origin of the sphere. We chose the@nd Aazhang (1989) (univariate case) that the fit accuracy
lengthT of the sample resultarf of all vectorsV; as of the MM-Fisher method increases relative to the ML per-

a statistic. Indeed, if the points are truly distributed-uni formance for successively larger valuesfafin addition,
formly on the sphere, then ideally, as— o, T should 85 mentioned above, the Fisher scoring step may occasion-

vanish. In addition, we used the fact that in the limiting ally enter forbidden regions of parameter space. In order to

case for largen (Stephens, 1964: Watson and Williams, judge the result of this effect on the,ldcceptance percent-

1956): ages, the entire analysis was rerun on the subset of images
for which the Fisher step produced allowed estimateZ of
§T2 ~ X%- andp. As far as this resulted in a change of percentage ac-
n cepted null hypotheses, the corresponding values are given
Thus, again a chi-square test could be used. between parentheses in Table 1. We may conclude that for

3. Finally, perforrm= 3 tests of independencedkl Hos, B > 0 alarge proportion of MGGD parameters estimated by
Hos) betweerR and each of thencomponents of/. To  the MM-Fisher method lies in the forbidden region of pa-
do this we employed Kendall's with the normal distri- rameter space. However, as we restrict our attention tetarg
bution as an approximation to the sampling distributionvalues ofg, this effect becomes negligible. Nevertheless, on
of 1. the whole the Fisher step does not appear to succeed in aug-

This collection of significance tests was applied to a subserpentlng the goodness of fit for the MGGDs in the data set

of the data employed in our classification experiments. Thunder study, compared to the initial estimates obtained via

details of the image database used in this work are giveﬁ1e MM.

in Section 4; suffice it to say for now that we checked the ~Furthermore, we should mention that also the moment
goodness of fit of an MGGD for each of the estimating al-method does not always lead to acceptable parameter esti-
gorithms on a data set consisting of the horizontal wavelehates as the numerical algorithm for derivifigmay fail
detail coefficients at scale 3 of 640 colan£ 3) texture im- to converge. The reason is the occurrence of outliers in the
ages. Wavelet histograms at higher scales are, comparedd48ta that strongly affect the kurtosis and the tail behavior
lower scales, typically harder to fit due to the lower num-and that lead, again, to small valueg(s 0.5). If the mo-

ber of samples available. This motivates our choice for content method is used to initialize the parameters for subse-
ducting the goodness of fit study at scale 3. The correspon@{ent fine-tuning by ML or Fisher scoring, and if it fails,
ing p-values were derived and compared to a signiﬁcancgefault initial parameter values have to be assumed (ysuall
level of @ = 5%. For a certain wavelet detail image, if none 8 = 0.5, 2 = Im, themx munit matrix). These initial values

of the five tests leads to a significant deviation from theln general are far away from the optimal parameters. There-
null hypothesis, the MGGD fit can be deemed good. Nextfore, in such cases the linearity of the equations to be dolve
for each test the percentage was obtained, among the elpthe Fisher step, compared to the nonlinearity of the ML
wavelet images, of images for which the null hypothesisequationsi results in a substantial difference in timekiésa
could be accepted. These percentages are displayed in T&-estimate the parameters. Typically, in our experiments i
ble 1 for the MM, MM-ML and MM-Fisher fit algorithms. the MM fails, the Fisher step is about an order of magnitude
Note that we are only concerned about relative differencef@ster than the ML method. This effect, together with other
in percentages, since the absolute percentage of acceptfé’&torsv renders the MM-Fisher method on the entire data set
null hypotheses depends, amongst others, also on the sampfeout three times faster than the MM-ML method, both of
size. On the whole set of 640 images, for which, naturally)’VhiCh are substantially slower than the moment method in
B > 0, the MM-ML method clearly performs best, result- itself.

ing in the highest percentage of accepted null hypotheses As an aside, we note that even in case of smpalalues

for each test. The difference with the pure moment methogthis depends also on the sample size) the MGGD fit in prac-
is, however, rather small. Nevertheless, the MM-ML methodice still provides a not too bad description of the wavelet
was used for routine estimation of MGGDs for the purposestatistics. To see this, note that from Table 1 it can be con-
of the retrieval experiments outlined in Section 4. We re-cluded that, first there is a good correlation betweengthe
peated the goodness of fit analysis for medium to large valalues for the five different tests. Second, thealue for

ues of the shape paramet@r$ 0.5, as estimated via ML), Hg1 (fit of the gamma distribution) appears to be a more sen-
yielding a modestly enhanced performance of the MM anditive measure of the overall MGGD goodness of fit, com-



Method  f3 range Percentage ofgthccepted
Ho1 Ho 2 Hos Ho4 Hos
B>0 82 (87) 90 95 94 95
MM B>05 84(86) 92 94 93 96
B>07 94 75 94 94 94
MM- B>0 87 (89) 91 95 94 95
ML B>05 89(88) 92 95 94 96
B>07 94 75 94 94 94

B>0  44(79) 51(91) 53(95) 53(95) 53 (95)
B>05 76(83) 83(91) 86(95) 85(93) 87 (95)
B>07 69 75 94 94 94

MM-
Fisher

Table 1: Percentage, in a database of 640 color texture snafeccepted null hypotheses for the goodness of fit tests
(o = 5%) of a trivariate MGGD to horizontal wavelet detail codffitts at scale 3. The percentages were calculated for
different MGGD fit methods: the Method of Moments (MM), MM folved by an optimization using maximum likelihood
(MM-ML) and finally MM followed by a single Fisher scoring st§MM-Fisher). Different regions of the parameter space
were considered, depending on the range of values of theegh@@mmetef3 (estimated using MM-ML). The analysis
was repeated for all MGGDs where the MM-Fisher method ledstomates within the allowed parameter space. Numbers
between parenthesis indicate any resulting changes iepges compared to the full data set.

0.35(~ T T T T T 0.35

0.3r 0.3F
0.251 0.25r
0.2 0.2
0.15- 0.15r
0.1r, 0.1r

0.05 0.051

8 10 12 14 16
R??

(b)

Fig. 2: Examples of a fit of a gamma distributiﬁn(%l) to theR?? histogram, with> and 8 estimated via maximum
likelihood. (a) Case where tievalue for H) 1 is 0.92. (b) Case with and¢q p-value of 0.01.

pared to thep-values of the other tests. The consequence iss well. Specifically, we will use the Gaussigh= 1) and

that, in order to get a quick first idea of the MGGD good-Laplacian 3 = 1/2) distributions. Focusing on the maxi-

ness of fit, we may monitor only thp-value correspond- mum likelihood method for estimating these models, we can

ing to Hy 1. Alternatively, we can judge the goodness of fit directly calculate the dispersion mati¥from (4). Again,

by visual inspection of the histogram fB8#8, together with we checked the goodness of the Gaussian and Laplacian

the PDF of the gamma distributiahn (%72)_ Two exam- fits on the same data set introduced gbovg. The percent-

ples are shown in Figure 2, one whergwvas accepted 29€S of acce_pted nu_II hypotheses are given in Table 2, to be
’ compared with the fits by the MM-ML method for the case

(p = 0.92) and one where ¢ was rejected § = 0.01). ;
Clearly, in the second case the fit of the gamma distribu > 0in Table 1. Whereas the percentages fepH. . ,Hos

tion is not optimal, although it still represents a fairlyagb ~ 2'€ clearly similar to the case with varialfie by contrast
summary of the histogram. the more sensitive ¢} is substantially more rejected for

. _ ~ the Laplacian and especially the Gaussian, relative to the
Finally, we will want to use models for the wavelet statis- \yoGD with variable 8. Thus, the multivariate Gaussian
tics characterized by a fixed value of the shape parameter
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Model Percentage of ¢faccepted 3 MGGD similarity measures

Hop Ho2 Hos Hosa Hos

Gauss 19 90 95 94 95
Laplace 75 20 95 95 94

We now consider two similarity measures between MGGDs,
the geodesic distance and the Kullback-Leibler divergence
and we outline how to calculate them relatively fast. In both
Table 2: Similar as in Table 1, but for a fit of a multivari- instances, we draw a distinction between the cases of a fixed

ate Gaussian and Laplacian using MM-ML on the complet@nd variable MGGD shape parameter.
data set of 640 wavelet images.

3.1 Geodesic distance

is in many cases an inferior model for multispectral imageas mentioned above, within the framework of information
wavelet statistics, while the Laplacian, with its heavagist  geometry the Fisher information can be seen as a Rieman-
is much better suited. The MGGD model with variable shap&,izn metric tensogy, on anN-dimensional probabilistic

parameter provides an even better description of the wavelg, 5 hifold (Crameér, 1946; Rao, 1945). The manifold formed
statistics, with a downside of a more complicated fitting-pro by zero-mean MGGDs ngvariate) is in principle

cedure. parametrized b3 andZ;;, the(i, j)-th element of the matrix

We may conclude that, in order to optimize both good-5, i < j, so thatN = 1+ m(m+1)/2. However, it turns out
ness of fit together with computational load, the momenthat a more elegant parametrization can be found, with the
method suffices as a good first approximation. A subsequegkodesic in mind between a specific pair of MGGPg 1)
fine-tuning of the distribution parameters by recursiveisol and(,, 2,)%. In this parametrization the Fisher-Rao metric
tion of the ML equations, may bring useful additional ac-depends only o, so it is easy to tabulate the metric for a
curacy to the fit, although this adds to the computationatange off3 values, which needs to be done only once.
complexity of the fitting procedure. On the contrary, in our  Given a metric one can calculate geodesics on the man-
experiments the Fisher algorithm did not appear to give aifold. A geodesic path between two points (MGGDs) on the
advantage in comparison with the moment method, at leashanifold is the curve lying within the manifold that con-
as far as the database under study in the present work is cofects the points and has minimum length. Geodesics can
cerned. Indeed, the Fisher step has proved to be counterpiige found by solving the geodesic equations, whereupon the
ductive in many instances, not least because this techniquength of the geodesic, i.e. the geodesic distance between
might produce values outside the allowed parameter spacthe two points, can be computed. In the case of a fixed shape
Also by means of significance testing, we have positivelyparametef, the geodesics take the form of straight lines in
determined that the heavy-tailed MGGD model provides inR™ (Berkane et al, 1997). As a result, the geodesic distance
deed a better description of the wavelet data than the Lapl&etween two MGGDs characterized {8, 2, ), respectively
cian distribution, and even more so than the Gaussian. (B, 5,), exists in a closed form. Denoting this specific dis-

Incidentally, the stochastic representation (7) alsarallo tance by GIB, 51|, 22), we have:
to sample from an MGGD by successively sampling a vec-
tor V and a gamma variate??. There are several methods GD(B,21/|B,22) =
to sample from a uniform distribution on the unit sphere (see 1 _ 1 - Y2
Marsaglia, 1972), but one of the simplest is to sample inde- [(3bh — Z) Z(r'Z)Z +2 (bh — é_l) Z r'zré] , (8)
pendently fronm univariate standard normal distributions, I i<]
arrange the samples in a vector and normalize the result

€ with rh, = InA} and A}, i = 1,...,m, the m eigenvalues of
(Muller, 1959). E.g. fom = 3 we get =.1%,. In addition,by is defined by
_1m+28
v 1 X h= 4 m+2°
= Y|
VXY 2 |5 If on the other hangB is allowed to vary, the geodesic

equations are more difficult to solve and we did not obtain a

closed-form solution. Instead, through numerical optamiz
with x, y andz sampled from a standard normal distribu- tion, polynomial solutions can be obtained for the coordi-
tion. Sampling from an MGGD can be useful in simulationnates as a function of the geodesic’s parametge. the
studies, with another application being the cglculatloﬂnef 4 G. Verdoolaege and P. Scheunders, On the Geometry of Mitiva
KLD between MGGDs through Monte Carlo integration, aSate Generalized Gaussian Models, submitted to Journal tHevizati-
outlined below. cal Imaging and Vision, 2010.




11

coordinate function$) In practice only a few iterations of a et al, 2009), given by
BFGS Quasi-Newton method usually suffice to obtain sub-
stantial information on the geodesics. However, this sehem
still is computationally too intensive to be practical foge ~ KLD (B1,21/|B2,22) =

real-time image retrieval. Therefore, in this paper we use a r (i) 1
linear approximation to the geodesic coordinate funcfions In 2 2(3%*;3%) (@) : &
The calculation of the geodesic distances via integratimmg r B_ll) 1211/ B
the geodesic was then carried out using a simple (and fast) foi1
trapezium rule. N H(%2-1) r (T)
B 1
' r (ﬁl)
B2 _

3.2 Kullback-Leibler divergence x (Vl"g VZ) oF1 (1 Zﬁza_%;l;p@) (11)

The KLD between two distributiong; (x|61) andp(x|62),

denoted by KLRPy|p), is defined by Here,y = (A})~1,i = 1,2, with againA} the eigenvalues of

. 0 515, while A= Q;g oF1(.,.;.;.) represents the Gauss
KLD (p1||p2) = / p1(x|61)In M(M 9) hypergeometric function (Abramowitz and Stegun, 1965),
P2(x|62) which may be tabulated for1 < A < 1 and for realistic

values off3. In the case of two Gaussian®, = 3, = 1, the

where the integral is over the whole data space. A Closeqﬁypergeometric function in (11) becomes identically 1 and

form expression for the KLD between two univariate zero-; can easily be verified that (11) reduces to the familiar ex-
mean generalized Gaussians was obtained by Do and Veﬁ?ession (10).

terli (2002). In the terminology that we use, and introduc-
ing the dispersions;, i = 1,2 (5 reduces tas? in the uni-
variate case), the KLD between two GGDs characterized b
(B1,01) and (B, 02) (shortly KLD(B1,01||B2, 02)) is given

However, we were unable to find an analytic expression
for the KLD between two multivariate zero-mean GGDs in
&eneral, i.e. for dimension greater than 2. Therefore, én th
general case the KLDs have to be estimated through numer-

by ical evaluation of the integral in (9). This is usually cadi
out via Monte Carlo integration, by viewing (9) as an expec-
Blzﬁ ool (L) tation overp; of the logarithm in the integrand. This can be
KLD (B1,01||B2,02) = In 1—22 done reliably aqd reproducibly only if a sufficient amoun.t of
B22%Pr g1 (2_11) samples fronp; is available. These samples can be obtained
28 from the data (images) itself or, alternatively, the sample
zﬁ o1 ‘r (2;2;1) 1 may be drawn directly frc_)rrpl yia the_procedure for sam-
T 1 T 28 pling from an MGGD outlined in Section 2.3. Nevertheless,
2%2 07 r (2_31) we must point out that Monte Carlo integration in general is

a too slow process to be useful in many applications, such
An analytic expression for the KLD between multivari- as image retrieval. Moreover, the calculation of the KLD in
ate zero-mean Gaussian distributiofis=€ 1 in (2)) is also itself yields little geometric insight concerning the MGGD

known since long (Kullback, 1968). It is given by space. As a result, the accuracy of approximations of the
KLD via Monte Carlo integration can only be adjusted in

1], || . a less controlled way, compared to the approximation of a

KLD (21]|22) = 5 |In = +tr(2;751) - m] ; (10)  geodesic path. For these reasons we did not carry out the
Monte Carlo integration to estimate the KLD in the cases

with X1 andX; the respective covariance matrices. where no closed expression was available.

The obvious generalization of these results to an ana- AS an aside, we note that for distributions that lie in-
lytic expression for the KLD between two multivariate zero- finitesimally close on the probabilistic manifold, it can be
mean GGDs is not straightforward. Recently, we obtained groved that the Kullback-Leibler divergence equals half of
closed form for the KLD between two bivariate zero-meanth€ squared geodesic distance between the distributieas (s

GGDs parametrized byBy, Z1) and (B, 5,) (Verdoolaege ©-9- Kullback, 1968; Lenglgt et gl, 2006a). Hence,-in such
a case the KLD and GD yield similar results, but in gen-

5 Note that the geodesic itself still lives on the curved MGGBm  €ral they are quite different measures of similarity betwee
ifold. distributions.
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3.3 Multiple wavelet subbands Naturally, in the case where the independence assump-
tion of the wavelet subbands is not justified, a better model

that takes into account the dependence of both the spectral

So far we have considered the calculation of the GD anflanqs and the wavelet subbands may well yield still en-
KLD between single MGGDs. However, with a view 10 OUr yanceq results in a texture classification experiment.

application of texture discrimination, we will want to de-

compose the images in a multiscale representation, namely

through the wavelet transform. After the example of Do and4 Classification and retrieval experiments

Vetterli (2002), we will assume independence among the

B wavelet subbands, modeling the spectral components b&quipped with techniques to calculate the GD and KLD be-
longing to each subband via an independent MGGD. Moréween MGGDs, we proceed with the discussion of a series
precisely, we will neglect the dependence of wavelet subef experiments on the classification and retrieval of teedur
bands compared to the correlation structure associated twlor images based on texture discrimination. We start with
the spectral bands. To check whether this approximation ian overview of our experimental setup.

indeed valid, we calculated the correlation coefficient be-

tween wavelet data (resulting from the stationary wavelet

transform) belonging to different directions (horizontadr- 4.1 Experimental setup

tical, diagonal) for every level. In addition, for every elir

tion we computed the correlation between wavelet data adVe first conducted a series of classification experiments on
sociated to different levels. We compared this with the corgray-level and color textures. We next repeated the experi-
relation between spectral bands, for every wavelet sunbanf'ents in an image retrieval application. We started the ex-
We performed this check for wavelet data obtained from evPeriments on a small database that is meant to provide a
ery image in the database of 640 images described belokench-mark for the comparison of different statistical mod
Overall, the median of the absolute value of the correla€ls as well as comparison of the GD with the KLD. This
tion coefficient between directions was 0.037 (interqiearti database was the same as the one used by Do and Vetteri
interval [0.0130.075) and between levels this was 0.022 (2002), which allows easy comparison to the retrieval tesul
([0.004,0.062). However, the correlation between spectralOn gray-level images obtained by Do and Vetterli (2002).
bands was substantially stronger, resulting in a median ap-he database comprised a set of 40 images from the Vis-
solute value of 0.986.968,0.994)) between red and green, Tex database. These are real world 51212 color images
0.965 (0.9250.985) between red and blue and 0.987 from different natural scenes (textures), displayed in Big
([0.963,0.995) between green and blue. Thus, we may Sau«e@elected because of their sufficient homogeneity. The im-
neglect the correlation between wavelet directions and lev@ges were expressed in the RGB color space. Every image
els, compared to the correlation between spectral bands aM@s divided in sixteen nonoverlapping 128128 subim-

we will also neglect any higher-order dependence betweeRdes, constituting a database of 640 subimages. Gray-level
directions and levels. images were obtained from the original color images by cal-

culating their luminance. In order to render the retrieaakt
If independence among wavelet subbands is assumesl/fficiently challenging, every color (or gray-level) coop
the joint distribution of the image over @lsubbands is just nent of each subimage was individually normalized to zero
the product of the MGGDs corresponding to the individ-mean and unit variance. As a result, the gray scales of subim-
ual subbands. It is not difficult to see that the correspondages from the same original image were generally not in the
ing Fisher matrix is block diagonal and that the geodesicsame range. Then, on every component individually a dis-
equations becom® mutually independent systemsrmof+- 1 crete wavelet transform was applied with three levels using
equations each. TH&systems can be solved along the saméehe Daubechies filters of length eight. The wavelet detail co
lines as described above. For the case of a fixed shape peafficients of every subband over the three color components
rameter, this yields a sum of terms of the form under thgor the gray-level) were modeled by an (M)GGD using the
square rootin (8), corresponding to the respective suldhandviIM-ML approach. The parameters of the (M)GGD models
For a variable shape parameter, we make use of the fact thiir all subbands comprise the feature set for a single subim-
a geodesic is a curve on the manifold not only with min-age. The experiments were carried out once using only one
imum length, but also with minimum squared length (en-wavelet scale and once using all three wavelet scales. In or-
ergy). Therefore, one may just sum thquaredgeodesic der to get an idea of the range of values for the shape pa-
distances for the respective subbands. Regarding the KLDameterf3 in our data set, a histogram @f, over all nine
when dealing with multiple independent wavelet subbandsyavelet subbands, is given in Figure 5a for the gray-level
the respective KLDs may just be summed according to th@nages. Figure 5b shows a similar histogram for the case of
chain rule (Kullback, 1968; Do and Vetterli, 2002). RGB images modeled by trivariate MGGDs. For gray-scale
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images the mea# is about 0.58, while for correlated color parameter. In the case of fixed shape parameter, we chose
images it is slightly lower: 0.48 (about Laplacian). Again,two models, viz3 = 1, i.e. the (multivariate) Gaussian and
this is an indication that the Laplacian is much more suitthe multivariate Laplacian, characterized®y= 1/2. For a

able as a model than the Gaussian. variable shape parameter, the GD was evaluated using a lin-

The classification experiments were carried out by mearRar approximation for the geodesic coordinate functiosis, a
of ak-nearest neighbor classifier validated by the leave-onementioned above. In the cases where a closed expression is
out method. In practice, we considered one of the 640 subin@vailable for the KLD, we compared its performance as a
ages (the test image), to be assigned to one of the 40 origingimilarity measure with the results using the GD.
texture classes. The class labels of the other subimages wer We then compared our retrieval results for gray-level im-
assumed to be known, which constitutes the training phassges to a recent state of the art method that employs image
of the classifier. Then, the similarity of the test image totea features based onimage patch exemplars (Varma and Zisser-
of the remaining images was determined and the test imagean, 2003, 2009), questioning the advantage of filter banks.
was assigned to the class most common among thd5  We applied this method to retrieval on our database of 640
nearest neighbors of the test image. We cHosel5 since  subimages as follows. First, for every texture each pixel in
ideally the 15 nearest neighbors of the test image should kibe corresponding 16 subimages was represented by a vector
the 15 subimages originating from the same original textureonsisting of the normalized gray-level values in the psxel
class to which the test image belonged in reality. We nexsurrounding 3< 3 region. Ak-nearest neighbor clustering
compared the assigned class label with the true class label algorithm was then applied in this vector space, resulting i
the test image. We repeated the procedure, successively U$ cluster centers called textons. The total collectionQff 4
ing every subimage once as a test image (hence every tintextons (40 textures) was then used to build a texton dictio-
leaving out one of the subimages in the training phase afary. In the learning stage, each pixel in the 640 database
the classifier). We then determined the rate of correct clagmages was then converted to its closest texton and a texton
sification and used this as a performance measure for tH@stogram was generated for each subimage. In the classifi-
classifier. cation stage, the texton histogram of each query image was

The classification experiment can easily be applied irfompared to all database histograms (neglecting the small
a retrieval context, again by sequentially presentingeverinfluence of the query image itself on the dictionary that was
subimage as a query image. The retrieval effectiveness ksed for translation) using the? statistic (the GD could be
then measured by calculating the averegjdeval rate i.e.  applied here as well). Finally, again the images were ortlere
the ratio of relevant images in the top 15 images (excludingccording to their distance to the query image and average

the query image). Here, a subimage is considered relevantfigtrieval rates were calculated. We refer to this method as
it is part of the same original 512512 image as the query the ‘texton method’. We did not extend this method to color

subimage. texture discrimination.

We conducted both the classification and retrieval exper- We next examined the influence of Gaussian noise added
iments for various choices of the statistical model andaisin to the images and studied the impact of image conversion to
the GD and KLD as a similarity measure. We started the exa less correlated color space, namely HSV space.
periments on the gray-level equivalent of the 640 color im-  Finally, in order to demonstrate the texture discrimina-
ages and we next treated the corresponding full RGB colaiion capabilities of our techniques in a realistic retrieset-
images assuming no interband correlation (hence univarting, we conducted several texture retrieval experimenss i
ate modeling, referred to as ‘UV’). In this case, the GDdatabase of 100,000 images of size 25%6. Every database
and KLD for the joint (product) distribution over the color image was made up of about four to five irregularly shaped
bands can be calculated remembering the comments abopatches of different colored textures. These textures were
on the calculation for independent wavelet subbands. Therghosen randomly from a set of 198 relatively homogeneous
color images were considered where the (bivariate) correldase textures, obtained from the VisTex database and from
tion was modeled pairwise between the color bands (bivarian online image repository (Imagafter, 2010). Some ex-
ate modeling, referred to as ‘MV-2’). Since a closed expresample images are displayed in Figure 4. During construc-
sion for the KLD between bivariate GGDs is available, thistion of the database images, for every base textufe =
procedure allows us to explicitly compare the GD with thel,...;198) the total number of timels; was counted that
KLD in the bivariate case. Finally, color images considgrin this specific base texture was used in a patch in a database
the full (trivariate) correlation structure between thegpal image. The image features were defined as follows. Every
bands (referred to as ‘MV-3’) were used (recall that in ev-image was divided in 16 nonoverlapping 844 subimages
ery case the wavelet subbands were considered to be mund MGGD features were calculated for each of the subim-
ally independent). For each of these instances, we employedes, just as in the previous experiment, except that tioe col
several MGGD models, with fixed and with variable shapecomponents were not normalized. In addition, we used only
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Fig. 3: The 512« 512 texture images from the VisTex database used in our impets. From left to right and top to
bottom the images are: BarkO, Bark6, Bark8, Bark9, Brickdch!, Brick5, Buildings9, FabricO, Fabric4, Fabric7, Fab,
Fabric11, Fabric14, Fabricl5, Fabricl7, Fabric18, FleyeFood0, Food5, Food8, Grassl, Leaves8, Leavesl0, lldaves
Leavesl2, Leavesl16, MetalO, Metal2, Misc2, Sand0, Sto&tdhe4, Terrainl0, Tilel, Tile4, Tile7, Water5, Wood1 and
Wood2.

one wavelet scale in order to reduce the computational load..2 Computational demands
The set of MGGD features for all 16 subimages, constituted

the features for a single database image. A query consistethe performance of a classifier or a retrieval system is not
of the presentation of a random 6454 patch chosen from 4y expressed in terms of its actual classification efficyen
one of the base texture. For every database image, the ¢ is also a function of its speed. Depending on the ap-
similarity of the MGGD features of this query image to the yjication, a trade-off needs to be considered between clas-
features of each of the 16 subimages was calculated. Thgsication effectiveness and computational demands. In or-
similarity of the query image to the database image was theger to estimate the computational resources required by any
defined as the smallest of the 16 similarities. Next,’he  compination of models and similarity functions introduced
closest database images were considered. Ideally, each é)(gove, we measured the amount of time necessary for the
thesel; images should contain a patch filled with textliye  ayajuation of the similarity measure between two images,
In reality, our success rate for a single query was the ratignaracterized by in total nine wavelet subbands at thrdesca
of database images in the tp that contained texturd.  Thjs duration was obtained on the machine on which all cal-
We conducted 1000 queries and finally computed the avegy|ations in this work were performed, namely a Dell Opti-
age success rate. This experiment was carried out for 9rayiex 755 equipped with an Intel Core Duo Quad CPU at 2.7
scale images (univariate GGD) and RGB color images (Withts {7 and 8 GB of RAM, running the 64-bit version of the
correlated spectral bands, trivariate MGGD), using a fixeqyjindows Vista operating system. The codes for the clas-
shape parameter (Gaussian, Laplacian) or a variable shaggier and the retrieval system were implemented and run
parameter and applying the GD or KLD as a similarity meaj, MATLAB (version 7.6, R2008a, 64 bit (The Mathworks,
sure. 2008)). The durations are summarized in Table 3 (two sig-
nificant digits were considered in every case).
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(b)

(d)

Fig. 4: Example images from a database of size 100,000. Bvege (256x 256) consists of arbitrarily shaped patches of
random colored textures.
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Fig. 5: Histograms of the (M)GGD shape paramefeabtained via MM-ML over the nine wavelet subbands (thre¢esja
in an image database of 640 color texture images. (a) Forgrale images and (b) for three correlated RGB color bands.

(b)

Several points in this table are noteworthy. First, clearlytances between bivariate GGDs have to be computed. How-
the calculation of similarities between gray-level images ever, the durations obtained by computing the distances be-
the fastest, followed by color images without correlationtween trivariate MGGDs (MV-3), characterizing the full eor
between the spectral bands. Evaluating distances betweeglation structure between the three color bands, are again
color images with the correlation between the spectral bandsomewhat lower because here effectively only nine KLDs
modeled pairwise (MV-2) takes considerably more time. Ther GDs have to be evaluated. Further tests on synthetic data
reason is that for each comparison in effect 2% @) dis-  have pointed out a quadratic asymptotic scaling of the com-
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Measure Model -
Gray uv MV-2  MV-3
Gauss 0.021 0.023 0.96 0.37
KLD Laplace 0.018 0.020 1.7 -
GGD 0.066 0.089 2.2 -
Gauss 0.053 0.074 0.99 0.57
GD Laplace 0.053 0.074 0.99 0.57
GGD 1.9 5.5 7.3 2.8

Table 3: Time, in ms, necessary for the calculation of the
similarity between two textured images (nine wavelet sub-
bands) characterized by different models (Gray = grayHeve
UV = univariate color, MV-2 = multivariate color with pair-
wise correlation between the spectral bands, MV-3 = multi-
variate color with full correlation structure) using the RIL
and GD.

putational time as a function of the number of spectral bands
both for the fixed and variabl@ cases.

A second observation is that it takes consistently more
time (except forthe MV-2 Laplace) to evaluate the GD, com-
pared to the corresponding KLD. However, in most cases
the durations are of the same order of magnitude. An excep-
tion is formed by some of the GD calculations for variable
shape parameter, which take several milliseconds, in géner
much longer than is necessary to evaluate the KLD for cor-
responding models and for variable shape parameter as well.
Hence, in order to render the effort of computing the GD for
a variableB worthwhile, the associated correct classification
rates and retrieval rates will need to be significantly highe
than any of the rates obtained using other models and/or the
KLD. In the next subsection, we will see that for classifi-
cation and retrieval on the present database, this is convin
ingly the case for univariate models. In the multivariateeca
it will become clear that the application of the Laplace dis-
tribution as a model and the GD as a similarity measure,
yields the best classification results with the additiorsad-b
efit of an acceptable computational load.

4.3 Results and discussion
4.3.1 Main experiments

Our experiments enable a study of the influence on the cor-
rect classification rate (CCR) and the average retrieval rat
(RR) of the image model as well as the similarity measure
used. The results of all classification and retrieval experi
ments on the database of 640 images are discussed below
and summarized in Tables 4 and 5, respectively. The main
conclusions that can be drawn from these tables are the fol--
lowing.

When the three colors in an image are described individ-
ually by a univariate distribution, instead of using only
the gray-level information, both the CCR and RR in-
crease significantly. However, the most substantial per-
formance improvement compared to gray-level model-
ing is obtained by taking into account the correlation
structure between the spectral bands. The downside is
a substantially increased demand for computational re-
sources, as discussed in Section 4.2. Note that the re-
trieval result on gray-scale textures using the KLD and
GGD was already obtained by Do and Vetterli (2002).

In order to assess the associated specific gain in re-
trieval performance, a comparison was made, as a func-
tion of each texture class separately, of the cases with
and without correlation. To do this, within every texture
class the mean was taken of the average retrieval rate ob-
tained by successively presenting each of the subimages
in the respective class to the retrieval system. Since the
Laplace distribution gives the highest retrieval rates in
three dimensions (see also below), the comparison was
made by means of the Laplacian model, using the GD.
The results are displayed in Figure 6a (three wavelet
scales) for the first 20 texture images shown in Figure 3,
while the other images are analyzed in Figure 6b. The
differences are in some cases spectacular, implying strong
correlation between the color bands. These figures may
also be compared to the corresponding results by Do and
Vetterli (2002) on gray-level textures.

The same situations were compared in terms of their
corresponding average retrieval rate as a function of the
number of retrieved images considered. This is shown
in Figure 7. At 16 retrieved images considered, natu-
rally we obtain the respective retrieval rates that are men-
tioned in Table 5. In order to reach the same average re-
trieval rate, typically more than 2.5 times the number of
images need to be considered when the correlation is not
modeled, compared to the case where the correlation in-
formation is taken into account. Again these findings can
be compared to the results by Do and Vetterli (2002).
The Laplace distribution yields in all cases (both KLD
and GD) a higher CCR and RR than the Gaussian. This
corroborates our findings in Section 2.3, where it was
concluded that the Laplace distribution describes image
wavelet statistics more effectively than the Gaussian. Fur
thermore, the highest rates in our series of experiments
are obtained by means of a trivariate Laplace distribu-
tion, employing the GD as a distance measure. Accord-
ing to Section 4.2 the computational cost is still reason-
able in this situation. Also note that in this case there is
no closed expression available for the KLD, nor for a
trivariate GGD with variable shape parameter.

The (M)GGD, characterized by a variable shape param-
eter in turn may lead to superior classification and re-
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trieval performance compared to the Laplacian (both
KLD and GD). However, this effect is most clearly no-
ticed when using univariate distributions, but diminishes
or even marginally reverses, as the correlation between
color bands is taken into account and as we include more
wavelet scales. This is partly understandable since, first,
enhancing the complexity of the model, hence increas-
ing the classification performance, it becomes more and

pairwise bivariate modeling of the color bands. Note,
however, that since at this point no analytic expression
is available for the KLD between trivariate GGDs (ex-
cept for the Gaussian), leaving only the possibility of
computationally intensive multidimensional integration
the KLD between such distributions was not computed
in this work. This is one of the advantages of the GD
over the KLD.

more difficult to still improve on the results. Second, we

have to keep in mind that the accuracy of the calculaz 3 2 comparison to state of the art

tion of the GD between variabj@ MGGDs depends on

the degree to which the linear approximation of the geotJsing the texton method, again average retrieval rates for
desic coordinate functions remains valid. As a third posgray-level images were considered as a function of the num-
sible cause we may point out that the estimation of theyer of retrieved images considered. At 16 images retrieved,
MGGD shape parameter is a difficult task, particularlythis yielded a rate of 78%, somewhat more than using the
for low values of the shape parameter, as is evident fronGD on three wavelet scales of the gray-level images. How-
the discussion in Section 2.3. As a result, the estimatedver, at only a slightly higher number of retrieved images,
shape parameter might yield a suboptimal MGGD dethe texton method performs inferior to the wavelet methods
scription of the wavelet statistics. On the other hand, fitysed in this paper, as can be seen in Figure 7.

ting a Laplace distribution (hence fixg) to wavelet

data is easier and it may well be that in the end in SOM§ 3 3 |nfluence of noise

cases the estimated Laplace distributions provide, on the

average over the entire database, a better description @fis next examined the influence of noise on the classifica-
the data than the hard to fit MGGD models with vari- tjo, results. For that purpose we added Gaussian noise to all
able B, thus explaining the better performance of thejmages in the database of size 640, before carrying out the
Laplace distribution in a classification experiment. As,, 4y elet transform (three scales). We chose a signal-teenoi
aresult, although the reason is not entirely clear as yejgyig (ratio of the standard deviations) of 1 and we repeated
we have to conclude that evidently, on the present iMy,q cassification experiments using the gray-scale and MV-
age database, for multivariate distributions a varigble 3 faatures. The corresponding CCRs are given in Table 6.
model provides no significant advantage over a Laplacgyerg]| the classification rates are lower than those for the
distribution. This is especially apparent considering theyginal images, but there is no dramatic drop in classifica-
substantially higher computational load both during esyjon efficiency, despite the relatively high noise levelcSe
timation and classification using the varialelistribu-  onq, the KLD appears to be slightly more robust against the
tions in comparison with fixe# models. noise compared to the GD, except in the case of the univari-
Incidentally, we also carried out a classification €x-ate | aplace distribution. Third, in this case there is a teri
periment using the GD on trivariate GGDs with variable ot the trivariate MGGD with variable shape parameter, com-
shape parameter, this time calculating a polynomial appayeq to the trivariate Laplace distribution. The othentie

proximation of higher degree (degree 10) to the geodesig,a similar as in the unperturbed case.
coordinate functions, as we have described elsewhere

However, we did not observe any resulting significant
. , e 4.3.4 Influence of color space
increase in classification performance.

— The GD is in all cases more effective as a S|m|Iar|ty|t is interesting to study the effect of the particular color

measure than the KLD. The largest disparity is c’bte“nedspace that is used to compute the wavelet features from.

when the colors of the image are taken into conS|dera]-:0r instance, the dimensions in HSV space (with cylindri-

tion as opposed to using only the gray levels. However . .
P g only gray tal coordinates hue, saturation and value) are much less cor

as noted in Section 4.2, the superior classification PeT.ated than in RGB space. Indeed, as an example we con-

for_mance of the GD comes at the cost of higher COMPUSerted the images in the database of size 640 into HSV space
tational demands.

) . . . __and then performed a wavelet transform independently on
— The modeling of the full correlation structure using trivar b P y

ate distributions vields sliahtlv better results than tiab each coordinate (three scales). In this space, the correla-
y gntly ty tion between wavelet directions and levels (for the statign

wavelet transform) turned out to be comparable to that ob-
tained in RGB space. However, for the correlation between
the hue and saturation we computed a median absolute value

6 G. Verdoolaege and P. Scheunders, On the Geometry of Mitiva
ate Generalized Gaussian Models, submitted to Journal didvizati-
cal Imaging and Vision, 2010.
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Measure Model

One scale Three scales
Gray UV MV-2 MV-3 Gray UV MV-2 MV-3
Gauss 68.0 78.1 89.2 90.5 77.8 83.8 944 95.9

KLD Laplace 69.4 79.2 913 - 814 859 952 -
GGD 784 822 919 - 875 89.2 945 -
Gauss 68.4 789 895 92.7 795 858 964 97.0

GD Laplace 70.3 839 92.0 93.4 83.6 90.0 96.7 97.5

GGD 80.0 845 934 93.0 889 913 96.1 97.3

Table 4: Correct classification rates (%) using differentels (Gray = gray-level, UV = univariate color, MV-2 = multi-
variate color with pairwise correlation between the sddtands, MV-3 = multivariate color with full correlatiorratture)

for a single and for three wavelet scales, using the KLD andaSBimilarity measures in a database of 640 color texture
images.

Measure Model

One scale Three scales
Gray UV MV-2 MV-3 Gray UV MV-2 MV-3
Gauss 53.7 62.6 79.2 80.2 63.6 70.2 858 87.4

KLD Laplace 545 643 815 - 655 712 87.8 -
GGD 66.4 712 823 - 766 771 876 -
Gauss 53.9 634 80.2 81.2 644 715 87.7 89.6

GD Laplace 56.8 67.6 83.3 84.1 68.3 749 899 91.7

GGD 66.7 734 841 84.7 77.8 79.9 895 91.3

Table 5: Same as Table 4, but with application in a retriexpeeiment. The average retrieval rates (%) are mentioned.

of only 0.119 (interquartile intervé0.045 0.274)), between Measure Model

hue and value this was 0.11®.038 0.260) and between Gray MV-3
saturation and yalue we obtained O_.T(MS, 0..82]). Thus, P 605 BL1
only the saturation and value coordinates display an appre- KLD Laplace  61.1 -
ciable correlation, while the correlation between hue &ed t GGD 68.8 -
other coordinates is much weaker than between the RGB Gauss 598 808
bands. In fact, we would expect a substantially enhanced GD Laplace 62.5 81.3
classification efficiency primarily by modeling the correla GGD 67.8 830

tion between saturation and value. Also, since obviously o . _
there lies less information in the HSV correlation struetur Table 6: Correct classification rates (%) using differentimo

compared to the case of the RGB space, there should §8s (Gray and MV-3) for three wavelet scales, using the KLD
more information in the individual hue, saturation and galu @hd GD as similarity measures in a database of 640 color
dimensions, without considering the correlation. Indéed, texture images, with added Gaussian noise (SNR = 1).
Table 7 the CCRs and RRs for different GGDs modeling

the HSV coordinates independently (UV) are compared to

the case where correlation between all coordinates is taken

into account (MV-3). As is to be expected, the classification

and retrieval performance of the UV case is better compared

to UV modeling in RGB space. On the contrary, the MV-3 _ _ _
results are worse for HSV relative to RGB space. Neverance of the models with variable shape parameter. This ef-

theless, the best results are still obtained in the multitar  fectis even more apparent with the GD than using the KLD,
context. We also noted that in HSV space it is more diffi-Since the GD with variable shape parameter is an approx-
cult to fit a model with variable shape parameter, due to thénation. Comparing with the results obtained in the RGB
extreme leptokurtic behavior of particularly the hue caord SPace, we conclude that for multivariate modeling using an

nate. This is the cause of the reduced classification perfoMGGD, the RGB space provides a better representation than
a less correlated space such as the HSV space.
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100 =

0w i N m Classification Retrieval
-M\/737
g 2 | Measure Model
E UV MV3 UV MV-3
5 1 Gauss 858 91.6 707 79.4
& KLD Laplace 88.1 - 75.1 -
2 1 GGD 90.5 - 73.5 -
Gauss 87.3 93.9 72.6 81.3
U770 © @ @ o oF P PO LI IS LS GD Laplace 906 945 77.2 839
MR L GGD 825 725 647 595
Texture classes
@) Table 7: Correct classification rates and average retrieval
100 _ rates (%) using different models (UV and MV-3) for three
I i i I wavelet scales, using the KLD and GD as similarity mea-
g I 1 sures in a database of 640 color texture images in HSV
g space.
£ % ,
& Measure Model
g ,
= N Gray MV-3
o Gauss 28.0 60.1
@%ﬁvf:@“i;%%ﬁy&%‘&@ﬁeﬁﬁ%ﬂ@&‘@“Q’D SEES KLD Laplace 32.5 -
A v Texture classes G G D 35 . 8 -
(b) Gauss  30.1 624
) ] ) GD Laplace 339 6838
Fig. 6: Comparison of the average retrieval rates over each GGD 374 642

texture class in the database, between univariate modeling
(UV) of the colors individually on the one hand and model-Table 8: Average retrieval rates (%) using different models
ing of the three correlated color bands (MV-3) on the othe(Gray and MV-3) for a single wavelet scale, using the KLD
hand. Three wavelet scales were used, modeled by Laplaeead GD as similarity measures in a texture retrieval experi-
distributions, and the GD was applied as a similarity meament. The database consists of 100,000 color images, every
sure. image containing multiple textures.

100
4.3.5 Large database of multiple texture images

©
a1

Finally, Table 8 contains the success rates, as defined above
for the retrieval experiment consisting of 1000 queries of
random texture patches in a database of 100,000 multiple
texture images. Only gray-level textures and the corredpon
ing color images were treated and one wavelet scale was
used. Again, similar trends can be noticed as in the exper-
iments on 640 images. This shows that our methods can
,,,,,, be applied successfully in realistic experimental setting
volving large databases.

©
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20 40 60 80 100 _ 120 140 160 180 200  4.3.6 Practicalities and future research

Number of retrieved images
Fig. 7: Average retrieval rate as a function of the number o¥Ve next would like to formulate several considerations that
top retrieved images (excluding the query image) for gray@'e relevant to the implementation in practical applicatio
level modeling (Gray, variabl@), univariate modeling of of the techniques introduced in this paper. At the same time
the colors individually (UV, variabl@) and modeling of the We suggest various possible improvements to the methods as
three correlated color bands (MV-3, Laplace model) usind"e” as some topics deserving further study. First, we have

the GD on three wavelet scales. The rates obtained via thgressed upon the additional computational demands asso-
texton method are also shown. ciated with some of the improvements in classification rate

observed in our study. Although an elevated computational

75
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complexity of the similarity measurement can be prohibitiv As afinal recommendation to practitioners as far as clas-
in real-time applications of e.g. a retrieval system, tlissl  sification performance is concerned, we would like to pro-
not exclude the usefulness in other or related applicattbns pose to use the GD (with linear approximation for the coor-
even the most computationally demanding methods appliedinate functions) together with the GGD with variable shape
in the present work. For instance, a practical retrievallmec parameter in the case of gray-level texture discrimination
anism might start querying the database using a computé&or the trivariate case where the correlation between the
tionally lightweight method (e.g. by means of the KLD on spectral bands is modeled, we recommend the GD together
the gray-level component modeled by a GGD), and subsewith the Laplacian distribution.

quently, in areduced set of retained images, refine thelsearc  As an aside we still mention that for the calculation of
by means of a more advanced technique (e.g. using the Gffie GD between the distributions modeling the images in the
and a trivariate Laplace model). The GD in conjunction withpresent databases, it was verified that the resulting gaodes
complicated multivariate data models can be fruitful ad weldistances are symmetric in the order of the arguments. In
in a database search using key images. Moreover, the highaddition, for the case of a Gaussian and Laplacian, the nu-
classification rates obtained with the GD and an advancegherically computed GDs using linear geodesic coordinate
model, may also be an indication of good, and perhaps mor@inctions correspond very well to the exact results obthine
distinctive performance in other applications, where comp via the analytic expressions for the GD. The reason is that
tational load is less an issue. For example, it was notedeaboYor the distributions with fixed shape parameter, in the €oor
that for two distributions that are close on the probalidist dinate system used in this work, the linear approximation is
manifold, the GD and KLD are comparable similarity mea-exact, see Section 3.1.

sures. However, the more distant two distributions, thgdar

the disparity between the GD and the KLD. Therefore, it

vvpuld be Wor_th studying an apphcf';\_tlon_ where malnly.large5 Conclusion

distance are involved (e.g. a classification problem with ex

tehnszehbut rlnu.tually (;Iose cIustefrshm Cfg;\turz iﬁ’jjce)’ an% this paper, we have studied the measurement of multi-
check the relative periormance of the an ’ Com'component image texture similarity through a statistiqal a

pared to their performance observed in the present appIiC%’roaoh in the wavelet domain. We applied this in several ex-

tion or database. periments for the classification of color textures in a dasah

Another possible topic for future research concerns théeelying solely on the actual image content. We usekt a
classification results using a distribution with variabdiage nearest neighbor classifier evaluated via the leave-ohe-ou
parameter, relative to fixed shape parameter models. Indegiethod. We chose image retrieval as a specific application
the variable shape parameter induces a significant adalitionof the classifier. We proposed to profit by the information
model flexibility and this is in fact reflected by the substan-residing in the rich spectral band correlation structuse, b
tial increase of the classification rate for univariate mede jointly modeling, through a heavy-tailed multivariate gen
However, the reason why a similar large improvement is noeralized Gaussian distribution (MGGD), the wavelet detail
observed in the multivariate case (except in the experimeroefficients corresponding to the respective spectraldand
with added Gaussian noise), at least on our data set, is nat image. We tested several methods for fitting an MGGD to
entirely clear, although we have identified several poksibi multiband wavelet data, concluding that the moment method
ities above. Similarly, the lack of an increased perforneancprovides a good approximation to the wavelet histograms,
when using a more accurate higher-degree polynomial apvith the possibility of subsequent fine-tuning through recu
proximation to the geodesic coordinate functions, is defisive solution of the ML equations.
nitely a matter for further investigation. First, this bela A second accomplishment of the present work is the
could be differentin other applications. Second, the ¢fiéc use in a series of classification and retrieval experiments
a linear geodesic approximation on classification effeetiv of the geodesic distance (GD) as a similarity measure be-
ness should be studied in more detail. Third, the hypothesisween MGGDs (hence between the corresponding images).
which we have stated, should be examined that the fact thathe GD has several interesting advantages compared to the
multivariate models with variable shape parameter do ndkullback-Leibler divergence (KLD), a traditional measure
result in a significantly enhanced classification perforogan of similarity between probability distributions. An irati set
is related to a suboptimal estimation of the distributioms]  of experiments was conducted using a small image database
in turn, could trigger the search for improved algorithms fo serving as a bench-mark system. Models of varying com-
parameter estimation, or even other distribution familied  plexity were employed for characterizing the wavelet data.
provide a still better description of multivariate wavedata, The classification effectiveness for all models, using both
and to which the methods outlined in this work can be apthe GD and KLD, was evaluated by on the one hand the
plied. actual correct classification rates, and on the other hand by
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the computational complexity. A substantial gain in classi Benazza-Benyahia A, Pesquet JC (2005) Building robust
fication efficiency was obtained when considering the inter- wavelet estimators for multicomponent images using
band correlation (both pairwise and trivariate) as opposed Steins’ principle. IEEE Transactions on Image Process-
to univariate modeling. In the univariate case, the use of a ing 14(11):1814-1830
GGD with variable shape parameter, compared to a Gau&erkane M, Oden K, Bentler P (1997) Geodesic estimation
sian or a Laplacian, produced a distinct benefit in terms of in elliptical distributions. J Multivariate Anal 63(1):386
correct classification rate. Another important observatio Berman A, Shapiro L (1999) A flexible image database sys-
the clearly superior classification performance of the GD in tem for content-based retrieval. Comput Vis Image Un-
comparison with the KLD, particularly for multivariate dis derst 75(1-2):175-195
tributions. The highest correct classification rates, imbd  Bonet J, Viola P (1998) Texture recognition using a non-
nation with a manageable computational complexity, were parametric multi-scale statistical model. In: Proceeding
obtained using the GD on trivariate Laplace distributions. of the IEEE Conference on Computer Vision and Pattern
For gray-scale images, our method performs better than a Recognition, Santa Barbara, CA, pp 641-647
state of the art technique employing image patch exemplarBoubchir L, Fadili J (2005) Multivariate statistical moeel
Next, the impact of perturbation of the images through ing of images with the curvelet transform. In: Proceedings
additive Gaussian noise was examined and the KLD was of the 8" International Symposium on Signal Processing
found to be slightly more robust against the noise than the and its Applications, pp 747-750
GD. Nevertheless, the best classification results werke stiBurbea J (1986) Informative geometry of probability spaces
obtained using the multivariate Laplace distribution ce th  Expo Math 4:347-378
MGGD with variable shape parameter, in conjunction withBurbea J, Rao C (1982) Entropy differential metric, diseanc
the GD. and divergence measures in probability spaces: a unified
We also repeated the experiments in the HSV color space,approach. J Multivariate Anal 12:575-596
which is a less correlated representation compared to thBurkhard W, Keller R (1973) Some approaches to best-
RGB space. Although the classification results via univari- match file searching. Commun ACM 16(4):230-236
ate modelingimprove in a less correlated space such as HS&alvo M, Oller J (2002) A distance between elliptical dis-
the efficiency of multivariate models deteriorates conside  tributions based in an embedding into the Siegel group. J
ably. Hence for multivariate modeling the RGB space is a Comput Appl Math 145(2):319-334
better alternative. Castano-Moraga C, Lenglet C, Deriche R, Ruiz-Alzola J
We then performed a more realistic set of texture re- (2007) A Riemannian approach to anisotropic filtering of
trieval experiments in a significantly larger database with tensor fields. Signal Processing 87(2):263-276
images containing multiple colored texture patches. Simil Cenkov N (1982) Statistical decision rules and optimal
tendencies were observed as in the initial series of experi- inference, Translations of Mathematical Monographs,
ments on the smaller database, indicating that our methodsvol 53. American Mathematical Society, Providence, RI
are scalable and suitable in realistic situations as well. Chang CI (2007) Hyperspectral Data Exploitation: Theory
Finally, we identified some topics for future research, and Applications. Wiley-Interscience, New York
including the relative performance of the GD and KLD, asCho D, Bui T (2005) Multivariate statistical modeling for
well as the impact of variable versus fixed MGGD shape image denoising using wavelet transforms. Signal Process
parameter models. To this end it would be advantageous to 20(1):77-89
investigate the behavior of the techniques developed s thiCramér H (1946) A contribution to the theory of statistical
work on other data sets and in other applications. estimation. Skandinavisk Aktuarietidskrift 29:85-94
Datta R, Joshi D, Li J, Wang J (2008) Image retrieval: Ideas,
Acknowledgements This work was partially funded by the Fund for  influences, and trends of the new age. ACM Computing
Scientific Research—Flanders (FWO-Vlaanderen). Surveys 40(2)
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wavelet least-squares estimators. Image and Vision Com-

References

Abramowitz M, Stegun | (1965) Handbook of Mathematical
Functions. Dover Publications, New York puting 26(7):1038-1051

Amari S, N ka H (2000) Methods of inf ti - . .
marl >, Nagaoka ( ) Me ods ot intormation geom Do M, Vetterli M (2002) Wavelet-based texture retrieval us-
etry, Transactions of mathematical monographs, vol 1917 " . . ) .
ing generalized Gaussian density and Kullback-Leibler

American Mathematical Society, New York . )
Atkinson C, Mitchell A (1981) Rao’s distance measure. distance. IEEE Trans Image Process 11(2):146-158

Sankya: The Indian Journal of Statistics 48:345-365



22

do Carmo M, Flaherty F (1992) Riemannian Geometry. Toronto, vol 5, pp 2584—-2586

Birkhauser, Boston, MA Micak M, Kozintsev I, Ramchandran K, Moulin P (1999)
Fang KT, Zhang YT (1990) Generalized Multivariate Anal- Low-complexity image denoising based on statistical

ysis. Springer-Verlag, Berlin modeling of wavelet coefficients. IEEE Signal Process
Fang KT, Kotz S, Ng KW (1990) Symmetric multivari-  Lett 6(12):300-303

ate and related distributions, Monographs on Statistics1IT Vision and Modeling Group

and Applied Probability, vol 36. Chapman and Hall, New (2010) Vision texture. online at

York http://vismod.media.mit.edu/vismod/imagery/Visiorfiee/

Gbmez E, Gbmez-Villegas M, Marin J (1998) A multivariate Mitchell A (1989) The information matrix, skewness ten-
generalization of the power exponential family of distri- sor anda-connections for the general multivariate elliptic
butions. Commun Statist—Theory Meth 27(3):589-600 distribution. Ann Inst Statist Math 41(2):289-304

Image-After (2010) online at http://www.imageafter.com/ Muller M (1959) A note on a method for generating points

James A (1973) The variance information manifold and the uniformly on N-dimensional spheres. Commun ACM
functions on it. In: Krishnaiah P (ed) Multivariate Analy-  2(4):19-20
sis Ill, Academic Press, New York, pp 157-169 Murray M, Rice J (1993) Differential geometry and statis-

Kass R, Vos P (1997) Geometrical foundations of asymp- tics. Monographs on Statistics and Applied Probability,
totic inference. Wiley Series in Probability and Statistic 48, Chapman and Hall, New York

Wiley-Interscience, New York O’Neill B (1982) Elementary Differential Geometry, second
Kullback S (1968) Information theory and statistics. Dover revised edn. Academic Press, New York
Publications, New York Pizurica A, Philips W (2006) Estimating the probability

Lehmann E, Casella G (2003) Theory of Point Estimation, of the presence of a signal of interest in multiresolution
2nd edn. Springer Texts in Statistics, Springer-Verlag, single- and multiband image denoising. IEEE Transac-
New York tions on Image Processing 15(3):654-665

Lenglet C, Rousson M, Deriche R (2006a) DTI segmen-Rao C (1945) Information and accuracy attainable in the es-
tation by statistical surface evolution. IEEE Trans Med timation of statistical parameters. Bull Calcutta Math Soc
Imaging 25(6):685-700 37:81-89

Lenglet C, Rousson M, Deriche R, Faugeras O (2006b¥cheunders P, De Backer S (2007) Wavelet denoising of
Statistics on the manifold of multivariate normal distri- multicomponent images, using Gaussian Scale Mixture
butions: Theory and application to diffusion tensor MRI  models and a noise-free image as priors. IEEE Trans Im-
processing. J Math Imaging Vis 25(3):423-444 age Process 16(7):1865-1872

Mallat S (1989) A theory for multiresolution signal decom- Skovgaard L (1981) A Riemannian geometry of the mul-
position: The wavelet representation. IEEE Trans Pattern tivariate normal model. Tech. Rep. 81/3, Statistical Re-

Anal Mach Intell 11(7):674—692 search Unit, Danish Medical Research Council, Danish
Mallat S (1999) A wavelet tour of signal processing, 2nd Social Science Research Council
edn. Academic Press, New York Skovgaard L (1984) A Riemannian geometry of the multi-

Manjunath B, Ma W (1996) Texture features for brows- variate normal model. Scandinavian Journal of Statistics
ing and retrieval of image data. IEEE Trans Pattern Anal 11(4):211-223
Mach Intell 18(8):837—842 Stephens M (1964) The testing of unit vectors for random-
Manjunath B, Ohm JR, Vasudevan V, Yamada A (2001) ness.JAm Stat Assoc 59(305):160-167
Color and texture descriptors. IEEE Trans Circ Syst VidedSynyavskyy A, Voloshynovskiy S, Prudyus | (2001)
Technol 11(6):703-715 Wavelet-based map image denoising using provably bet-
Mardia K, Kent J, Bibby J (1982) Multivariate Analysis. ter class of stochastic I.I.D. image models. Facta Univer-
Academic Press, London sitatis (Series: Electronics and Energetics) 14(3):385-3
Marsaglia G (1972) Choosing a point from the surface of arhe Mathworks (2008) Natick, MA, www.mathworks.com
sphere. Ann Math Stat 43(2):645-646 Tzagkarakis G, Beferull-Lozano B, Tsakalides P (2006)
Mathiassen J, Skavhaug A, Bo K (2002) Texture similar- Rotation-invariant texture retrieval with gaussian-
ity measure using Kullback-Leibler divergence between ized steerable pyramids. IEEE Trans Image Process
gamma distributions. In: Proceedings of the European 15(9):2702-2718
Conference on Computer Vision, Copenhagen, vol 2352yan de Wouwer G, Scheunders P, Van Dyck D (1999) Sta-
pp 19-49 tistical texture characterization from discrete wavedgt-r
Mercier G, Lennon M (2002) On the characterization of resentations. IEEE Trans Image Process 8(4):592-598
hyperspectral texture. In: Proceedings of the IEEE InVaranasi MK, Aazhang B (1989) Parametric general-
ternational Geoscience and Remote Sensing Symposium,ized Gaussian density estimation. J Accoust Soc Am



23

86(4):1404-1415

Varma M, Zisserman A (2003) Texture classification: are fil-
ter banks necessary? In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognotion, vol 2,
pp 691-698

Varma M, Zisserman A (2009) A statistical approach to ma-
terial classification using image patch exemplars. IEEE
Trans Pattern Anal Mach Intell 31(11):2032-2047

Verdoolaege G, De Backer S, Scheunders P (2008) Multi-
scale colour texture retrieval using the geodesic distance
between multivariate generalized Gaussian models. In:
Proceedings of the IEEE International Conference on Im-
age Processing, San Diego, CA, pp 169-172

Verdoolaege G, Rosseel Y, Lambrechts M, Scheunders P
(2009) Wavelet-based colour texture retrieval using the
Kullback-Leibler divergence between bivariate general-
ized Gaussian models. In: Proceedings of the IEEE Inter-
national Conference on Image Processing, Cairo, pp 265—
268

Watson G, Williams E (1956) On the construction of sig-
nificance tests on the circle and the sphere. Biometrika
43(3-4):344-352



