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Abstract

We present a novel method for calculating occupancy maps with a set of calibrated and

synchronised cameras. In particular, we propose Dempster-Shafer based fusion of the ground

occupancies computed from each view. The method yields very accurate occupancy detection

results and in terms of concentration of the occupancy evidence around ground truth person

positions it outperforms the state-of-the-art probabilistic occupancy map method and fusion

by summing.

1 Introduction

An occupancy map provides a top view of a scene containing people or objects. Such maps

are important in many applications such as surveillance, smart rooms, video conferencing and

sport games analysis. Camera networks offer an attractive non-intrusive and flexible tool for

this purpose. They do not require people to wear dedicated gear, nor the environment to
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be equipped with special sensors other than cameras, which are often part of the existing

infrastructure, especially in security applications.

In recent years, foreground silhouettes in multiple camera views have been increasingly

used to estimate the probability of ground occupancy. Two basic approaches exist. Bottom-

up methods transfer the information in the different camera images to a common reference

plane using camera image-floor homographies [1]. Top-down approaches extract occupied

ground positions by comparing a generative model of the objects in the scene with the actual

foreground silhouettes observed in the camera views [2, 3]. Until now, for both approaches

the mathematical laws for the fusion of data from different cameras have not been considered

explicitly. In this letter we focus on this data fusion aspect within a bottom-up method and

show that Dempster-Shafer based fusion of camera information leads to significantly more

accurate occupancy maps. For the basket ball dataset of [4], the total mass of occupancy

evidence is 1.08 to 8.13 times more concentrated around the ground truth player positions

than for the methods of [1] and [2], as will be discussed in Section 4.

2 Data fusion

In the probabilistic occupancy map (POM) method of [2], for each view the conditional

distribution of the observed background subtraction image given the true object positions is

a function of a distance measure between the background subtraction image and the image

obtained from a generative model. Information from different views is fused by multiplying

these conditional distributions. This strategy is problematic in the typical case of imperfect

foreground detection: a missed foreground region in even a single view can easily result in a

missed occupancy detection.

In [1], each camera produces a confidence value for the occupancy of each ground position
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by back-projecting the foreground silhouettes to a common reference plane using camera

image-floor homographies. The aggregated ground occupancy map is obtained by summing

the camera confidences and by normalizing by the number of cameras that actually view x.

In this letter, unlike the summing [1] and POM [2] fusion strategy, we use Dempster-Shafer

(DS) based fusion to exploit the fact that if a hypothesis of (non-)occupancy is corroborated by

different cameras, a higher belief should be assigned to it. Moreover, the DS theory of evidence

allows distinguishing between equal probability of occupancy and non-occupancy, and lack of

knowledge, e.g. when an object is outside a camera’s viewing range. More specifically, in

our method the cameras are considered independent sources of information whose data about

the (non-)occupancy of ground positions can be opportunistically fused using the DS rule of

combination [5].

3 Occupancy maps

3.1 Problem Formulation

Consider a network of N cameras and let the ground plane of the observed scene be discretised

in resolution cells x. The discretisation resolution should be chosen such that the area covered

by one cell is (typically a lot) smaller than the average area occupied by a person. We wish

to assign a real value to each cell that expresses our confidence that the cell is occupied.

3.2 Proposed Method

In the DS theory of evidence, a basic belief assignment or bba m is a mapping that assigns

to each subset A of a frame of discernment θx a belief m(A) ∈ [0, 1]. The total assigned

belief should be 1 and the belief of the empty set ∅ should be 0. The basic belief assigned
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to a hypothesis expresses how much evidence supports it. In our method, for each cell x

the mutually exclusive and exhaustive hypotheses that x is either occupied ({occx}) or not

({noccx}) constitute the frame of discernment θx = {occx, noccx} [5]. The information from

each view i, 1 ≤ i ≤ N , is considered a distinct piece of evidence and we denote the bba

representing this evidence by mi. We now explain how we define the bba in our method.

Let H be the typical height of a person and consider a rectangular cuboid with cell x as

base and height H. If this cuboid lies completely outside the viewing frustum of camera i,

this camera cannot provide any information about the occupancy of x. The bba is then

mi({occx}) = 0, mi({noccx}) = 0 and mi(θx) = 1. Otherwise, the projection of this cuboid

into camera view i defines an image region Ri
x
. We gather evidence about the (non-)occupancy

of the cells by independently segmenting each view into background and foreground, and by

determining in each region Ri
x

the fraction of background pixels bi
x

and of foreground pixels

f i
x
. Of course bi

x
+ f i

x
= 1. The evidence mi({noccx}) of camera i for the hypothesis {noccx}

is bi
x
.

For mi({occx}) the situation is more complicated: because of the limited resolution of

the cameras, different cells x and x
′ may give rise to completely coinciding regions Ri

x
and

Ri

x
′ . Let Gi

x
be the number of cells sharing the same region Ri

x
. If Gi

x
> 1, the evidence

of occupancy collected in Ri
x

may be attributable to a person occupying only part of the

cells with coinciding Ri
x
. Because of the reprojection geometry, these Gi

x
positions will be

approximately laid out in a trapezoid, which we approximate by a square S with side length
√

Gi
x
.

Assuming a person occupies a square of W 2 cells, this person can be in (
√

Gi
x

+ W − 1)2

different positions with respect to the square S. A particular cell x in the square S is only

occupied in W 2 of all these positions. Hence, the evidence of occupancy mi({occx}) is scaled

with gi
x

= W 2/(
√

Gi
x

+ W − 1)2 and mi({occx}) = gi
x
f i
x
.
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Our methodMethod [2]Method [1]

Figure 1: Left the aggregated [1], in the middle the probabilistic [2] and right the proposed evi-
dential occupancy map. White corresponds to low confidence/probability/evidence of occupancy,
black to high. The crosses indicate the ground truth player positions.

With mi({occx}) and mi({noccx}) defined, mi(θx) = 1 − mi({occx}) − mi({noccx}).

The evidences collected by the N views about each cell x are fused using Dempster’s rule

of combination [5]. The fused evidence of occupancy for all cells forms an occupancy map

which we denote as m({occ}).

4 Results

To evaluate our method, we use the publicly available basketball dataset from the European

project APIDIS [4]. It consists of seven synchronised and calibrated video streams from five

cameras with partially overlapping views distributed around the court, and two top-mounted

cameras with fish eye lenses. The videos are captured at 2 megapixel resolution and 25 fps.

The size of the field is 15m× 28m. There are on average 12 targets on the field. The average

height of a player is set to 2m, as in [1]. We consider square resolution cells with an area

of (0.02m)2. In the rare case of conflicts in the fusion process, all evidence is transferred

to m(θx). The foreground is detected using an algorithm based on mixture of Gaussians

modelling with elementary shadow removal.
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Ground truth target positions have been made available for 60 frames recorded at 1 sec

intervals within the time interval 18:47 until 18:48 [4]. As most cameras point to the left half

of the court, only positions in that half are considered for the evaluation.

The right panel of Fig. 1 shows an example of m({occ}) in part of the left half of the court.

The left panel in Fig. 1 shows the aggregated occupancy map obtained as in [1], the middle

one the probabilistic occupancy map of [2] with cell width set to 0.4m (other widths yield

less accurate results). The map obtained by DS fusion is more representative of the actual

occupancy of the field because it shows very clearly defined peaks at the target positions, and

very few ghost objects or interference strokes between objects. This is less the case for the

methods of [1] and [2].

Let the total mass (TM) be the sum over all cells of the occupancy evidence for the

proposed method (TM =
∑

∀x
m({occx})), of the aggregated occupancy confidence for the

method of [1], and of the occupancy probability for the method of [2]. In Fig. 2, we plot

for our method and the method of [1] the percentage of TM that lies within a disc with

diameter d around a ground truth target position as a function of d. For the method of [2]

this evaluation method yields poor results since in this method the correlation between the

occupancy probability of adjacent cells is explicitly ignored. Hence, to obtain good results

with this method the size of the resolution cells should approximate the expected size of the

objects to detect and this cell size is significantly larger than in our method and the method

of [1]. Therefore, for fair comparison we plot for the method of [2] for different cell widths d

the percentage of TM that is generated in cells that are actually occupied by a target.

From this graph we conclude that in the proposed method the mass of occupancy evidence

is more concentrated around the ground truth positions than the mass of occupancy confidence

of method [1] and the mass of occupancy probability of method [2]. This is obvious from the

ratio between the percentage of total mass of our method and the method of [1] and [2].
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Figure 2: The percentage of the total mass within a disc with diameter d around a ground truth
target position (for the proposed method and the method of [1]), or within cells with width d

actually occupied by a target (for method [2]).

For [1], this ratio ranges from 19.38%/2.38% = 8.13 for d = 40cm to 94.18%/43.96% = 2.14

for d = 340cm, and reaches 6.66 for a typical diameter of 1m for sports players. For [2], it

ranges from 4.65%/0.65% = 7.13 for d = 20cm to 94.18%/87.15% = 1.08 for d = 340cm,

and reaches 1.24 for d = 1m. In other words, the ground occupancy map obtained using the

proposed method is more accurate than using the methods of [1] and [2]. This is beneficial

for direct use or for further analysis of the map.

The proposed method is about a factor of 6 more complex than the method of [1]. Indeed,

fusing the bodies of evidence of two cameras requires 17 operations per cell. For N cameras

this boils down to 17(N − 1) operations, compared to 3N + 1 operations required for [1].

Due to the iterative nature of the algorithm of [2], its complexity is a factor in the order of

hundreds higher than that of the proposed method.
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5 Conclusion

We have described a new method to calculate occupancy maps using multiple cameras. In

particular, we have shown how the performance of a method requiring only forward projections

from the image to the ground plane can be significantly improved by Dempster-Shafer based

fusion of the single view ground occupancy maps. Experiments and a comparison with the

state-of-the-art show clear improvements in the fused ground occupancy maps in terms of

concentration of the occupancy evidence around ground truth person positions.
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