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Abstract—An occupancy map provides an abstract top view
of a scene and can be used for many applications such as
domotics, surveillance, elderly-care and video teleconferencing.
Such maps can be accurately estimated from multiple camera
views. However, using a network of regular high resolution
cameras makes the system expensive, and quickly raises privacy
concerns (e.g. in elderly homes). Furthermore, their power
consumption makes battery operation difficult. A solution could
be the use of a network of low resolution visual sensors, but their
limited resolution could degrade the accuracy of the maps. In this
paper we used simulations to determine the minimum required
resolution needed for deriving accurate occupancy maps which
were then used to track people. Multi-view occupancy maps were
computed from foreground silhouettes derived via an analysis of
moving edges. Ground occupancies computed from each view
were fused in a Dempster-Shafer framework. Tracking was done
via a Bayes filter using the occupancy map per time instance
as measurement. We found that for a room of 8.8 by 9.2 m, 4
cameras with a resolution as low as 64 by 48 pixels was sufficient
to estimate accurate occupancy maps and track up to 4 people.
These findings indicate that it is possible to use low resolution
visual sensors to build a cheap, power efficient and privacy-
friendly system for occupancy monitoring.

I. INTRODUCTION

Occupancy maps are an important step in many applications
and are used for monitoring activities of people (for instance,
how many people are in a room, the whereabouts of these
people, etc.). Such maps can be accurately estimated using a
distributed camera network over a single viewpoint setup.
However, next to the arising privacy issues, regular high-
resolution cameras, which are usually used in such camera
networks, make these systems expensive. Their high power
consumption precludes battery usage, requiring more energy-
efficient solutions. One possibility is the use of low resolution
visual sensor networks (e.g. mouse sensors) [1], [2], but their
limited resolution could degrade the accuracy of occupancy
maps. It is also not clear which resolution is sufficient to
construct accurate occupancy maps, that can be used for
further processing.
In this paper, we simulate a visual sensor network to determine
the minimal required resolution needed to construct these
maps. To do so, we used a regular camera network and resized
the image to simulate low resolution sensors (Fig. 1). In
Section II we describe our data set which we used to perform
simulations, followed by the architecture used to obtain the
measures to determine the minimal resolution (Section III).
Finally, we summarize our results in section IV.
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Fig. 1. Input images were resized for different resolutions (frame 530, camera
3): (a) 256x190, (b) 128x96, (c) 64x48 and (d) 32x24 pixels.

II. DATA

For the simulation of low resolution visual sensors, we used
a camera network in an 8.8m by 9.2m room. The dataset
contains four people walking around the room observed by
four cameras (780x580 pixels at 20 FPS) with overlapping
views. Recordings were taken for about one minute during
which ground truth positions of each person were annotated
at one second intervals. These ground truth positions were
used to measure the performance of our occupancy mapping
and tracking for different image resolutions.

III. METHODS

A. Foreground detection using moving edges

To perform foreground/background segmentation, we used
a method to detect moving edges via analysis of the image
gradient. The method uses edge dependencies as statistical
features of foreground and background regions and defines
foreground as regions containing moving edges. The back-
ground is described by a short- and long-term image gradient
model using recursive smoothing for updating. The foreground
mask (silhouettes of moving people) is obtained by clustering
the moving edges and combining them via a convex hull
technique (figure 2a-2d).

B. Dempster-Shafer based multi-view occupancy maps

The approach we followed (as described in [3]) constructs
an occupancy map based on Dempster-Shafer reasoning [4],
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Fig. 2. The upper row shows the foreground detection (foreground is
indicated in black) for camera 3 and the lower one the corresponding
occupancy maps (high evidence indicated in black) at frame 530. Compared to
the others, the foreground detection performs poorly in the lowest resolution
32x24 (d) and so does the occupancy map of (h) wherein the evidence of one
person is missing.

[5]. Such a map is calculated using different camera views and
by fusing foreground silhouettes, obtained by the foreground
detection III-A, onto a ground plane. This fusion of the
evidences from all views uses the Dempster-Shafer’s rule of
combination (figure 2e-2h).

C. Multicamera tracking

Multicamera tracking was done using a similar method as
the one described in [6]. The tracking method uses a Hidden
Markov Model, which computes the target states using a
Bayesian filter for state estimation under the assumption that
the system can be modeled as a Markov process. Given the
observation described by an occupancy map (III-B) at time
instance t, the state transition matrix, and the initial probability
distribution, the likelihood of an observation belonging to the
state is computed.

D. Evaluation measures

1) p & n measures: As the first evaluation measure we
use the n and p measures to evaluate the occupancy maps
as described in [7]: n represents a measure of evidence at a
person’s position (within a radius of 10cm, n = 0 is the ideal
case) and p a measure of no evidence outside the positions
(p = 0 is the ideal case). For p, we choose a radius of 70cm
around the person’s position. The ideal case for a method
should be that n = 0 and p = 0, which means that all objects
are detected and the evidence of a person is concentrated
around the ground truth position.

2) tracking accuracy & tracking losses: The second evalua-
tion measure contains the tracking results, namely the accuracy
and the object losses. For that, we calculated the mean distance
error to the ground truth positions followed by counting the
number of losses for each person. A person is considered as
lost if the distance between position and the ground truth is
bigger than 70cm. Those results give an indication about the
accuracy of occupancy maps.

IV. RESULTS & DISCUSSION

To determine the minimal resolution, we performed an
evaluation according to the measures in III-D. The results of
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Fig. 3. The resolution 32x24 is out of range compared with the others that
perform similar.
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Fig. 4. The tracking result drops drastically for the resolution 32x24; for the
other resolutions the decrease is acceptable.

the n and p measures (III-D1) are shown in figure 3. We see
that there is a significant drop in accuracy of occupancy maps
for the resolution 32x24 compared to the other resolutions
(256x190, 128x96 and 64x48).
The tracking results (III-D2) prove this theses. In figure 4, the
performance of the tracker using the lowest resolution 32x24
often fails due to inaccurate occupancy maps, meaning that the
tracker produces inaccurate results (80.18cm mean distance
error from the ground truth) with many object losses.

V. CONCLUSION

We evaluated the dimension of a visual sensor for a room of
8.8m by 9.2m using 4 visual sensors. A resolution of 64 by 48
pixels is enough to build an acceptable occupancy map and to
track four people. This implies that a visual sensor of around
64 by 48 pixels is fully sufficient to perform simple tasks.
Hence, a mouse sensor could already be a cheap alternative
to high-resolution cameras. Future work could include the
robustness of a low resolution visual sensor network for
tracking applications.
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