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Abstract

The Faddeev Random Phase Approximation is a Green’s function technique that makes use

of Faddeev-equations to couple two-particle–one-hole and two-hole–one-particle excitations to the

single-particle spectrum. Solving these equations implies an infinite partial summation of the

perturbation expansion of the self energy. This method goes beyond the third-order Algebraic

Diagrammatic Approximation by treating both the particle-hole and particle-particle interactions

at the Random Phase Approximation-level. This paper presents the first results of our calculations

for diatomic molecules.
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I. INTRODUCTION

The study of electron correlation by means of first-principle calculations has taken a

high rise thanks to modern computer technology. The Green’s function formalism is one of

these first-principles methods that has succesfully been applied in quantum chemistry [1–

4]. The correlations in a many-body system are described by an energy dependent self

energy. A particular third-order approximation scheme to the self energy is the Algebraic

Diagrammatic Construction (ADC) [5] developed by Schirmer and coworkers. This method

has proven very successfull in predicting electron properties in molecules [6]. This method

is equivalent with resumming all two-particle–one-hole (2p1h) and two-hole–one-particle

(2h1p) interactions up to Tamm-Dancoff (TDA) level. It has proven very difficult to go

beyond the TDA-level [7], even though it is known that the Random Phase Approximation

(RPA) should be better to describe long range correlations. The Faddeev Random Phase

Approximation (FRPA) [8] solves this problem by using the Faddeev technique to include

RPA-phonons in the self energy. This method has successfully been applied to nuclei [9]

and atoms [10]. In the first section of this work we will give a short overview of the working

equations for the FRPA method. In section III we will present the numerical results for a

set of diatomic molecules.

II. THEORY

A. Single-particle Green’s Function

The behavior of an electronic many-body system is governed by the Hamiltonian

Ĥ =
∑

α,β

Tα,βa
†
αaβ +

1

4

∑

α,β,γ,δ

Vαβ,γδa
†
αa
†
βaδaγ, (1)

where aα (a†α) is the annihilation (creation) operator for a state with quantum numbers α

and where Tα,β and Vαβ,γδ are the matrix elements of the one-body operator and the anti-

symmetrized two-body operator respectively. For the present study, the one-body operator

T represents the kinetic energy and the attraction to the nuclei and V is the Coulomb re-

pulsion between the electrons. The evolution of this N -body system can be described by
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the single-particle propagator [11]

Gα,β (t, t′) = − i
h̄

〈
ΨN

0

∣∣∣T
[
aα(t)a†β(t′)

]∣∣∣ΨN
0

〉
, (2)

where T [...] represents the time ordering operator and aα(t) and a†α(t) are the addition

and removal operators in the Heisenberg picture. For practical calculations, the Lehmann

representation of the Green’s function

Gα,β (E) =
∑

m>F

〈
ΨN

0 |aα|ΨN+1
m

〉 〈
ΨN+1
m

∣∣∣a†β
∣∣∣ΨN

0

〉

E − (EN+1
m − EN

0 ) + iη
+
∑

m<F

〈
ΨN

0

∣∣a†α
∣∣ΨN−1

m

〉 〈
ΨN−1
m |aβ|ΨN

0

〉

E − (EN
0 − EN−1

m )− iη
(3)

is more convenient. This transition to the energy domain transforms the Dyson-equation

from an integral equation into the matrix relation

Gα,β (E) = G
(0)
α,β (E) +

∑

γ,δ

G(0)
α,γ (E) Σ∗γ,δ (E)Gδ,β (E) . (4)

In this equation the fully consistent Green’s function G is given in terms of its non-interacting

form G(0) and the irreducible self energy Σ∗. Approximation schemes for the single-particle

Green’s function boil down to finding an appropriate perturbation expansion for the irre-

ducible self energy. In our approach, we want to couple the single-particle states with 2p1h

and 2h1p states. The irreducible self energy can be expanded as (Fig. II A)

Σ∗α,β (E) = ΣHF
α,β +

1

4

∑

λ,µ,ν

∑

ε,θ,σ

Uαν,λµRλµν,εθσ (E)Uεθ,βσ, (5)

where U is the modified antisymmetrized two-particle interaction.

Uαβ,γδ =
∑

λ,µ

(1αβ,λµ + ∆Uαβ,λµ)Vλµ,γδ. (6)

This ∆U is needed to guarantee full summation up to third order perturbation theory

and was found to be the same as the vertex correction used in the third order Algebraic

Diagrammatic Construction (ADC(3)) [5]. The object R(E) in equation (5) represents the

approximate propagator in 2p1h/2h1p space.

B. pp/ph RPA interaction

We want to include particle-particle (pp) and particle-hole (ph) interactions that are

correct up to the random phase approximation level. This approximation allows for a dy-

namic screening of the Coulomb interaction. The pp and ph interactions Γpp and Γph will
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Σ∗ = + R1
4

FIG. 1. The Feynman-diagram for the irreducible self energy Σ∗ in equation (5) within the Faddeev

Random Phase Approximation.

= − + 1
2

(a)

= +

(b)

FIG. 2. The diagrammatical representation of the pp-RPA equation (a) and the ph-RPA equation

(b) where the dashed line is the antisymmetric interaction and single lines represent non-interacting

and the double lines interacting propagators.

be used as building blocks for the 2p1h and 2h1p interaction. They can be derived from the

RPA-equations (Fig. 2) for the pp propagator [12]

Gpp
αβ,γδ (E) = G

pp(0)
αβ,γδ (E) +G

pp(0)
αβ,αβ (E) Γppαβ,γδ (E)G

pp(0)
γδ,γδ (E) (7)

=
∑

m

X pp
αβ,mX pp†

γδ,m

E − εpp+m + iη
−
∑

n

Yppγδ,nYpp†αβ,n

E − εpp−n − iη , (8)

and the ph polarization propagator

Πph
αβ,γδ (E) = Π

ph(0)
αβ,γδ (E) + Π

ph(0)
αβ,αβ (E) Γphαβ,γδ (E) Π

ph(0)
γδ,γδ (E) (9)

=
∑

m

X ph
αβ,mX ph†

γδ,m

E − εph+m + iη
−
∑

n

Yph†αβ,nYphγδ,n
E − εph−n − iη

. (10)

The actual calculation of the amplitudes and poles of the pp propagator and ph polarization

propagator can be done by solving the generalized eigenvalue problems.
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R(i) =

− + +R(j) R(k)

Γ(i)

( )

FIG. 3. Diagrammatic representation of equation (12).

C. Faddeev equations

The diagrammatic content of R cannot be cast into a Bethe-Salpeter equation without

double counting of some classes of diagrams. That is why we use the Faddeev technique [13]:

to split these objects into three parts. The analysis will be done for R2p1h so that first two

indices indicate states above the Fermi-level and the last indicates a state below the Fermi-

level. The derivation of R2h1p is found to be completely analogous, but with an interchange

of particle and hole states.

R2p1h
αβγ,λµν (E) = G

(0)>
αβγ,λµν (E)−G(0)>

αβγ,µλν (E) +
∑

i=1,2,3

R
(i)
αβγ,λµν (E) , (11)

where the G(0)> is the part of the non-interacting 2p1h propagator which propagates a

positive energy:

G
(0)>
αβγ,λµν (E) =

δαλδβµδγν
E − (εα + εβ − εγ) + iη

. (12)

Each propagator R(i) ends with lines j and k interacting through the adequate RPA in-

teraction vertex, while all possible prior interactions are included in R(j), R(k) and the

non-interacting propagators. The inclusion of prior interactions introduces a connection

between the different R(i). The Bethe-Salpeter equations (Fig. 3)

R
(i)
αβγ,λµν (E) =

∑

ζη,θ

(
G(0)>Γ(i)

)
αβγ,ζηθ

(E)
(
G

(0)>
ζηθ,λµν (E)−G(0)>

ζηθ,µλν (E)

+R
(j)
ζηθ,λµν (E) +R

(k)
ζηθ,λµν (E)

)
(13)

form a closed self-consistent system. The Lehmann representation for R(i)

R
(i)
αβγ,λµν =

∑

m

X (i)
αβγ,mXλµν,m
E − εFd + iη

+R
(i)free
αβγ,λµν (14)
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is used as the definition of the poles εFdm and residues X (i)
αβγ,m. The part corresponding to

uncorrelated poles is gathered in R(i)free. The spectroscopic amplitude can be recovered by

summing over the three Faddeev components

Xαβγ,m =
∑

i=1,2,3

X (i)
αβγ,m. (15)

By multiplying equation (14) with (E− εFdm ) and taking the limit for E → εFdm , the problem

is reduced to an eigenvalue problem for the spectroscopic amplitudes and the poles. The

uncorrelated poles don’t coincide with the Faddeev-poles, so the R(i)free is guaranteed to

disappear when taking the limit:

X (i)
αβγ,m =

∑

ζ<η,θ

(
G(0)>Γ(i)

)
αβγ,ηζθ

(
εFdm
) (
X (j)
ηζθ,m + X (k)

ηζθ,m

)
. (16)

When substituted in equation (16), this has the structure

X (i) =

(
U (i) 1

εFdm −D(i)
T (i)† +H(i)H(i)†

)(
X (j) + X (k)

)
. (17)

The vectors U (i), D(i), T (i) and H(i) are all diagonal in the freely propagating line and can

be written in terms of the pp- and ph-amplitudes and energies, see Ref. [8] for their explicit

form. By introducing a vector containing these three components:

X =




X (1)

X (2)

X (3)


 . (18)

This non-linear equation in the Faddeev-energies and amplitudes can be written in the form

X =

(
U

1

εFd −DT
† +HH†

)
MX, (19)

where the matrix M

M =




0 1 1

1 0 1

1 1 0


 (20)

takes care of the coupling between the different channels. After some matrix algebra, this

can be converted into a non-hermitian eigenvalue problem

εFdX =
(
1 −HH†M

)−1
U
[
T †M +DU−1

(
1 −HH†M

)]
X. (21)

The matrix dimensions of the eigenvalue problem are three times the size of the 2p1h basis.
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D. Handling spurious solutions

The use of Faddeev-equations naturally introduces spurious solutions. The solutions for

which the sum in equation (15) is zero, have no physical meaning and have to be discarded.

At the same time the vectors themselves will have to be antisymmetric under exchange of the

two particle or hole lines. By projecting the Hamiltonian matrix (21) onto the vector that

has the right symmetry properties and is non-vanishing when summed the matrix dimensions

will be reduced by a factor of 3. This vector space is spanned by the vector

1√
6




1 − 1ex

1 − 1ex

1 − 1ex


 , (22)

where (1ex)αβγ,λµν = δαµδβλδγν . The dimension of the matrix is now the same as in the

classic ADC(3) matrix problem. It can be verified that by using Tamm-Dancoff (TDA)

interactions and performing this projection, one regains the ADC(3) equations.

E. Single-particle propagator and ground-state properties

The calculation of the 2p1h and 2h1p corrections FRPA is now done by a symmetric

diagonalization of the matrix



εp/h Ũ2p1h Ũ2h1p

Ũ2p1h† ε2p1h 0

Ũ2h1p† 0 ε2h1p


 , (23)

where the ε matrices are diagonal in the single-particle, 2p1h and 2h1p energies respectively

and the tilde indicates that the coupling matrix elements are written in the basis that

diagonalizes the Faddeev matrices. These calculations result in a new single-particle density

matrix n and a corresponding ground-state energy

EN
0 =

1

2

(∑

α,β

〈α |T | β〉nαβ +
∑

α

∑

n<F

εnXα,nX †α,n

)
, (24)

where the last summation runs over the single-particle indices of the eigenvectors X and

eigenvalues ε beneath the Fermi-level, calculated in the diagonalization of matrix (23). It

is also possible to improve the self-consistency of the solution by partial resummation of

7



the Hartree-Fock diagram. Instead of the diagonal matrix of single-particle energies, the

Hartree-Fock self energy calculated with the new density matrix n has to be included in the

diagonalization.

III. RESULTS AND DISCUSSION

The accuracy of the FRPA method is evaluated by comparing with the ADC(3) method

and Coupled Cluster with Single, Double and perturbative Triple (CCSD(T)) [14] excita-

tions. This method should be of a comparable level of theory as both the ADC(3) and

FRPA. All calculations are performed in a correlation-consistent polarized Valence Double

Zeta (cc-pVDZ) [15] basis-set. Where possible, the comparison with experimental results [16]

is made.

We have calculated the ground-state energies and ionization energies in equilibrium for

a set of diatomic molecules with a singlet ground state. A number of different separation

distances was calculated around the equilibrium distance, after which a third order poly-

nomal was fitted to find the energy minimum. The results are presented in Table I and

II. The ground-state energies of the molecules with hydrogen show almost no difference be-

tween ADC(3) and FRPA. This is to be expected since the difference between the TDA

and the RPA interactions is most pronounced for extended systems. The differences for

the 14-electron molecules in Table II are of the order of 10 milli-Hartree, which is also the

accuracy one can expect from the ADC(3) method [6]. The ground-state energies are very

close to the CCSD(T) result. The equilibrium bond distances differ more. The equilib-

rium bond distances for both ADC(3) and FRPA seem to be closer to the experimental

value than the CCSD(T) results. In general the deviations from experiment are of the same

order for ADC(3) and FRPA. The same conclusion can be made for the ionization ener-

gies. One remarkable fact is the lack of an equilibrium state for N2 in both the ADC(3)

and FRPA calculations without self-consistency on the Hartree-Fock level. This example

stresses the importance of a consistent treatment of the static self energy. The inclusion of

self-consistency in the calculations tends to adjust the results in the right direction where

needed compared to the experiment.
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TABLE I. FRPA results for some diatomic molecules in a cc-pVDZ basis-set. E0 and I in Hartree,

r0 in
◦
A. FRPA and FTDA refer to the calculations after the first iteration, while FRPAc and

FTDAc refer to the calculations where consistency on the Hartree-Fock level was applied. The

calculated data are compared to the high-level ab-initio method CCSD(T) where available and to

experimental data from Ref. [16].

FTDA FTDAc FRPA FRPAc CCSD(T) Expt.

H2

E0 −1.170 −1.161 −1.170 −1.161 −1.164 -

r0 0.769 0.757 0.770 0.757 0.761 0.741

I 0.594 0.589 0.594 0.589 0.583 -

HF

E0 −100.175 −100.224 −100.173 −100.228 −100.228 -

r0 0.904 0.916 0.897 0.913 0.920 0.917

I 0.577 0.577 0.572 0.571 0.628 0.592

HCl

E0 −460.295 −460.256 −460.293 −460.258 −460.254 -

r0 1.314 1.297 1.314 1.293 1.290 1.275

I 0.457 0.450 0.457 0.450 0.471

BeH2

E0 −15.855 −15.831 −15.856 −15.832 −15.835 -

r0 2.747 2.674 2.766 2.674 2.678 2.680

I 0.437 0.433 0.435 0.432 0.446a -

a Only available at Coupled Cluster with Double excitations (CCD) level

IV. CONCLUSION

In this work we have successfully applied the FRPA technique to a set of diatomic

molecules. The computational cost of this method is not much higher than for the more

established ADC(3) method and in any case lower than for CCSD(T). The results are com-

parable in accuracy to the ones obtained with the ADC(3) method. The difference between

the two methods is larger for more extended systems due to the nature of the RPA phonons.
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TABLE II. FRPA results for some diatomic molecules in a cc-pVDZ basis-set. E0 and I in Hartree,

r0 in
◦
A. FRPA and FTDA refer to the calculations after the first iteration, while FRPAc and

FTDAc refer to the calculations where consistency on the Hartree-Fock level was applied. The

calculated data are compared to the high-level ab-initio method CCSD(T) where available and to

experimental data from Ref. [16].

FTDA FTDAc FRPA FRPAc CCSD(T) Expt.

N2

E0 - −109.258 - −109.272 −109.276 -

r0 - 1.104 - 1.106 1.119 1.098

I - 0.565 - 0.544 0.602a 0.573

BF

E0 −124.331 −124.365 −124.332 −124.368 −124.380 -

r0 1.285 1.284 1.305 1.285 1.295 1.267

I 0.417 0.395 0.431 0.402 0.406 -

CO

E0 −113.096 −113.037 −113.100 −113.048 −113.055 -

r0 1.140 1.130 1.133 1.123 1.145 1.128

I 0.529 0.503 0.523 0.494 0.550a 0.515

a Only available at CCD level

The possibility of complex eigenvalues in the RPA and FRPA eigenvalue equations is a prob-

lem that has to be kept in mind. The self-consistent treatment of the Hartree-Fock diagram

has a positive effect on the numerical results and should always be included.
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