Memory-efficient and fast run-time reconfiguration of regularly structured designs

Brahim Al Farisi, Karel Heyse, Karel Bruneel and Dirk Stroobandt
Ghent University, ELIS Department
Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium
{Brahim.AlFarisi, Karel.Heyse, Karel.Bruneel, Dirk.Stroobandt} @ UGent.be

Abstract—Previous work has shown that run-time reconfig-
uration of FPGAs benefits greatly from the use of Tunable
LUT (TLUT) circuits. These can be rapidly transformed into
a specialized LUT circuit and are also very memory efficient
when representing regularly structured designs, where the
same hardware module is instantiated many times. However,
the memory requirements and reconfiguration time of a run-
time reconfigurable application are also dependent on the
reconfiguration mechanism. In this paper, we will show that the
memory requirements of conventional ICAP reconfiguration
grow very fast with the number of modules, resulting in
excessive memory usage. We propose to use Shift-Register-LUT
(SRL) reconfiguration which is faster and results in a memory
usage that is independent of the number of modules.

Keywords-FPGA; Run-time Reconfiguration; Tunable LUT
circuit; ICAP; SRL;

I. INTRODUCTION

The inherent reconfigurability of SRAM-based FPGAs
enables the use of configurations optimized for the problem
at hand. Optimized configurations are smaller and faster than
their generic counterparts and therefore use the FPGA’s re-
sources more efficiently. However, at some point the problem
at hand will change and valuable system resources will be
needed to generate a new configuration and reconfigure the
system’s FPGA. These two run-time reconfiguration (RTR)
tasks are performed by a subsystem we call the configuration
manager (CM), usually a CPU. Using RTR, the designer
trades FPGA resources for CM resources.

RTR can be beneficially used for data folding applications
[1], where in each reconfiguration interval the design is
optimized for a specific set of input values, called param-
eters. We have called this technique dynamic data folding.
The TMAP tool flow, presented in [2], automatically maps
dynamic data folding applications to a self-reconfiguring
platform. It starts from a parameterizable HDL description
that describes the functionality of the reconfigurable module.
It automatically generates a LUT circuit with fixed routing
where the truth table bits of some of the look-up tables
(LUTs) are expressed as Boolean functions of the parame-
ters. This circuit is called a Tunable LUT (TLUT) circuit and
can be rapidly transformed into a specialized LUT circuit
by evaluating the Boolean functions for a specific set of
parameter values. The fixed LUT structure is implemented in
the FPGA fabric and the Boolean functions are compiled to
a specialization procedure that is tailored to the CM. Every

time the parameters change, this procedure generates new
truth tables for the LUTs, and reconfigures them.

In regularly structured designs the same hardware module
is instantiated many times. The function of every module
is the same, only the inputs that have to be processed
are different. These designs are a very important class of
FPGA applications, that rely heavily on massively parallel
computation. An example of a regularly structured design is
a FIR filter, where the instantiated modules are all multipliers
with different multiplication coefficients. Using a TLUT
circuit as a module provides a means for memory-efficient
and fast run-time reconfiguration of regularly structured
designs. The fixed LUT structure is instantiated many times
on the FPGA, while the Boolean functions only have to be
stored once in the CM and evaluated separately for every
parameter instance.

However, the memory requirements and reconfiguration
time of a run-time reconfigurable application not only de-
pend on the calculation of the configuration bits but also
on the reconfiguration mechanism. The convential run-time
reconfiguration mechanism uses the Internal Configuration
Access Port (ICAP) as an interface to the configuration
memory of the FPGA. Because of the randomness of the
placement process, the LUTs of the different modules are
scattered across the FPGA. Thus, in the configuration mem-
ory the regularity of the design is lost, which results in
excessive memory usage in the CM.

When only LUTs need to be reconfigured, it has been
previously proposed to use Shift-Register-LUTs (SRLs) as
a fast run-time reconfiguration mechanism [3] [4] [5] [6].
In an SRL, the truth table configuration bits of the LUT are
also arranged as a shift register of which the input and the
output are accessible from the configurable routing.

In this paper we make following novel contributions:

1) We point out that using a TLUT circuit as a module
of regularly structured designs provides a means for
memory efficient and fast run-time reconfiguration.

2) We show that SRL reconfiguration can be used to
retain the regularity of the design in the reconfigu-
ration interface, making the memory usage in the CM
independent of the number of modules.

3) We quantify the speedup of SRL reconfiguration over
ICAP for an adaptive filtering application.

4) SRL reconfiguration introduces extra nets in the design

that could influence the timing of the design. We
examine this influence when increasing the number
of modules of an adaptive filtering application.

The paper is organized as follows. A quick review of
the TMAP dynamic data folding toolflow is presented in
section II. In section III, the different mechanisms for recon-
figuring LUTs, namely SRLs and ICAP, are described. The
memory usage and reconfiguration time of ICAP and SRL
reconfiguration for regularly structured designs is described
in section I'V. Finally, in section V we will show that for an
adaptive filtering application the SRLs have better memory
efficiency and reconfiguration time than the ICAP, while the
impact of introducing the SRLs is limited.

II. DYNAMIC DATA FOLDING

Dynamic data folding (DDF) applications have two types
of inputs that are treated differently: fast changing inputs
(normal inputs) and slow changing inputs (parameter in-
puts). Instead of building generic circuitry where both types
of inputs are regular input signals, we build a dynamic data
folding system where only the normal inputs are inputs to
a reconfigurable module implemented in the FPGA fabric.
The parameters are inputs to a second subsystem, the
configuration manager (CM), in our case an instruction set
processor (ISP). Every time the parameters change, the CM
specializes the reconfigurable module for the new parameter
values. Once specialized, the module is ready to process the
fast changing input data. The reason to build a DDF system
is that the reconfigurable module can be implemented more
efficiently in the FPGA fabric than the generic circuitry.

With convential FPGA tools only handcrafted DDF sys-
tems are possible [7] [6]. The TMAP tool flow on the other
hand automatically maps dynamic data folding applications
to a self-reconfiguring system [2]. The input of the tool chain
is a behavioral description of the functionality in which a
distinction is made between normal inputs and the parameter
inputs. The output is a Tunable LUT (TLUT) circuit that
consists of a fixed LUT-structure and a Boolean circuit we
call the Partial Parameterizable Configuration (PPC). The
PPC describes the Boolean dependency of the truth table
bits on the parameters as a Boolean circuit that consists of
AND and inverter gates. This is also called an AND-Inverter
Graph (AIG) [8]. As an example we chose the selection bits
of a 4-input multiplexer as parameters and mapped it to 3-
LUTSs. The resulting fixed LUT structure and AIG of the
PPC are shown in Figure 1. We note that making a generic
4-input multiplexer with 3-LUTs takes 6 LUTs, while this
datafolded version only takes 2 LUTs.

The fixed LUT circuit can be placed and routed on the
FPGA fabric using conventional tools. The PPC is compiled
to an evaluation function that has to be carried out by the
CM. More specifically, the evaluation function consists of C-
code that can run on an instruction set processor (ISP). From
the locations of the LUTs on the FPGA and the evaluation

o
1@ LY

Figure 1: The fixed LUT structure and AIG of the PPC for
the 4-input multiplexer example.

function of the PPC the specialization procedure is synthe-
sized. The specialization procedure takes the parameters as
arguments, generates new truth tables for the reconfigurable
module and writes them in the configuration memory. The
specialization procedure thus consists of an evaluation of the
PPC and a reconfiguration of the truth tables of the fixed
LUT circuit.

III. LUT RECONFIGURATION
A. ICAP reconfiguration

The conventional run-time reconfiguration mechanism
uses the Internal Configuration Access Port (ICAP). This
is an interface to the entire configuration memory and thus
also to the truth table bits of the LUTs. Xilinx provides
a software interface for the ICAP. This consists of the
HWICAP peripheral that can be attached to a processor’s
bus and the accompanying driver program [9].

The FPGA configuration memory of recent Xilinx devices
is arranged as frames that are tiled on the device. A frame
is the smallest addressable segment of the configuration
memory. When using the ICAP, all operations must therefore
act upon complete configuration frames [10].

B. SRL reconfiguration

When only LUTs have to be reconfigured, as is the case
in a TLUT circuit, it is also possible to use shift-register-
LUT (SRL) reconfiguration. In an SRL the configuration
bits of the truth table are arranged as a shift register of
which the input and the output are accessible from the
configurable routing. Therefore the truth table configuration
bits can be changed by shifting in a new truth table. This
idea is not novel and has been proposed various times in
previous literature [3] [4] [5] [6].

In order to make the truth table bits of multiple TLUTSs
accessible from the CM, we group them and arrange each

processor bus I

HWSRL

11 |
1]
-

Reconfigurable module

s

il

Figure 2: SRL reconfiguration with 4 reconfiguration paths.

i

group as a larger shift register, called a reconfiguration path,
by connecting the shift out of a TLUT to the shift in of
the next TLUT. The shift in of the first TLUT of each
reconfiguration path is connected to the HWSRL, which
replaces the HWICAP and also interfaces to a processor’s
bus. The HWSRL is basically a FIFO that buffers the
reconfiguration data, with logic added to start and stop the
reconfiguration. On the side of the processor’s bus the FIFO
is 32 bit wide, while on the side of the reconfiguration
paths the width depends on the number of reconfiguration
paths. An example of reconfiguration with 4 reconfiguration
paths using the HWSRL is shown in Figure 2. We have
three degrees of freedom when constructing the SRL re-
configuration infrastructure. We can vary (i) the number of
reconfiguration paths, (ii) how TLUTSs are partitioned into
reconfiguration paths, and (iii) the order of the TLUTSs in
the reconfiguration paths. These degrees of freedom can be
used to to increase the reconfiguration speed and minimize
the impact of SRL reconfiguration on the maximum clock
frequency of the design. One of the novelties of this paper is
that one can use the 2 last degrees of freedom to minimize
the memory usage when reconfiguring regularly structured
designs. This is explained further in section IV-B.

IV. MEMORY EFFICIENCY AND RECONFIGURATION TIME

As described in section II, the TMAP toolflow auto-
matically maps a dynamic data folding application onto a
TLUT circuit. TLUT circuits are very memory efficient,
since the specialized LUT circuits are not stored separately
but as Boolean functions of a parameter. We also note
that the routing and LUT truth table configuration bits of
recent Xilinx Virtex FPGAs reside in different configuration
frames [10]. Since the routing of a TLUT circuit is fixed,

Specialization | | Specialized FPGA
procedure Configuration

Py

Figure 3: The specialization procedure in the case of
regularly structured designs.

function specializationlCAP (parameterList)
for frameAddress in frameAddressArray:
Frame = getConstantData(frameAddress);
for each Tlut in Frame:
(framelndex, tlutPPCFunction, parameterIndex) =
getLUTInfo(Tlut);
Frame [framelndex] =
evaluateTLUT(tlutPPCFunction, parameterIndex);
configureFPGA (Frame, frameAddress);

Figure 4: Pseudo code for ICAP specialization.

no information has to be stored in the CM concerning the
routing.

In regularly structured designs the same hardware module
is instantiated many times. The function of every module
is the same, only the inputs that have to be processed are
different. Using a TLUT circuit as a module of regularly
structured designs provides a means for memory efficient
and fast run-time reconfiguration of such designs. Because
the function of all the modules is the same, the PPC only
has to be stored once in the specialization procedure.

The specialization procedure in the case of regularly
structured designs is shown in Figure 3. During run-time
this procedure takes in a list py; containing the parameter
values of the different modules and generates a specialized
FPGA configuration. Because the PPC only has to be stored
once, the memory requirements for the evaluation of the
PPC is constant and independent of the number of modules.
However, the memory requirements of the specialization
procedure are also dependent on the information needed
for reconfiguration. In this section we will compare the
memory usage of the specialization procedure when using
ICAP and SRL reconfiguration. We will show that for
ICAP reconfiguration the memory usage is dependent on
the number of modules, which results in excessive memory
usage when the number of modules is increased. For SRL
reconfiguration we will show that we can construct the
reconfiguration paths in such a way that no information
needs to be stored for reconfiguration. In this paper we are
particularly interested in how the memory usage, expressed
in bits, of the specialization procedure scales with the
number of modules. In every section we will also briefly
discuss the reconfiguration time. The evaluation time of the
PPC is outside the scope of this paper.

A. ICAP reconfiguration

As described in section III-A, the ICAP reconfiguration
interface processes the reconfiguration data per frame. The
pseudo code for the specialization procedure is in this case
given in Figure 4. We note that the size of the C code that
implements this relatively simple pseudo code will be small
and independent of the number of modules. To estimate the

memory usage when increasing the number of modules, we
thus neglect the size of the actual specialization procedure
and concentrate only on the amount of information we need
in the specialization procedure.

The placement process distributes the TLUTSs of different
modules irregularly across various different configuration
frames. This is illustrated in Figure 5(a) for a regularly
structured design with 2 modules and 3 TLUTs per module
that are scattered across 2 frames. This scattering has several
consequences. First of all, information has to be stored
containing the locations of the TLUTs in the configuration
memory. This location information consists of a frame
address and an index in the frame. We denote the number
of modules M, the number of TLUTs per module L,,,
the number of frames F, the number of LUTs per frame
Lr and the number of bits to store the frame address b4.
The number of bits needed to store this information is then
F-ba+ M- Ly[log2(LF)].

Second, the TLUTs of one module are also distributed
irregularly across several different frames. To accomodate
evaluation on a frame basis, as is shown in Figure 4, the PPC
of the module must be adjusted to accomodate evaluation per
TLUT. Per TLUT of the module we thus create a separate
PPC. Per TLUT one also has to store the function to be
called to evaluate the PPC of the TLUT and a pointer to the
parameter value of the respective module in the parameter
list pas. The main consequence is that Boolean gates of the
PPC of the module, that are reused across TLUTs will have
to be duplicated. This increases the memory requirements
for the compiled C-code that evaluates the PPC. Since the
function of all the modules is the same this C-code also
only has to be stored once. For example, all the TLUTSs
with name 'TLUT1’ in Figure 5 will use the same PPC.
We denote PPCyr the sum of the size of the compiled
C-code of the PPCs of the different TLUTs. The number of
bits needed to store this information is then PPCryr+ M -
L - ([log2(M)] + [log2(La)1).-

shift in
I |
Frame 1 Frame 2 | TLUT 1| | TLUT 1|
TLUT 1 Mod.1|[TLUT 3 Mod.1 I |
TLUT 3 Mod.2
TLUT 2 Mod.1 | TLUT 2| | TLUT 2|
TLUT 2 Mod.2 I I
TLUT 1 Mod.2 | TLUT 3| | TLUT 3|
L
Module 1 Module 2
(a) (b)
Figure 5: The LUTS of a regularly structured design

irregularly scattered in the ICAP configuration memory (a)
and regularly placed in an SRL reconfiguration path (b).

Finally, when reconfiguring the TLUTS, the constant data
in the frames is also rewritten. One option is to keep this
constant data in the memory of the CM. This is very memory
consuming, but has the fastest reconfiguration time. Since
the configuration memory can also be read we can also apply
a read-modify-write strategy, where reconfiguration time is
sacrificed for more memory efficiency.

MWZPPCLUT+F-(bA+bF)+M'LM-bL (D)
Mpryw = PPCryr +F -ba+M - Ly - b, (2)

where by is given by [(log2(Lr))] + [(log2(Lar))] +
[(log2(M))] and bp is the number of bits per frame. In
both equations (1) and (2) we see that the memory usage
grows with the number of modules.

The reconfiguration time is given for both versions of
ICAP reconfiguration, in equations (3) and (4).

F-bp-Ticap
= - 3
D)

Truw =2 - Tw 4

As mentioned above F' and by are the number of frames
and the number of bits in a frame. D is the width in bits
and T7cap is the clock period of the ICAP interface. The
reconfiguration time of the read-modify-write version of
ICAP reconfiguration is simply double that of the write-only
version. The data has to be processed once when read and
once when written, while the bandwidth of the ICAP when
reading is the same as when writing [9].

Tw

B. SRL reconfiguration

The scattering of the TLUTs (and the growth of memory
usage with the number of modules) can be avoided using
SRLs, as shown in Figure 5 (b). The degrees of freedom
when constructing reconfiguration paths, as described in
section III-B, can be used to retain the regularity of the
design in the reconfiguration paths. We therefore choose the
reconfiguration paths so that the TLUTs of one module are
always coherent and the order of the different TLUTS in a
module is the same. Of course there are still different ways
to connect the different TLUTs. In this paper the ordering
of the modules and the TLUTS in the modules is chosen
ad-hoc. Further optimizations are possible.

By choosing the reconfiguration paths as mentioned
above, one can take full advantage of the regularity of the de-
sign to minimize the memory usage of the specialization pro-
cedure. The pseudo code that represents the specialization
procedure in this case is shown in Figure 6. It is important
to understand that the order in which TLUTs in a module
are specialized, is the same for all modules and corresponds
with the order chosen in the SRL reconfiguration paths.
That is why we can use the for loop in the pseudo code
in Figure 6. As shown in equation (5), the only data that is
stored is the evaluation function of the PPC. The main point

function SpecializationSRL (parameterList)
for parameter in parameterList :
evaluatedModule = evaluateModule(parameter) ;
configureFPGA (evaluatedModule);

Figure 6: Pseudo code for the SRL specialization procedure.

this paper makes is that combining TLUT circuits and SRL
reconfiguration results in a very memory efficient method
for run-time reconfiguration of regularly structured designs.

Msrr, = PPChirodule (5)

Using SRLs also has advantages for the reconfiguration time.
Only the LUTs that have to be reconfigured are put in the
reconfiguration paths. Increasing the number of reconfigu-
ration paths reduces the number of bits per reconfiguration
path and increases the reconfiguration speed. In the SRL
case, the reconfiguration speed can thus be tuned to the
application requirements.

M- Ly 2K Ty
Tsprr = MR haft (6)

The formula for obtaining the reconfiguration time in the
case of SRL reconfiguration is given above in equation (6).
The time needed to reconfigure the design is dependent upon
the number of modules M, the number of TLUTSs per module
Lz, the number of inputs K of one SRL, the period Ty s
of the clock frequency at which the bits are shifted in and
the number of reconfiguration paths R.

V. EVALUATION AND EXPERIMENTS

We illustrate the ideas above by implementing a fully
pipelined FIR filter, of which the coefficients are chosen
as the parameters. The module in this case is an 8 by 8
bit multiplier of which one of the operands is a parameter.
The parameter list py7, depicted in Figure 3, thus contains
the specific coefficient values we want the FIR filter to
be specialized for during run-time. It has been shown that
such a run-time reconfigurable FIR filter is 40 % more area
efficient than a generic FIR filter of which the coefficients
are inputs to the FPGA [2]. We will compare the memory
usage of the specialization procedure for ICAP and SRL
reconfiguration while increasing the number of modules
from 64 to 1024. Also the reconfiguration time and impact
of SRL reconfiguration on the maximum clock frequency of
the FIR filter are discussed.

The general characteristics of the FIR filter relevant for
the equations from the previous section are L;; = 24,
PPCryr = 296kb and PPC\hoquie = 136kb. To obtain
the values of PPCLyr en PPChjoquie We compiled the
evaluation C-functions on a Microblaze v7.10.c [11]. The
FIR characteristics that are dependent upon the number

Table I: Number of frames (F) and shift clock period (T f+)
for the different FIR filters.

M 64 128 256 512 1024
F 182 339 601 1095 1422
Tsnige (ns) 5,170 7,23 8203 8,050 8,529
max clk (MHz) 198 190 186 156 92

of modules are given given in Table I. We conduct this
experiment on a Virtex4(xc4vlx100) [12] using ISE 10.1
software with default settings. The characteristics of the
Virtex 4 ICAP relevant for the equations from the previous
section are given in Table II.

Table II: Characteristics of a Virtex4 FPGA.

K Ticap D bp Lp ba
4 10 ns 32 bit 1312 bit 80 32 bit

A. Memory efficiency

In Figure 7 (a) the memory usage of ICAP reconfigura-
tion, both the write-only and the read-modify-write version,
and SRL reconfiguration is shown relative to the total
memory of all BRAMs of the FPGA, which is 4320 Kb
[12]. We see that the memory requirements of the write-
only ICAP reconfiguration increase dramatically with the
number of modules, consuming more than 60 % of the
FPGAs BRAMs for the case with 1024 modules. Indeed,
storing the constant data of the frames is very memory
consuming. Even the more memory efficient read-modify-
write ICAP version needs 20 % of the FPGA BRAMs.
With SRL reconfiguration, on the other hand, even for a FIR
filter with 1024 modules only 3% of the FPGAs memory is
needed. As pointed out earlier, the memory usage for SRL
reconfiguration is independent of the number of modules.

Memory usage

Reconfiguration time

@

=]

S,
w
@

33
=]

N
w
=]

'.": speedup over TRMW

IS

o

N
N
@

w
S
[
/

..

N, "'.
\
" speedup over TW

N
=]
=)

=)
A}

Memory usage (% BRAM)
=
Speedup of SRL over ICAP

%4 128 256 512 1024 %4 128 256 512 1024
Number of modules Number of modules

(a) (b)

Figure 7: Influence of the number of modules on the
memory usage and reconfiguration time.

Maximum clock frequency

W
a

w
S

N
o

n
=]

i
13

=
o

&l

o

Diff. max. clk. freq. rel. to ICAP (%)

ot
g

128 256

5‘12 1024
Number of modules

Figure 8: Influence of the SRL reconfiguration paths on the
maximum clock frequency.

B. Reconfiguration time

For the experiments conducted in this paper we assume a
fixed number of 32 reconfiguration paths. Exploring different
numbers of reconfiguration paths is outside the scope of this
paper, and we thus choose the width of the SRL recon-
figuration interface the same as the ICAP interface of the
Virtex4. Of course, increasing the number of reconfiguration
paths would further improve the results obtained for the
reconfiguration time of SRL reconfiguration.

In Figure 7 (b) we can see that, in this case, at least a 6X
and at most a 37X speedup over ICAP reconfiguration can
be obtained when using SRL reconfiguration. The decrease
in speedup as the number of modules increases has two
reasons. The number of frames increases less than linearly
with the number of modules, as opposed to the total number
of TLUTs M - Lj;. A second reason is the occurence
of routing congestion, that reduces the clock frequency at
which the bits are shifted in. These two effects can be clearly
seen in Table I. We point out that for ICAP reconfiguration
a trade-off has to be made between speed and memory-
efficiency. Using SRLs results in a reconfiguration process
that is both memory-efficient and fast.

C. Impact on maximum clock frequency

The maximum clock frequency of the designs without
SRLs can be found in the last row of Table I. The decrease
in maximum clock frequency as the number of modules
increases is due to routing congestion. The FIR filter with
64 modules occupies 4 % of the slices of the FPGA,
while the one with 1024 modules takes 87 %. In Figure
8 we can see the difference between the maximum clock
frequency of the design with SRL reconfiguration paths
and the design without, which is reconfigured using ICAP
reconfiguration. We can clearly see that the negative impact
of SRL reconfiguration on the maximum clock frequency
is very limited. The decrease is never bigger than 1 %. In
fact, as the number of modules increases, we would expect
that due to increased routing congestion the maximum clock

frequency to be worse when the SRL reconfiguration paths
are present. The maximum clock frequency of the FIR
filter however improves compared to ICAP reconfiguration.
The presence of the SRL reconfiguration paths of course
influences the packing and placement and routing process
and in the case of the FIR filter this seems to be a very
positive influence.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a memory-efficient and fast
run-time reconfiguration method for regularly structured
designs. This method combines the memory efficiency of
TLUT circuits and SRL reconfiguration, resulting in a sys-
tem where the memory usage is independent of the number
of modules. For an adaptive filtering applicaton we also
showed that SRL reconfiguration achieves at least a 6X
speedup over ICAP reconfiguration. We also examined the
impact of the SRL reconfiguration paths on the maximum
clock frequency of this design for a Virtex4 FPGA. We
showed that the decrease in maximum frequency never
exceeds 1 % even in the case when the FPGA is almost
fully occupied.

REFERENCES

[1] P. Foulk, “Data-folding in SRAM configurable FPGAs,” in
Proceedings of the IEEE Workshop on FPGAs for Custom
Computing Machines, 5-7 1993, pp. 163 —171.

[2] K. Bruneel, F. Abouelella, and D. Stroobandt, “Automatically
mapping applications to a self-reconfiguring platform,” in
Proceedings of DATE, 2009, pp. 964-969.

[3] 1. O. Kennedy, “Implementation of low frequency finite state
machines using the virtex srl16 primitive,” in FPL, 2007, pp.
675-678.

[4] T. Sasao and H. Nakahara, “Implementations of reconfig-
urable logic arrays on FPGAs,” in FPT, 2007, pp. 217-223.

[5] J. Divyasree, H. Rajashekar, and K. Varghese, “Dynamically
reconfigurable regular expression matching architecture,” in
ASAP °08, 2008, pp. 120-125.

[6] M. J. Wirthlin, “Constant coefficient multiplication using
look-up tables,” Journal of VLSI Signal Processing, vol. 36,
no. 1, pp. 7-15, 2004.

[7] J.-L. Brelet and B. New, XAPP203: Designing Flexible, Fast
CAMs with Virtex Family FPGAs, Xilinx, 1999.

[8] ABC: A System for Sequential Synthesis and Verification,
Berkeley Logic Synthesis and Verification Group. [Online].
Available: http://www.eecs.berkeley.edu/ alanmi/abc/

[9] Xilinx, DS586: LogiCORE IP XPS HWICAP, Xilinx, 2010.
[10]

, UGO71: Virtex-4 FPGA Configuration User Guide,
Xilinx, 2009.

[11]

, UGO081: Microblaze processor reference guide(v9.2),
Xilinx, 2008.

[12] ——, UGO70: Virtex-4 FPGA User Guide, Xilinx, 2008.

