
 

 

biblio.ugent.be 

 

The UGent Institutional Repository is the electronic archiving and dissemination platform for all 
UGent research publications. Ghent University has implemented a mandate stipulating that all 
academic publications of UGent researchers should be deposited and archived in this repository. 
Except for items where current copyright restrictions apply, these papers are available in Open 
Access. 

 

This item is the archived peer‐reviewed author‐version of: 

Verification of the accuracy of CFD simulations in small‐scale tunnel and atrium fire 
configurations 

Nele Tilley, Pieter Rauwoens, Bart Merci 

In: Fire Safety Journal 46, 186–193, 2011. 

 

To refer to or to cite this work, please use the citation to the published version: 

Tilley N, Rauwoens P, Merci B  (2011). Verification of  the accuracy of CFD  simulations  in 
small‐scale  tunnel  and  atrium  fire  configurations.  Fire  Safety  Journal  46    186‐193.  doi: 
10.1016/j.firesaf.2011.01.007 



 1

Verification of the Accuracy of CFD Simulations in Small-Scale Tunnel and 

Atrium Fire Configurations. 

 

Nele Tilley, Pieter Rauwoens and Bart Merci 

Ghent University, Department Of Flow, Heat and Combustion Mechanics,  

Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium 

Corr. author: Nele.Tilley@UGent.be, Tel: +32 9 264 32 91, Fax: +32 9 264 35 75 

Abstract 

In preparation for the use of Computational Fluid Dynamics (CFD) simulation results as 

‘numerical experiments’ in fire research, the agreement with experimental data for two 

different small-scale set-ups is discussed. The first configuration concerns the position 

of smoke-free height in case of fire with vertical ventilation in an atrium. The second 

set-up deals with the critical velocity for smoke backlayering in case of fire in a 

horizontally ventilated tunnel. An N-percent rule is introduced for the determination of 

the presence of smoke in the simulation results, based on the local temperature rise. The 

CFD package FDS is used for the numerical simulations. The paper does not scrutinize 

the detailed accuracy of the results, as this is hardly possible with any state-of-the-art 

experimental data at hand. Rather, the global accuracy is discussed with current 

numerical implementation and models in FDS, considering continuous evolution over 

different version releases with time. The agreement between the experiments and 

numerical simulations is very promising. Even when quantitative agreement with 

experimental data is not perfect, the trends are very well reproduced in the simulations. 

While much additional work is required, both in CFD as in ‘real’ experiments, the 
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results are encouraging for the potential of state-of-the-art CFD to be used as numerical 

experiments. 

 

Keywords: smoke control; CFD; numerical experiments; atria; tunnels 

 

1 Introduction  

Fire safety standards for buildings have long time been based on prescriptive rules. 

However, there is a world wide evolution towards performance-based design, 

particularly for large, complex buildings. The question can indeed be raised whether 

current standards still prevail for complex buildings and modern architecture. 

Supportive insight in the (lack of) fire safety in a design fire scenario can be provided 

by the application of CFD (Computational Fluid Dynamics), which can be performed 

for a specific configuration. However, one step beyond is to consider CFD simulations 

as ‘numerical experiments’. Numerical simulations are relatively cheap (at least in 

comparison to real large-scale experiments). However, a substantial knowledge of the 

user is required to perform high-quality CFD simulations and careful application is 

mandatory. The main advantage of numerical simulations is that a significant amount of 

different parameters can be varied in order to study their effect. As such, this can lead to 

further development of fire safety standards. It is desirable to exploit this approach in 

fire safety research. In particular, one research objective is the improvement of 

calculation methods to determine the required smoke extraction rate to meet fire safety 

objectives (such as smoke free heights or smoke free zones) in different types of 

buildings; including atria and large closed car parks. 
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Obviously, a ‘conditio sine qua non’ is then that the CFD simulation results are reliable, 

i.e. of sufficient accuracy in ‘blind’ circumstances. Therefore, as a first step to show that 

CFD has the potential to be used as ‘numerical experiments’, two experimentally 

studied small-scale test cases are extensively investigated in this article. The first case 

concerns fires in a small-scale atrium [1]. A fire in a room, adjacent to the atrium, 

causes a spill plume to rise in the atrium. 

The second test case is a small-scale tunnel experiment [2] with forced mechanical 

ventilation imposed to avoid the smoke backlayering from the fire. Note that the flow is 

essentially horizontal, in contrast to the atrium configuration. 

For the CFD results, the simulation program Fire Dynamics Simulator (FDS, version 5) 

[3,4], developed by NIST, was used. However, in principle, other CFD packages could 

have been used as well. Indeed, it would be very valuable to repeat the study with other 

CFD packages, investigating their model capability, but this is considered beyond the 

scope of the present paper. The influence on the results of computational mesh and the 

thermal boundary conditions will be considered. Most importantly, though, it will be 

illustrated that agreement of simulation results and experimental data is satisfactory for 

a wide range of tests, which is promising for the use of CFD as ‘numerical 

experiments’. 

 

2 Atrium 

In this section, the atrium simulations are discussed. In total, 16 simulations have been 

performed. Four different heat release rates were studied. For each value of heat release 

rate, four different extraction rates are imposed. First, the set-up of the original 

experiments is explained. Afterwards, the numerical set-up of the simulations is 
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discussed. The search for a reliable method to determine the smoke interface height, 

based on the temperature profile in the atrium, is discussed in a separate section. 

Finally, the numerical simulation results are presented. 

 

2.1 Experimental set-up 

In a recently published paper [1], Poreh et al. carried out a series of experiments in a 

small-scale atrium configuration (Figure 1). Four different total fire heat release rates 

(Qconv) were created in the room adjacent to the atrium. For each heat release rate, 

different mass flow rates of smoke (M) were mechanically extracted at the ceiling of the 

atrium, corresponding to a certain smoke free height above the spill edge (zs) in the 

atrium. The depth (Db) and mass flow rate (Mb) of the smoke layer, emerging from the 

adjacent room, were measured. 

The room adjacent to the atrium has size 1.25 m x 0.9 m x 0.6 m, and the atrium itself is 

2.5 m x 0.9 m x 3.6 m large. 

From these experiments, Equation (1) was deduced in [1] to calculate, for a certain heat 

release rate, the required smoke extraction mass flow rate, in order to maintain a 

specific smoke free height above the spill edge in the atrium: 

 ( )01/3

( )

conv

M z C z z
Q

= +     (1) 

 with 2/3
00.3 mC C Wρ=    (2) 

 0 1/3
b

b
conv

Mz D
CQ

= +     (3) 

 and Cm = 0.21 for adhered spill plumes. 
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More recent studies of air entrainment in spill plumes in atria include [5,6]. Here, the 

intention is not to provide new correlations or insights. The only aim is to illustrate the 

quality of CFD results, in agreement with the experimental data reported in [1]. 

 

2.2 Numerical set-up 

As mentioned in the introduction, FDS, version 5 [3,4] is used for the numerical 

simulations. The standard Smagorinsky LES turbulence model [7] is incorporated, with 

Smagorinsky constant Cs = 0.2. The Prandtl number has the constant default value 0.7. 

Cubic cells of size 2.5 cm are used, resulting in a grid of 561 600 cells. A grid 

refinement study has been performed in the adjacent room to the atrium. In this 

refinement case, cells of size 1.25 cm edge are used in the adjacent room, whereas the 

cells in the atrium are still of size 2.5 cm edge. A characteristic length scale of the fire 

can be calculated as  

2/5

p

QD
T c gρ

∗

∞ ∞

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
.     (4) 

In the refinement case under consideration, the total fire heat release rate is 8.272 kW, 

resulting in a dimensionless diameter D* = 0.14 m. As stated in [8], a criterion to 

guarantee reliable LES-results might be that at least ten cells must fit within the 

dimensionless diameter. This is satisfied in the refinement case. However, results of this 

simulation show no difference with the results from the coarser grid simulation. It can 

therefore be argued that the grid of cell size 2.5 cm is sufficiently fine. Indeed, the 

detailed configuration of the smoke plume in the adjacent room is of secondary 

importance with respect to the main smoke field in the large atrium. 
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In the simulations, radiation is turned off, so that the fire heat release rate corresponds to 

Qconv. The total heat release rate of the fire can be reconstructed as ( )1
conv

r

QQ χ= − . 

This way, uncertainties due to radiation modeling are avoided in the simulations.  

All walls are modeled as adiabatic, in agreement with turning off the radiative heat 

transfer. 

In [1], only values of the convective heat release rate are reported, measured in the 

emerging smoke layer underneath the spill edge. Therefore the convective heat release 

rate is imposed as fire source in the simulations, with adiabatic walls. The highest 

temperatures obviously occur in the adjacent room to the atrium, so that by far most of 

the radiative loss would be found there if radiation modeling were included in the 

simulations. In the atrium, the plume adheres to the wall. Plume temperatures are 

relatively low, so radiative losses are negligible within the atrium itself. However, when 

modeling the walls as adiabatic, no heat is lost by conduction through the walls. The 

advantage of using non-adiabatic wall conditions would be that convective and 

conductive heat transfer could be calculated. Yet, the results discussed below, are hardly 

affected by these heat losses (not shown). 

It is also important to appreciate that LES are unsteady in nature. Therefore, it is 

important to discuss the simulation results in terms of ‘averages’.The simulations are 

executed until a quasi-steady-state situation is reached. The data between two time 

values (t1 and t2) in the quasi-steady state are then time averaged. These averages are 

presented below as the ‘simulation results’. The times used for averaging the results 

depend on the fire heat release rate. Time varies with velocity and length scale as t ~ L / 

v. With Froude scaling, the scaling for velocity is v ~ Q / L2, resulting in scaling of time 

with heat release rate: 
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t ~ L3 / Q.    (5) 

With Eq. (5), the averaging period t1 – t2 is constructed, the values of which are reported 

in Table 1. These average values are larger than turbulent time scales: from unsteady 

k ε−  calculations of the same atrium set-up, the turbulent time scale could be 

calculated as /tt k ε=  and the maximum value observed was 13 s (not shown). 

 

2.3 Determination of the smoke layer interface height 

In this CFD study, small-scale atrium experiments are studied, in order to compare the 

numerical results to the experiments. However, a criterion is first developed to define 

the height of the smoke layer in the atrium from the simulation results. 

The left side of figure 2 depicts a typical temperature profile on a vertical line in the 

atrium. This profile shows a first (small) increase in temperature at z = 0.6 m, i.e. the 

height of the right-hand side opening (Figure 1). However, this first temperature rise 

must not be mistaken for the smoke layer interface, as it is not (Figure 2, right). 

Therefore, the criterion developed to determine the smoke layer interface should take 

this into account. 

 

Four different methods for the determination of the smoke layer interface are discussed. 

A first method to determine the interface height of the smoke layer is the equation 

developed by Thomas et al. [9]: 

 

0

0
int

, 0

,

H

av s

av s

T T dz
T

H z T T
T

−

− =
−

∫
.    (6) 
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The integration in this formula is performed using the temperatures from the numerical 

simulations. However, there is a major disadvantage: the equation implies an iterative 

procedure. Indeed, the smoke layer interface height is on the left hand side of the 

equation (zint), but in order to calculate this, the average temperature of the smoke layer 

is needed (Tav,s), which can only be calculated if the interface height is already known. 

This makes the ‘Thomas method’ a time consuming procedure. 

 

A second method, described in the FDS user guide [4], relies on a calculation method 

by He et al. [10]. First, the parameters I1 and I2 are calculated on a vertical line. The 

temperature Tl is chosen as the lowest temperature on this vertical line. From this, the 

value of zint can be calculated: 

1
0

H

I Tdz= ∫  and 2
0

1H

I dz
T

= ∫    (7) 

( )2
1 2

int 2
1 2 2

l

l l

T I I H
z

I I T HT
−

=
+ −

   (8) 

The third option relies on the second derivative of the temperature profile. Figure 3 

reveals that this might indeed be used to indicate the smoke layer interface height. 

Using a central scheme to calculate this second derivative at height z = zk (where k is the 

index of the computational cell in the vertical direction, zk = k Δz), divided by the local 

temperature difference: 

 
( ) ( )

2
1 1

22
0

2k k k

k

T T TT
z T z T TΔ Δ

− +− +∂
≈

∂ −
,   (9) 

a local maximum of the second derivative can indeed indicate the smoke layer interface 

(Figure 3, left). However, this is a local maximum. Indeed, at the first temperature rise 

in the atrium, around z = 0.6 m (see Figure 1), a much higher value of second derivative 
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is found. Therefore, it is up to the user to define whether the local maximum 

corresponds to the smoke layer interface height, and it requires a visual detection. Thus, 

the method of the second derivative is not unambiguous and cannot easily be made 

automatic. 

 

As final method the determination of the smoke layer interface height by the N-percent 

rule [11] is considered. An interface temperature is then defined by the following 

formula: 

( )int 0 max 0 100T T T T N= + −    (10) 

In the example of Figure 3, the variation of zint with N is moderate (between 1.3 m and 

1.5 m) in the range 10 < N < 65. The value N = 30 is chosen (equivalent to zint = 1.4 m 

in Fig. 3, right). The difference in interface height between elsewhere reported values 

for N (N = 10, 15, 20 [12]) with N = 30 is very small in the study under consideration. 

The main reason for choosing the value N = 30 is to avoid that the temperature rise 

around z = 0.6 m be mistaken for the smoke layer interface height in any of the cases. 

This method is an easily applicable and unambiguous way to determine the smoke layer 

interface height in the atrium. An important advantage of this method is that it is not 

time-consuming and can easily be used in the post-processing of simulation data. 

 

Figure 4 displays the smoke layer interface height as obtained with each of the four 

methods. The results are compared to the height, obtained from Equation 1 with the 

imposed smoke extraction mass flow rate and fire heat release rate. The first three 

methods result in an underestimation of the smoke-free height in the atrium compared to 

the experimental value. The N-percent method, with N = 30, provides a good 
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approximation of the calculated interface height. This trend was also observed with 

other fire heat release rate values and smoke extraction flow rates (not shown). 

Therefore, the N-percentage method is used from now on to determine the smoke layer 

interface height in the simulations. 

 

2.4 Numerical simulation results 

Table 2 provides a quantitative overview of the CFD simulation results. In every 

simulation, the convective heat release rate (Qconv) is imposed in the adjacent room, as 

well as the outlet velocity (vout) at the ceiling of the atrium. The other important values 

of the simulations are then calculated: 

 Db , the thickness of the smoke layer emerging from the adjacent room, is 

calculated with the N-percent method in the plane x = 1.25 m, i.e. the vertical 

plane of the opening between the room and the atrium (Figure 1). 

 Mb, the mass flow rate of the emerging smoke layer, is calculated in the same 

plane as Db. A summation is made over all cells in the plane, only taking into 

account outflow, , 0x nv > , not the inflow of air into the adjacent room: 

( ),max ; 0b n x n n
n

M v Aρ= ⋅ ⋅∑   (11) 

 M(z), the extraction mass flow rate, at the ceiling of the atrium, is calculated in a 

similar way as Mb, considering now only the cells in the outlet opening: 

( ) ( ),n out n n
n

M z v Aρ= ⋅ ⋅∑    (12) 

 z, the smoke free height above the spill edge in the atrium, is calculated with the 

N-percent method in the vertical symmetry plane in the atrium (y = 0.45 m). 

 z0, the virtual origin, is calculated from the above values with Eq. (3). 
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Figure 5 depicts these results in a graph. The numerical results (black dots) are in very 

good agreement with the experimental data (open symbols) and with Eq. 1 (black line). 

This is very promising for the use of CFD simulations as “numerical experiments”.  

As using computational codes to solve fire-related problems is still a quite recent 

research topic, all available CFD-codes are continuously under development. Each new 

release of a code therefore contains even better algorithms, new developments and extra 

included options. Care must be taken that simulation results are not very sensitive to the 

version of the CFD package used. In the process of the research, FDS was upgraded to 

version 5. Figure 6 shows that differences with results of FDS, version 4, are very small, 

so that the argument that CFD simulations can be used as “numerical experiments”, 

does not depend on the version used here. 

 

3. Tunnel 

3.1 Introduction 

In tunnel configurations with mechanically forced longitudinal ventilation, a key 

parameter is the critical velocity. This is the minimum velocity required to prevent 

backlayering in the tunnel, i.e. there is no smoke flow in the opposite direction of the 

ventilation. The possible hazard of fire spread due to ventilation is not considered here 

[13]. 

A paper by Wu and Bakar [2] describes a set of experiments on five small-scale tunnels. 

Only ‘tunnel D’, which has a rectangular cross-section, is discussed here. Having the 

lowest height (0.25 m) to width (1 m) aspect ratio in the series of [2], this tunnel is most 

similar to a closed car park, a longer term research objective. The Wu and Bakar tunnel 
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experiments are an extensive study of the variation of critical velocity with heat release 

rate in tunnels. The low aspect ratio of tunnel D is especially interesting to validate the 

numerical simulations, for a future study of car parks. The formula for critical velocity 

that was derived by Wu and Bakar from their experiments is still widely used for tunnel 

ventilation design. 

Other numerical studies have already been reported with validation of the simulations 

by comparing with the Wu and Bakar experiments (e.g. [14]). Below, the application of 

the N-percent rule is specifically discussed, as well as the possibility of using adiabatic 

wall conditions in combination with absence of radiation modeling. 

 

3.2 Configuration and set-up 

The simulations are performed with FDS, version 5. The tunnel is, as mentioned, 0.25 m 

(high) by 1 m (wide) by 5 m (long). The computational mesh consists of 640 000 cubic 

cells of size 1.25 cm. 

Two different sets of CFD simulations are performed (73 in total). In the first set, the 

total (steady) fire heat release rate is imposed and standard FDS radiation modeling and 

thermal boundary conditions are applied. For radiative heat transfer in FDS, a radiation 

transport equation for a grey gas is solved. The source term in this transport equation is 

radiation intensity, described by Planck’s law. [3,4] As the radiation intensity defined 

by Planck’s law is highly temperature dependent (Ib ~ T4), small temperature over- or 

underestimations van lead to large differences in radiation. Therefore, one could 

consider excluding uncertainties from radiation modeling by only inserting the steady 

convective heat release rate into the domain. As radiation from the fire mainly heats up 

the walls, the walls are set to adiabatic in the simulations without radiation. Otherwise, 
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too much of the (convective) heat from the fire would be used in heating up the walls. 

This approach is followed in the second set of simulations. 

Propane is used as fuel in the simulations, as in the experiments [2]. 

Again, the standard Smagorinsky model with CS = 0.2 (default in FDS) is used. In [15], 

it is shown that the influence of the exact value is not large on the results (as long as it 

does not deviate too strongly from the default value).  

A constant velocity is imposed over the entire inlet surface of the tunnel, upstream of 

the fire. 

A quasi steady-state is reached in the simulations after about 120 s for the lowest heat 

release rate studied. Time-averaged values, determined between 160 s and 180 s, are 

presented as simulation results for temperature, density and velocity. From previous 

work [15], a maximum value of turbulent time scale of 5 s was found for k ε−  

simulations of the same set-up. Again, the averaging period much larger than the 

turbulent time scales. 

In each simulation, a constant velocity (vin) is imposed over the entire inlet area of the 

tunnel. For each inlet velocity, the corresponding backlayering distance is calculated in 

the simulations by using the N-percent method (Eq. (10)) on the horizontal centre line at 

ceiling level (with N = 5). Due to the low value of N, a small temperature increase will 

already result in the detection of the smoke layer at ceiling level, comparable to the use 

of thermocouples in the original experiments [2]. Extrapolation of these backlayering 

distances results in the critical velocity, corresponding to a backlayering distance of 0 m 

for each heat release rate (Figure 7). This method is identical to what is described in [2]. 

 

3.3 Simulation results 
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Table 3 lists the experimental data and simulation results for the critical velocity, 

corresponding to each studied heat release rate with default FDS radiation modeling and 

thermal boundary conditions. For every heat release rate, the radiative fraction χr as 

found in the simulations is also listed. This is the fraction of heat loss through radiation 

to the total heat release rate of the fire: 

rad
r

Q
Q

χ =  and conv cond radQ Q Q Q= + + , (13) 

with Q , convQ , condQ  and radQ  the total heat release rate and convective, conductive and 

radiation heat losses respectively. The radiation heat loss is calculated by integrating the 

directional radiation intensity over a default number of angles and over the entire 

domain boundaries [3,4]. In the simulations, the resulting radiative fraction increases 

with increasing heat release rate from 37% up to 48%. 

 

Table 4 shows the results for the critical velocity in the simulations without radiation 

losses and with adiabatic walls. The imposed heat release rate in the numerical 

simulations now corresponds to the convective heat release rate. Estimating the 

radiative loss fraction at χr = 0.43 (Table 3), the corresponding total heat release rate 

can be calculated. 

 

Figure 8 summarizes the results. The picture reveals two aspects. 

Firstly, the simulations with the default settings and the simulations without radiation 

modeling provide very similar results. This shows that the approach of imposing the 

convective heat release rate in the numerical simulations, turning off radiation modeling 

and treating the walls as adiabatic, is valid for the test case under study. 
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The second observation is that, whereas the trend for the critical ventilation velocity as 

function of total heat release rate is very well reproduced, the simulation results 

overestimate the absolute value of the critical velocity, in line with [15], where tunnel B 

was examined. A difference, defined as the ratio of the deviation between experimental 

value and simulation value to the experimental value, of about 25% is found between 

the experimental and numerical results. This deviation might be due to extra water 

cooling of the tunnel in the neighborhood of the fire in the experimental set-up, as 

mentioned in [2]: when the tunnel walls reached “high” temperatures, they were cooled 

with water. As this cooling extracts heat from the tunnel, the experimentally measured 

critical velocity for a “given” fire heat release rate, in fact corresponds to a lower heat 

release rate value than what is imposed at the burner. The latter value is applied in the 

numerical simulations. Unfortunately, no details on the water cooling are provided in 

[2]. Therefore, the temperatures from the CFD results is used to estimate from what heat 

release rate value onwards, cooling was applied. Table 5 shows the maximum 

temperatures Tmax near the ceiling in the numerical simulations. In the experiments, it 

can be suspected that as the tunnel walls near the fire are made of stainless steel, cooling 

was almost certainly applied when the heat release rate exceeded 10.5 kW and perhaps 

already at 7.5 kW.  

The heat loss by cooling is estimated as follows. The steel area of the ceiling of the 

experimental tunnel set-up is Ac = 2.4 m2. The convection coefficient at the inside of the 

tunnel is estimated as h = 10 W/m2K to h = 15 W/m2K. Cooling is assumed from the 

temperatures, obtained in the CFD simulations (i.e. without the water cooling), to 

100°C, the boiling temperature for the water at the outside of the tunnel. This implies 

neglect of thermal resistance caused by conduction in the stainless steel, which indeed 
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has a high conductivity. The heat, removed per unit time from the configuration by the 

water cooling, can then be calculated as: 

( )max 373;0
c

loss
A

Q h T dA= ⋅ −∫ .  (14) 

A correction of the experimental heat release rate in this sense clearly brings the 

experimental results closer to the numerical simulation results. A similar argument was 

provided in a recently published paper by Li [16], where critical velocities in tunnel 

experiments are somewhat higher than in the Wu and Bakar tunnel experiments. 

The corresponding values for this estimated heat loss are listed in Table 5, and indicated 

with squares in Figure 8. 

 

The observation that the trend of the dependence of the critical velocity on the fire heat 

release rate is well reproduced in the numerical simulations and that deviations – after 

the correction as described – are less than 10%, allows to conclude that the simulation 

results are in satisfactory agreement with experimental data for this tunnel 

configuration. 

 

4. Conclusions 

Small-scale experiments of fire in an atrium and a tunnel were repeated as numerical 

CFD simulations. Both cases concern smoke movement and the formation of a quasi 

steady-state smoke layer. 

Several criteria to define the smoke layer interface were studied, of which the N-percent 

rule (with N = 30) prevails, as it provides results in good agreement with experiments 

and it is the most unambiguous method. 
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For the atrium configuration, very good agreement was found between the experimental 

and numerical results. 

In the tunnel simulations, calculations without radiation modeling and using adiabatic 

walls proved to be a valid alternative for more time-consuming simulations with 

radiation modeling. Quite good agreement was found between experimental and 

numerical results, especially when considering the heat loss due to water cooling in the 

experiments. 

An overall conclusion is that the prediction of the quasi steady-state smoke region by 

CFD is good, especially when the experiments are well documented. Therefore, it is 

argued that a parameter variation study with numerical simulations within similar 

configurations is very useful to obtain qualitative results, a good prediction of the trends 

and insight into the physics of the configurations at hand. 
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Figures 

 

 

Figure 1. Atrium configuration 

 

 

 

Figure 2. Temperature variation on a vertical line (x = 3.75 m) in the atrium. 
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Figure 3. Second derivative of temperature in the atrium (left) and N-percent rule in 

atrium (right). 

 

 

 

Figure 4. Interface height in the atrium.  
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Figure 5. Experimental and CFD results of smoke mass flow extraction rate as function 

of rise height. 

 

 

 

Figure 6. Comparison of FDS 4 and FDS 5 numerical results with experiments. 
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Figure 7. Extrapolation to determine critical velocity in tunnel D with heat release rate 

12 kW (with standard FDS radiation modeling). 

 

 

 

Figure 8. Experimental and numerical results for vcr in tunnel D. The squares represent 

the possible effect of  heat loss in the experiments by cooling of the ceiling near the fire. 
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Tables 

List of symbols 

A area m2 

Ac ceiling area m2 

An area of cell n m2 

C coefficient kg/(m.s.kW1/3) 

Cm coefficient m4/3/(s.kW1/3) 

cp heat capacity J/kg K 

Cs Smagorinsky constant  

d backlayering distance m 

D* characteristic length scale m 

Db thickness of emerging smoke layer m 

g gravitational acceleration m/s2 

H total height of atrium m 

h convection coefficient W/m2K 

I1 parameter K.m 

I2 parameter m/K 

Ib radiation intensity source term kW/m2 

k cell number  

k turbulent kinetic energy m2/s2 

M mass flow rate kg/s 

Mb emerging smoke layer mass flow rate kg/s 

N number in N-percentage rule  

Q total heat release rate of fire kW 
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Qcond conductive heat loss kW 

Qconv convective heat release rate of fire kW 

Qloss heat release rate lost due to cooling kW 

Qrad radiative heat loss kW 

T temperature K 

t time s 

Tav,s average smoke layer temperature  K 

Tint interface temperature of the smoke layer K 

Tk temperature of cell k K 

Tl minimum temperature on vertical line K 

Tmax maximum temperature K 

To ambient temperature K 

tt turbulent time scale s 

v velocity m/s 

vcr critical velocity m/s 

vin inlet velocity m/s 

vout outlet velocity imposed at ceiling of atrium m/s 

W width of atrium m 

x length m 

z height above spill edge m 

z0 virtual origin height m 

zint interface height of the smoke layer m 

zk height of cell k above ground m 

Δz vertical cell size m 
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χr radiative fraction  

ε turbulent dissipation m2/s3 

ρo ambient density kg/m3 
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Table 1. Begin (t1) and end (t2) times for the calculation of time-averaged simulation 

results. 

 

Q 

(kW) 

t1 

(s) 

t2 

(s) 

4.44 261 335 

8.27 140 180 

13.5 86 110 

18.3 63 81 
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Table 2. Simulation results in the small-scale atrium. 

 

Qconv 

(kW) 

Db 

(m) 

Mb 

(kg/s) 

z 

(m) 

M(z) 

(kg/s) 

z0 

(m) 

z + z0 

(m) 

M(z)/Qconv
1/3 

kg/(skW1/3) 

2.887 0.13 0.05 0.25 0.09 0.65 1.50 0.06 

2.887 0.13 0.05 0.53 0.12 0.65 1.78 0.08 

2.887 0.13 0.06 0.68 0.14 0.69 1.97 0.10 

2.887 0.12 0.05 0.78 0.15 0.63 2.01 0.11 

5.377 0.13 0.07 0.28 0.12 0.68 1.55 0.07 

5.377 0.13 0.06 0.50 0.14 0.63 1.73 0.08 

5.377 0.13 0.06 0.80 0.18 0.63 2.03 0.10 

5.377 0.13 0.06 1.00 0.21 0.62 2.22 0.12 

8.792 0.13 0.07 0.23 0.13 0.65 1.48 0.06 

8.792 0.13 0.07 0.85 0.22 0.62 2.07 0.11 

8.792 0.13 0.07 1.19 0.30 0.63 2.42 0.15 

8.792 0.15 0.08 1.59 0.38 0.70 2.89 0.18 

11.901 0.13 0.08 0.34 0.15 0.62 1.55 0.07 

11.901 0.13 0.08 0.90 0.25 0.62 2.12 0.11 

11.901 0.13 0.08 1.42 0.38 0.65 2.66 0.17 

11.901 0.14 0.08 1.62 0.42 0.65 2.87 0.18 
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Table 3. Critical velocities with corresponding heat release rates (default settings, χr 

obtained from simulations). 

 

Q 

(kW) 

vcr experiments [1] 

(m/s) 

vcr FDS simulations 

(m/s) 

radiative fraction χr 

(%) 

1.5 0.34 0.38 37 

3.0 0.40 0.47 39 

7.5 0.50 0.61 43 

10.5 0.54 0.67 44 

12.0 0.56 0.68 45 

15.0 0.59 0.70 46 

22.5 0.65 0.75 48 
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Table 4. Critical velocities with corresponding heat release rates (adiabatic simulations, 

χr = 0.43 assumed for calculation of Q). 

 

Qconv 

(kW) 

Q 

(kW) 

vcr 

(m/s) 

1.0 1.7 0.37 

2.0 3.4 0.46 

4.9 8.6 0.62 

6.8 12.0 0.67 

7.8 13.7 0.67 

9.8 17.1 0.70 

14.6 26.7 0.73 
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Table 5. Maximum temperatures near the ceiling found in the numerical simulations. 

 

Q  (kW) 1.5 3.0 7.5 10.5 12.0 15.0 22.5 

Tmax (K) 381 420 615 803 864 923 1136 

( )373
cA

T dA−∫
 

(m2K) 0 0 54 93 147 215 387 

Qloss (kW)   
0.5 – 

0.8 

0.9 – 

1.4 

1.5 – 

2.2 

2.2 – 

3.2 

3.9 – 

5.8 
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