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ABSTRACT 

This paper describes the statistical comparison of the results from an experiment with a 

‘between user’-design. The first group of participants consists out of novices whereas the 

second group consists out of experts which have experience in map use and have had training 

in cartography. The same stimuli (twenty screen maps) are presented in a random order to the 

participants who have to locate a number of labels on the map image. The participants are 

asked to indicate when they located a name by a button action, resulting in a time 

measurement. Furthermore, the participant’s eye movements are registered during the whole 

test. The combined information reveals a same trend in the time intervals needed to locate the 

subsequent labels in both user groups. However, the experts are significantly faster in locating 

the names on the map (P ≤ 0.010). The recorded eye movements further confirm and explain 

this finding: the expert’s fixations are significantly shorter (P ≤ 0.001) and can consequently 

have more fixations per second (P ≤ 0.001). This means that an expert can interpret the map 

content more efficiently and can thus search a larger part of the map in the same amount of 

time. 

 

BACKGROUND AND OBJECTIVES 

The main goal of this research is to improve the quality of maps with a focus on how the 

information should be presented to the user to allow an efficient interpretation of its content.  

Therefore, insights are needed in how users perceive the information presented to them, which 

is in turn related to how map readers store this information internally and thus to their 

cognitive map (Downs and Stea, 1977; MacEachren, 2004; Montello, 2002; Slocum et al., 

2001). Harrower (2007) stated that the current bottleneck for creating acceptable animated 

maps is no longer caused by the hardware, software or data, but by the limited visual and 

cognitive processing capabilities of the map user. In his article, Harrower (2007) also 

describes the Cognitive Load Theory (CLT) in relation to information processing and 

learning, which involves the long-term memory and working memory. These terms are crucial 

to understand how persons, including map users, process and store the information presented 

to them. The effectiveness or quality of a map can be enhanced by reducing the complexity of 

the map and remove unnecessary distractions from it. This results in a reduction of the user’s 

cognitive load (both the intrinsic and extraneous cognitive load), creating extra room for the 

third type of cognitive load which is associated with learning: the germane cognitive load. 

Furthermore, ‘map users’ cannot be considered as one homogeneous group: different 

categories of users and individual user differences have to be taken into account. These 

differences in gender, age, background knowledge, experiences, etc. may have an influence 



on how they interpret, process and store the spatial information. (Aykin, 1989) One important 

and interesting difference between users is the background knowledge and the level of 

experience they have with the topic under investigation, maps in this case (MacEachren, 

2004; Nielsen, 1989). As a consequence, designers of user studies often have to make a 

difference between experts – the user group which has a high level of experience – and the 

novices – the user group with a low level of experience (Duchowski, 2007; Nielsen, 1993; 

Rubin and Chisnell, 2008).  

In this paper two sets of experiments are described, which test whether experts (a group of 

persons with cartographic training and experience in interpreting maps) can interpret a map’s 

content more efficiently. Since the same stimuli – screen maps in this case – will be presented 

to two different user groups – experts and novices –, the study has a ‘between user’-design 

(Duchowski, 2007; Nielsen, 1993). The contents and structure of this study will be described 

in more detail in the next sections. 

APPROACH & METHODS 

Participants 

The expert group selected for these tests consists out of participants who have obtained a 

Master degree in Geography or Geomatics and who are currently working in de Department 

of Geography at Ghent University. A group of Bachelor students, linked with the Faculty of 

Psychology and Educational Sciences are selected to constitute the non-expert group. The 

same stimuli and assignment is presented to both groups of participants, resulting in a 

‘between-user’ experimental design. The expert group counts 16 participants, whereas the 

novice group has 15 participants. 

Task & Stimuli 

During each trial a screen map consisting, out of a simple background with points and their 

associated labels, is presented to the participant. On the right side of the screen the participant 

can see a list with five names which he has to locate on the map image. Each time the 

participant finds a name, he is asked to push a button (resulting in a time measurement). After 

50 seconds, a horizontal pan operation is simulated and the list with five names changes 

simultaneously. Two names were already present in the initial list, but on a different location. 

After this simulated user interaction, the participant again has to locate these five names on 

the map image, indicating that he found one by a button action. In total, the participant has to 

complete twenty trials and thus perform a visual search on twenty different demo-maps. Each 

of these maps has the same background and a comparable number of labels on it, but their 

distribution may differ. The locations and names on the map originate from existing areas in 

order to create realistic point and label distributions on the maps. However, the regions are 

chosen as such that the participants are not likely to be familiar with it (e.g. in Africa) in order 

to avoid biases. An example of a screen map used in one of the trials is depicted in Figure 1.  

 

This assignment corresponds to an operation which is actually executed rather often by users 

on dynamic and interactive maps: the user is trying to locate the position of an area of interest 

from which he knows the name. To be able to do this, the user first has to orientate the map 

and subsequently scan its content to discover the position of a certain symbol, such as a label. 

 

 

 

 



 
 

 

 

 

Figure 1: Example of a demo map with on the left the initial view,  

top right a view during the pan-operation and bottom right the final view 

 

Data & Apparatus 

Besides the time measurements from the button actions, the participant’s eye movements are 

registered during the entire test. This latter data consists out of a long list of screen 

coordinates (x,y) where a user was looking on the map, at a certain timestamp (t). Fixations 

are moments when the (x,y) position of the eye movements is stable for a certain amount of 

time and the user is thus interpreting the map content at that location. The duration and 

number of these fixations are closely linked with the level of difficulty for interpreting the 

content of the map. Poole and Ball (2006) and Jacob and Karn (2003) present a more detailed 

description of these eye movement metrics and their link with the user’s cognitive processes. 

For example, longer fixations are typically associated with a complex content (which is more 

difficult to interpret). The time measurements indicate how fast the participant finds a name, 

but it is essential that these measurements are linked with the eye movements to discover 

which name was found (and if it was a correct one). 

The equipment used to conduct these test consists out of an Eye Link 1000 device from SR 

Research (Mississauga, Ontario, Canada) which registers a person’s POR (Point of Regard) at 

a rate of 1,000 Hz (or once every ms). This device, along with the other necessary equipment, 

is located in the Eye Tracking laboratory of the Department of Experimental Psychology, 

Ghent University. Each test start with a calibration phase using a grid of nine points, which 

does not takes more than a few minutes. 

RESULTS 

A detailed statistical analysis of the response times from the novice users show a trend in the 

time intervals needed to find subsequent labels, both before and after the interaction. The 

median values in Table 1a and the error bars in Figure 2a indicate that a longer time interval is 

associated with locating the first label, which corresponds to an orientation phase. The 

shortest time interval is linked with the second label, followed by increasing time intervals for 

the subsequent labels. The time interval is also always shorter before the interaction than after 

for corresponding labels. The statistical analysis for the novice groups are described in more 

detail in (Ooms et al., 2009). Table1b and Figure 2b show the results for the same metrics, but 

for the expert group. A comparison of both results (experts vs. novices) suggests a similar 



underlying trend: highest value for the first label, smallest for the second label, increasing 

values for the next labels (both before and after the interaction) and shorter corresponding 

time intervals before the interaction. However, the mean and median values are always 

smaller for the expert group than for the novice group, suggesting that the experts can find the 

labels more quickly (and thus efficiently) than then novices. 

Table 1: Median values for the time intervals (ms) for locating subsequent labels  

Label Before (1*) After(2*) 
 

Label Before (1*) After(2*) 

*1 5324,0 3775,5 
 

*1 4945,5 4009,0 

*2 4368,5 3427,0 
 

*2 3873,5 3626,0 

*3 4933,0 3875,0 
 

*3 4540,5 3636,5 

*4 4551,0 4477,0 
 

*4 4647,5 4162,5 

*5 4897,0 4595,0 
 

*5 4693,0 4171,0 

 

a. novices 

   

b. experts 

  

   
a. novices b. experts 

Figure 2: Error bars with a 95% confidence interval for the time intervals (ms) for locating 

subsequent labels 

A statistical comparison between both groups shows that a significant difference can be 

noticed in how experts interpret a map’s contents in comparison to non-experts. The expert 

group is significantly faster at locating the ten names (Mann Whitney test, Z=-2.570, P ≤ 

0.010). This is further explained by the metrics derived from the recorded eye movements. 

The average duration of an expert’s fixation is significantly shorter (t-test, t= 3.845, df=1069, 

P ≤ 0.001). Furthermore, the number of fixations per second is significantly higher (t-test, t= -

5.845, df=873, P ≤ 0.001) in the group with experts. This means that an expert needs less time 

to interpret the content of the map (shorter fixations) which allows them to have more 

fixations per second.  

CONCLUSION AND FUTURE WORK 

This study with a ‘between user’-design shows a same trend in how maps are interpreted by 

the two user groups: novices and experts. Both before and after the simulated interaction the 

first label is found after a relatively long time interval. This can be explained by the time 

needed to orientate the map before the user is able to start looking for a label. This orientation 

time is also included in this first interval. The shortest interval is linked with the second label. 

In this case, the orientation phase is finished and a mental image of the map is present in the 

working memory allowing fast retrieval of the label’s location. With each subsequent label, 

Label
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more information is stored mentally (such as the former labels and their locations), increasing 

the cognitive load in the working memory. This results in longer time intervals for locating 

the subsequent labels. The shorter time intervals after the interaction can be explained by the 

learning effect. A part of the map remains visible with which the participant is consequently 

more familiar and which may thus have been stored in the participant’s long term memory. 

This reduces the overall cognitive load in the working memory after the interaction. 

Besides this same trend, an important difference is noticed: the experts are faster at locating 

the names on the map. The reason for these shorter time intervals can be found in the eye 

movement metrics, which give insights in the user’s cognitive processes. Since the fixations 

of experts are significantly shorter, it can be concluded that they can interpret the map’s 

content more efficiently (Jacob and Karn, 2003; Poole and Ball, 2006). The significantly 

higher number of fixations per second in the expert group is closely link with the shorter 

fixations. This means that experts can ‘scan’ or interpret a larger part of the map in the same 

time interval, compared to the non-experts. This results in the fact that the experts are faster at 

finding the names on the map.  

In a next step, the eye movements of the expert group will be analyzed qualitatively. This 

visual analytical technique has already been applied to the eye movement data of the group 

with novices, revealing some interesting patterns in how users interpret the map’s content 

(Ooms et al., 2010). A comparison between the eye movement patterns from both groups 

(novices vs. experts) might indicate if the experts also have a different technique in 

orientating and searching on the map which may reveal some new elements regarding the 

efficiently with which experts interpret the map’s content. 
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