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The Inferential and Representational Techniques in Galileo’s Models of Uniformly 

Accelerated Motion 

 

Steffen Ducheyne
*
 

 

Abstract: In this essay, I aim to scrutinize several of Galileo’s representational and 

inferential strategies for dealing with naturally accelerated motion within the context of 

justification. Galileo’s methodology succeeded in making the process of naturally 

accelerated motion intelligible via models. The focal point of the study of hand is the 

Third Day of the Dialogues Concerning Two New Sciences. My aim is, primarily, to 

provide a detailed historical case-study of the representational and inferential procedures 

in Galileo’s mechanics. In this essay, I set out to bring these strategies and theoretical 

suppositions to the fore. I argue that the following inferential strategies were of key 

importance in Galileo’s Discorsi: abstraction from and idealization of irrelevant factors, 

geo-infinitesimal representation, substitution of an inferentially recalcitrant type of 

motion for a less inferentially recalcitrant type of motion, physical interpretation by 

means of a previously established theorem, transference of geometrical relations to 

relations on motion, and proportionality as a proxy for otherwise unrelated motions. 

Furthermore, it will be shown that in Galileo’s proto–mechanics a single unifying 

theoretical principle was absent. This limitation forced Galileo to use a heterogeneity of 

inferential strategies and theoretical assumptions. Additionally, Galileo’s models 

illustrate how theoretical knowledge needs to be concretised by the introduction of 

specific models in order to obtain the desired inferential steps. In virtue of certain abstract 

properties pertaining to the models themselves, one is able to obtain novel results which 

are not derivable from the abstract theory alone. Another way of putting this, is that the 

information provided by a model helps to constrain and concretize the theoretical 

knowledge at hand. 

 

1. Introduction 

 

In this essay, I shall try to capture Galileo’s scientific methodology as practiced in the Third 

Day of the Dialogues Concerning Two New Sciences
1
 (first published: 1638) in which Galileo 
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deals with naturally accelerated motion. Galileo’s methodology succeeded in making the 

process of naturally accelerated motion intelligible via models
2
. Correspondingly, I shall study 

Galileo’s techniques of representing natural phenomena and of drawing inferences from 

models (which represent these phenomena). Although, I agree that it is to some extent 

anachronistic to boldly claim that Galileo used “models” – in our contemporary sense – to 

represent naturally accelerated motion, I think that focussing on Galileo’s models may help 

elucidating Galileo’s reasoning
3
 in the Discorsi. In addition to that, case-studies like these 

might also – on a more general level – help us to get more grip on the ways in which models 

represent in science. Few authors have actually engaged in a detailed analysis of how Galileo 

modelled the phenomenon of naturally accelerated motion. There are some notable exceptions 

from the history of science
4
, but none of these connect such analysis with a systematic analysis 

of Galileo’s representational and inferential techniques. In this essay, I shall focus on the ways 

in which models (or for Galileo “una figura” or “un diagramma”) represented and helped 

Galileo to get a grasp on naturally accelerated motion. One caveat is in order here. I shall 

solely consider the context of justification: I shall not consider questions regarding the 

historical origin or emergence of Galileo’s representational strategies for handling naturally 

accelerated motion. Correspondingly, I shall take Galileo’s text at face value. The question at 

stake is: how did Galileo prove the things he proved (or attempted to prove)? In other words, 

                                                                                                                                                        
1
 The original title is: Discorsi e Dimostrazioni Matematiche, intorno à due nuoue scienze, 

Attenenti alla Mechanica & i Movimenti Locali (for the standard Italian-Latin edition, see Galilei, 1968, 

VIII, pp. 49-313). 
2
 Models are understood here as “the primary representational entities in science” (Giere, 1999, p. 

5). Models are the entities scientists employ to represent a natural system. Models can be very broadly 

conceived: we can think of computer models, scale-models and mathematical models. Galileo’s models 

clearly subsume under the class of mathematical models. For a general overview, see the introduction to 

Morgan & Morrison, 1999; for a recent volume that focuses on 3-D models, see de Chadarevian & 

Hopwood, 2004. To the reader who is left unsatisfied because of the absence of a more formal 

definition of a scientific model, I respond that it is advisable to study a considerable amount of case-

studies first, before we engage in the activity of defining the notion “model”. 
3
 One remark with respect to “reasoning by means of a model” should be made from the outset. 

Some philosophers of science seem to suggest that, in contrast to verbal or discursive reasoning, there is 

a different type of reasoning occurring when scientists use models: “model-based reasoning” (e.g. 

Nersessian, 2002, pp. 135-143). I grant it that models help to facilitate reasoning, but continue to 

endorse the view that the reasoning process itself remains discursive. 
4
 Winifred L. Wisan stressed Galileo’s concerns of giving “a direct visual and exact visual 

demonstration” of scientific principles (Wisan, 1978, p. 40). The idea is that a principle is confirmed if 

we have a visual, mathematical model that proves the principle. According to Maurice Clavelin, 

explaining natural phenomena for Galileo was identical to establishing a model or “intelligible 

reproduction” of the relevant phenomena based on a number of principles and concepts (Clavelin, 1968, 

p. 456). For a detailed discussion on Galileo’s early mathematization of nature, see Palmieri, 2003. 
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how do these proofs
5
, or more precisely these models, function, represent and allow to draw 

the relevant inferences? 

   In a classic study, Maurice Clavelin has stressed the importance of the new conceptual 

outlook on motion Galileo introduced. By interpreting motion in terms of temporal and spatial 

relationships and looking for relations of proportionality between them, he had transformed it 

into the object of rational scientific enquiry which was ordered deductively and 

mathematically (Clavelin, 1968, 279-80). These new interpretative notions were primordial. 

Clavelin has done an excellent job in revealing these underlying notions. In dealing with 

uniformly acceleration motion Galileo conceived of velocity as an intensive magnitude, he 

stressed the concept of quantity of velocity and he postulated a continuum-idea, where motion 

is conceived as an infinitely indivisible process (ibid., chapter 6). By means of these concepts 

he was able to reduce all motions in free fall to one theoretical situation (where e.g. air 

resistance was absent). Explaining natural phenomena was essentially establishing a model or 

intelligible reproduction of the relevant phenomena based on a number of principles and 

concepts (ibid., 456). Physical necessity was then immediately reduced to mathematical 

necessity.
6
 The explanation is used to establish the connections (un rapport d’implication) 

between the phenomena, which have become consequences of the model and the principles of 

rationality (ibid.). The physical truth is conceived as an imitation if the mathematical truth. 

However, a fundamental question concerning Galileo’s methodology remains: in virtue of 

what does a model function as an “intelligible” reproduction of a phenomenon? 

   In my attempt in unravelling Galileo’s methodology, I shall endorse a “models as 

mediators”-outlook on scientific models (Morgan & Morrison, 1999). This outlook will be my 

analytical tool. Let me first clarify what this outlook consists in. In the introduction to their 

volume on the use of models in science, Morrison and Morgan stress that in scientific praxis 

models function as autonomous agents (in the sense that they are partially independent of both 

theories and the empirical world) (Morrison & Morgan, 1999, 10). Because models are made 

up from a mixture of elements (elements that originate from outside of the original domain of 

investigation), they maintain this partially independent status (ibid., p. 14). The ways in which 

                                                 
5
 The word “proof” is used here two senses: (1) in the sense of being a test and (2) in the sense of 

being a deduction. Wisan has often pointed to the second sense: for Galileo true conclusions must be 

derived from true and evident principles (Wisan, 1978, p. 37). However, in Galileo’s work the first 

sense also is present. In the Discorsi, for instance, he claims that a postulate will be established “when 

we find that the inferences from it correspond to and agree perfectly with experiment” (Galilei, 1954, p. 

172). 
6
 Clavelin is likely influenced by Heinrich Hertz’ view on these matters.  
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models can function autonomously are various. The essential thing is that models are not 

wholly theory-driven nor data-driven. Models typically mediate between theory and data. 

Models replace physical system as the central objects of scientific inquiry and allow surrogate 

reasoning. Theories consist of general, abstract principles that govern the behaviour of a large 

set of phenomena; models are needed to apply these general principles to a number of different 

cases (ibid.). From Newton’s second law (or in fact by all three) nothing much of interest 

follows (Giere, 1988, p. 66). We need additional information provided by a model (e.g. a two 

body-system, a simple pendulum) to actually represent a physical system. Laws of mechanics 

are like “general schemas that need to be filled in with a specific force function in order to 

carry information about the world” (ibid., p. 76). One remark should be added from the outset: 

Galileo, unlike Newton, did obviously not have a unified theory of motion. Therefore, it 

should come as no surprise that Galileo’s theoretical resources are diverse and that what 

counts as theory fluctuates throughout the Discorsi.  

  Let me, finally, provide the structure of this essay. In section 2, I discuss and analyse several 

theorems from the third day of the Discorsi. In my analysis, I shall show that Galileo indeed 

used a variety of theoretical principles
7
 and modelling procedures. Galileo’s models help to 

crystallize abstract theoretical principles and replace the original physical system. In this 

process, they typically generate inferences which are not accessible from the given data or 

theoretical principles at hand. In great contrast to Newton’s mechanics, Galileo’s proto–

mechanics was not founded on a set of generally accepted (theoretical) principles. Therefore, it 

should come as no surprise that Galileo’s theoretical resources vary throughout the Discorsi. 

In part 3, I shall show how Galileo’s methodology incorporated a broad myriad of very diverse 

inferential strategies. I shall discuss these strategies in view of the analyses carried out in part 

2.  

 

2. An Examination of Galileo’s Models of Naturally Accelerated Motion 

 

In this part, I shall scrutinize and interpret some of the models from the beginning of the Third 

Day in the Discorsi, where Galileo treats uniformly accelerated motion. Uniformly accelerated 

motion is motion that acquires, when starting from rest during, during equal time-intervals 

                                                 
7 Throughout this paper, I use the term “theoretical principle” (or “theoretical knowledge”) in the 

following sense: a theoretical principle is a general statement that needs to be constrained by further 

model-specific information in order to yield useful and concrete information about the natural world. 
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equal increments of speed, or more precisely, its momentum (“celeritatis momenta”
8
) receives 

equal increments in equal times (Galilei, 1954, p. 162, p. 169). This definition is not arbitrary: 

it fits the natural phenomenon of free fall (ibid., p. 160). This carefully selected set of models 

is to be understood as a representative sample of Galileo’s modelling techniques. I shall use 

the resulting interpretation of these models as input for my account of Galileo’s methodology 

in part 3.  

 

[2.1] Galileo begins the Third Day with a proof of the following proposition
9
: the speeds 

acquired by one and the same body moving down planes of different inclinations are equal 

when the heights of these planes are equal (in a situation where there is no resistance, the 

planes are perfectly smooth, and the moving body is perfectly round) (ibid., pp. 169-70). 

Salviati, Galileo’s spokesman, notes that he wishes “by experiment [which is repeated many 

times, as Galileo assures us] to increase the probability [of this theorem] to an extent which 

shall be little short of a rigid demonstration” (ibid., p. 170). The demonstration is based on an 

ideal pendulum and proceeds as follows. The purpose is to show that the momenta gained by 

fall through the arcs DB, GB and IB are equal (see figure 1). A nail, to which a lead bullet is 

suspended by a fine thread AB, is driven in a vertical wall. The bullet is set to swing from 

point C. It describes the arc CBD and approximately reaches point D which is equidistant from 

A as C is from A (if we abstract from the air resistance, it would do so exactly). Accepting this 

abstraction, we may infer that the impetus
10

 on reaching B from C was sufficient to carry it to 

D at the same height. Then the experiment is performed with an extra nail inserted at a lesser 

height: at E or at F. In these cases, the bullet will also be carried to the line CD and the body 

will (nearly) describe path BG or BI respectively. (If the nail is placed so low that the 

remainder of the thread below it will not reach CD, the thread leaps over the nail and twists 

itself around it.) This shows that – given the abstraction from air resistance – the momenta, 

needed to carry a body of the same weight to equal heights along different arcs, are equal. So 

                                                 
8
 I have added some important terms in the original Latin or Italian from Galileo’s Opere (Galilei, 

1968, VIII, pp. 41-313. 
9
 It is only in the 1656 edition (posthumously published by Vincenzo Viviani) that Galileo 

suggested a way of proving this principle from commonly accepted mechanical principles. See Galilei, 

1968, VIII, pp. 214-219; Galilei, 1954, pp. 184-185. In this first proof of the principle, according to 

which the acquired speeds along different paths from equal heights are equal, Galileo had to resort to an 

analogy-argument to generalize this principle for inclined planes. In the presentation of [2.5], we shall 

see that Galileo was able to directly apply a lemma (which we shall discuss in [2.4]) to inclined planes. 

This application entailed the desired result. See infra. 
10

 Galileo uses the words impetus (“impeto”), ability (“talento”), energy (“energia”), speed 

(“velocità”) weight (“pondere”) and momentum (“momento”) interchangeably (ibid., p. 18n). 
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conversely, it can be shown that the momenta acquired by fall through the arcs DB, GB and IB 

are equal. 

 

 

Figure 1. 

 

The argument can be summarized as follows: 

 

(1) Ia(CB) = In(BD)
11

 [this follows from (a) the observation that a pendulum set 

to swing at C ascends (more or less) to D and (b) the underlying principle
12

 

according to which all bodies ascend to exactly the same height from which 

they initially acquired their momentum in descending (if we ignore air 

resistance)] 

 

(2) In(BD) = In(BG) = In(BI) [this generalisation follows (a) from the 

observation that the bobs – impeded by nails respectively inserted at E and F 

– set to swing from C approximately raise to G or to I, which are at the same 

height as D and (b) the previous principle] 

 

(3) Ia(DB) = Ia(GB) = Ia(IB) [this follows from (1) and (2)] 

 

Galileo then extends this principle demonstrated for pendulums to inclined planes “by 

analogy”. Sagredo admits that this experiment is well “adapted to establish the hypothesis” 

(ibid., p. 172). The reason that Galileo used this pendulum experiment is that it is impossible 

to produce these results on inclined planes, because at the lowest point the planes would form 

                                                 
11

 “Ia” stands for the impetus acquired along an arc; “In” for the impetus needed to be raised 

along an arc. 
12

 This principle comes very close to Torricelli’s principle which states that the centre of gravity 

cannot raise above itself. See Torricelli, 1919, II, p. 105, for Torricelli’s own formulation. 

A 

D C 

B 

F 

E 

G I 
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angles and constitute an obstacle for the lead ball.
13

 Galileo used the pendulum-model as an 

idealization of motion along inclined planes: the trajectory was deliberately distorted in order 

to obtain the inferential steps that he was interested in. 

   Bear in mind that Galileo claims to prove this proposition for motion along inclined planes 

without any resistance. For this purpose he uses an ideal pendulum (in which there is no 

resistance). The ideal pendulum allows the inferential steps that Galileo is interested in: 

proving that the momenta acquired along different arcs from equal heights are equal. The 

derivations above are exactly valid only in the ideal pendulum-model (it is only under these 

idealized conditions that the neat derivation in steps (1)-(3) obtains). The model is the ideal 

pendulum depicted by the drawing, where there is zero air resistance. The theoretical 

principle, according to which all bodies ascend to exactly the same height from which they 

initially acquired their momentum in descending (if we ignore air resistance), remains silent 

on the specific trajectory a body describes. This principle is applied to a specific case: the 

pendulum. This concretization is necessary to generate the relevant inferences. The inferences 

made from this model are then tested. Salviati takes “this as a postulate, the absolute truth of 

which will be established when we find that the inferences from it correspond to and agree 

perfectly with experiment” (ibid.). 

 

[2.2] Theorem I, Proposition I is the mean-speed theorem or Mertonian rule which states that 

the “time in which any space is traversed by a body starting from rest and uniformly 

accelerated is equal to the time in which that same space would be traversed by the same body 

moving at a uniform speed whose value is the mean of the highest speed and the speed just 

before acceleration began” (ibid., p. 173). Let us look at the model Galileo used in his proof of 

this proposition (see figure 2). The aim is to show that, in equal times, a uniform motion with 

½ overall momentum of an accelerated motion will traverse the same distance (neglecting at 

that point the question if such motions really exist). This proposition will be used as an 

inference-ticket or proxy in the following proposition (see [3.3]). AB represents the time in 

which the space CD is traversed (hence, the distance is the independent variable
14

) by a body 

that starts to fall at rest from C (“Repraesentetur per existensionem AB tempus in quo a mobile 

                                                 
13

 It is worth noting that Christiaan Huygens, in Proposition VI of the Horologium Oscillatorium 

(1673), simply abstracted from the resistance caused by the sudden inflexion and used such (fictive) 

inclined planes to demonstrate that “velocities acquired by bodies falling through variably inclined 

planes are equal if the elevations of the planes are equal” (Blackwell, 1986, pp. 43-44). 
14

 E.J. Dijksterhuis remarks that Oresme had already used the traversed time as the independent 

variable (Dijksterhuis 1924, p. 257). 
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latione uniformiter accelerata ex quiete in C conficiatur spatium CD” (Galilei, 1968, VIII, p. 

208)). The horizontal, parallel lines represent what we would today call the instantaneous 

velocity (or more precisely, “crescentes velocitatis gradus post instans A”
15

). The triangles 

and the rectangles represent the overall momentum acquired in a time-interval [t0 (=A), tn 

(=B)] during uniformly accelerated motion (where the gradus velocitatis constantly increases) 

and during uniform motion (where the gradus velocitatis remains the same) respectively 

(Galilei, 1954, p. 173).  

 

 

Figure 2. 

 

The text proceeds as follows: 

 

Since each and every instant of time in the time-interval AB, from which points 

parallels drawn in and limited by the triangle AEB represent the increasing values 

of growing velocity, and since parallels contained within the rectangle represent 

the values of a speed which is not increasing, but constant, it appears, in like 

manner, that the momenta [momenta] assumed by the moving body may also be 

represented, in the case of the accelerated motion, by the increasing parallels of 

the triangle AEB, and, in the case of the uniform motion, by the parallels of the 

rectangle GB. For, what the momenta may lack in the first part of the accelerated 

                                                 
15

 This notion was never explicitly defined by Galileo. Michel Blay writes on Galileo’s notion of 

degree of velocity: “While to a certain extent it prefigured the concept of instantaneous velocity, it 

nonetheless remained subject to the Galilean way of conceiving motion, which regarded velocity as an 

“intensive magnitude” increasing by successive additions of degrees.” (Blay, 1998, p. 72). 

C 

D 

A 
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I 
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motion (the deficiency of the momenta being represented by the parallels of the 

triangle AGI) is made up by the momenta represented by the parallels of the 

triangle IEF. (ibid., pp. 173-74) 

 

The parallels of “instantaneous” speed are contained (“comprehensae” or “contentae”) in the 

triangle. The “aggregate” of all parallels contained in AEB equals the “aggregate” of the 

parallels contained in AGFB (Blay, 1998, p. 74). The degrees of speed that the uniformly 

accelerated motion lacks are made up during the second half (Dijksterhuis, 1924, p. 257). The 

relation between uniform motion and uniformly accelerated motion is established by the 

equality between the surfaces which represent them. An important premise, in Galileo’s 

construction, is the mathematical assumption that an area is made up of an infinity of lines 

(ibid.). Galileo presupposed that the equality of the two infinite sets of moments of velocity 

establishes the equality of the corresponding overall speeds (Damerow, Freudenthal, 

McLaughlin and Renn 1992, p. 230). Galileo lacked the adequate tools to deal with this 

thoroughly (Clavelin, 1968, p. 316). He, however, did not find this assumption theoretically 

suspect and concluded: 

 

Hence it is clear that equal spaces will be traversed in equal times by two bodies, 

one of which, starting from rest, moves with a uniform acceleration, while the 

momentum of the other, moving with uniform speed, is on-half its maximum 

momentum under accelerated motion. (Galilei, 1954, p. 173) 

 

Let me sum up how Galileo represents accelerated motion: 

 

(1) AB, a line consisting of an infinite set of points, represents the time needed 

to traverse a distance CD; every point corresponds to an instant of time; A 

represents the starting point (t0); B represents terminus (tn) 

(2) CD represents an arbitrary distance (hence, it is the independent variable) 

(3) infinitesimal horizontal lines represents the (instantaneous) crescentes 

gradus velocitatis 

(4) AEB represents the totality (totidem velocitatis momenta) of the increasing 

values of growing velocity (i.e., the aggregate of the constantly increasing 

speeds) 



 10 

(5) AGFB represents the totality of the constant values of speed (i.e., the 

aggregate of the constant speeds) 

 

The natural phenomena being modelled here is uniformly accelerated motion.
16

 The model is 

the “geo-infinitesimal” representation of the growth of speed of these motions depicted in 

figure 2. The mean-speed theorem is inferred from the equality between the surfaces of the 

triangle, which represents a uniformly accelerated motion, and the rectangle, which represents 

a uniform motion. The surfaces are considered as infinitesimally divisible: they both consist of 

an infinitude of horizontal lines. The assumption that movements in time can be represented 

geo-infinitesimally is Galileo’s most central theoretical background assumption here. This 

assumption functions as a construction-rule from which models can be derived and built. The 

inferential steps that Galileo is interested in follow from the mathematical properties of the 

model, viz. the equality between the surfaces. This model is not wholly data-driven: highly 

careful observation indeed shows that in free fall the acquired speed constantly increases, but 

there is no obvious reason why we should straightforwardly represent the increase of speed by 

a triangle. The model is not wholly construction-rule-driven either: treating speed and time 

geo-infinitesimally does not automatically lead to this particular model. We need extra 

assumptions here: for instance, that instants of time are depicted by points on a line; that the 

instantaneous degrees of velocity correspond to horizontal lines; that the triangular and 

rectangular surface stand for the growth or constancy of the gradus velocitatis, etc. These 

assumptions are precisely provided by the model. 

    

[2.3] Theorem II, Proposition II is the squared-time law which states that the “spaces described 

by a body falling from rest with a uniformly accelerated motion are to each other as the 

squares of the time-intervals employed in traversing these distances” (ibid., pp. 175-176). The 

units of time (“fluxus temporis”) are represented on AB; the distances through which a body 

falls with a uniform acceleration starting from rest are represented by HI (see figure 3). Time 

AD corresponds to length HL, AE to HM, AF to HN and AG to HI. AC is constructed at an 

arbitrary angle on AB (“quemcunque angulum”). OD and PE represent the maximum speed at 

D and E. 

 

                                                 
16

 It is not until Proposition III that Galileo has demonstrated that uniformly accelerated motion 

corresponds to motion along an inclined plane or motion in free fall. 
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Figure 3. 

 

The proof proceeds as follows (see also Wisan, 1974, pp. 286-288). From the mean-speed 

theorem it follows that the distances HM and HL are the same as those that would be traversed 

during AE and AD by a uniform motion with half the speeds of those by which OD and EP are 

represented. Since ratio AE is to AD as ½ PE is to ½ OD, or as PE to OD, the velocities are to 

each other as the time-intervals (v ~ t). Galileo replaces uniformly accelerated motions by 

uniform motions. From Theorem IV, Proposition IV (in the section on uniform motion) which 

states that “if two particles are carried with uniform motion, but each with a different speed, 

the distances covered by them during unequal intervals of time bear to each other the 

compound ratio of the speeds and time intervals”, Galileo concludes: x ~ (v × t) (ibid., p. 157). 

Hence, the ratio of the spaces traversed is the same as the squared ratio of the time-intervals 

(hence: x ~ t²). Galileo uses information about a simple situation (uniform motion) to a less 

simple situation (uniformly accelerated motion). Galileo then argues from his famous inclined 

plane experiments that the natural phenomena agree to this proposition. That the data 

correspond to the model is essential. Galileo seems, at least in the presentational or 

expositional part of his theory, not to spend much attention to the details of the experiments 

(for a recent study of Galileo’s inclined plane experiment, see Romo, 2005). Let me sum up 

the elements of this model: 

 

(1) AB, a line consisting of an infinite set of points, represents the time needed 

to traverse a distance HI; every point corresponds to an instant of time; A 

represents the starting point (t0); B represents the terminal point (tn); time-

intervals AD, AE, AF and AG correspond to distances HL, HM, HN and HI 
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(2) OD and PE represent the gradus velocitatis at instants of time D and E 

(3) HL, HM, HN, HI represent the distances traversed  in time-intervals AD, 

AE, AF, AG 

 

Data, model and the construction-rule are similar as in the previous theorem (except that 

uniform motion is now directly considered).
17

  

 

[2.4] After the scholium to this proposition, a dialogue was inserted by Viviani at the 

suggestion of Galileo “for the better establishment on logical and experimental grounds, of the 

principle which we have above considered” (ibid., p. 180) a year after the publication of the 

Discorsi (Galileo was blind at that time). This insertion includes a lemma and a theorem (the 

theorem will be discussed in [2.5]). The lemma states that the ratio between the momentum of 

a body G along the vertical CF is to the momentum of the same body along the inclined plane 

FA as the inverse of that of the aforementioned lengths (v1/v2 = x2/x1) (ibid., p. 182). The 

impelling force acting on a body in descent (“l’impeto del descendere”) is equal to the 

resistance or least force sufficient to hold it at rest (ibid.). To measure this force body G is 

connected to body H with a cord passing over F – see figure 4. We notice that, in order to hold 

G at rest, H must have a weight smaller in the same ratio as CF is smaller than FA 

(transcribed: W(G)/W(H) = FA/FC or W1/W2 = x1/x2). Galileo then writes: 

 

For if we consider the motion of the body G, from A to F, in the triangle AFC to 

be made up of a horizontal component AC and a vertical component CF, and 

remember that this body experiences no resistance to motion along the horizontal 

(because by such a motion the body neither gains nor loses distance from the 

common center of heavy things) it follows that resistance is met only in 

consequence of the body rising through the vertical distance CF. Since then the 

body G in moving from A to F offers resistance only in so far as it rises through 

the vertical distance CF, while the other body H must fall vertically through the 

entire distance FA, and since this ratio is maintained whether the motion be large 

or small, the two bodies being inextensibly connected, we are able to assert 

positively that, in case of equilibrium (bodies at rest) the momenta, the velocities, 

or their tendency to motion, i.e. the spaces which would be traversed by them in 

                                                 
17

 I omit a presentation of the corollaries which follow from this proposition, because they do not 

add anything substantial to the previous exposition. 
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equal times, must be in the inverse ratio of their weights. This is what has been 

demonstrated in every case of mechanical motion.
18

 (Galilei, 1954, pp. 182-183; 

my emphasis) 

 

 

Figure 4. 

 

Hence, in equilibrium, the velocities are to each other as the inverse ratio of the weights (v1/v2 

= W2/W1). Notice that this involves the introduction of virtual velocities. This result combined 

with the previous ratio (W1/W2 = x1/x2) leads to the result: v1/v2 = x2/x1, which was to be 

demonstrated. The natural phenomenon being modelled here is the situation of “inclined 

equilibrium” depicted in figure 4. The theoretical principle involved is the proto-principle of 

virtual velocities. It clearly does not constitute a general theoretical framework: its scope is 

rather restricted and applies only to equilibriums. We need to introduce further information (in 

this case, the established empirical proportion W1/W2 = x1/x2) so that the theoretical principle 

generates the inferences we are interested in. This model mediates between the proto-principle 

of virtual velocities and the data: it is not wholly theory-driven, because it allows for empirical 

input; neither is it wholly data-driven, because it clearly adds theoretical, interpretative 

structure. The theoretical principle is concretized by the model: it is applied to a situation 

where unequal weights (one hanging vertically, the other along an inclined plane) balance each 

other. By applying the principle we can infer that the ratio of the momentum in free fall is to 

the momentum along an inclined plane as the inverse ratio of their distances. The inferential 

steps follow from applying the proto-principle of virtual work to this specific model (where a 

direct proportionality between the weights and the distances holds). 

                                                 
18

 The translators point out that this principle is “a near approach” of the principle of virtual work 

formulated by Jean Bernoulli in 1717 (Galilei, 1954, p. 183n).  
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[2.5] The following theorem (which I shall refer to as the “equal-height-equal-momentum 

theorem”) states that the (final) speeds at different angles along an inclined plane at equal 

heights are the same. From the construction it is given that: AD is the third proportional
19

 to 

AB and AC (AB/AC = AC/AD) (ibid., p. 184). See figure 5. There are three important steps: 

 

 

Figure 5. 

 

(1) From the lemma (discussed in [3.4]), it follows that the impetus along AC is to 

that along AB as AB is to AC (I(AC)/I(AB) =
20

 AB/AC). By combination of the 

given information that AD is the third proportional to AB and AC, it follows 

that the impetus along AC is to that along AD as AC is to AD (I(AC)/I(AD) = 

AC/AD). 

 

(2) By the definition of naturally accelerated motion it follows that I(AB)/I(AD) = 

t(AB)/t(AD). From Corollary II to Theorem II, Proposition II, it follows that: 

t(AB)/t(AD) = AC/AD. Hence, I(AB)/I(AD) = AC/AD. 

 

(3) From (1) and (2): I(AB)/I(AD) = I(AC)/I(AD), and thus finally, I(AB) = I(AC). 

 

                                                 
19

 If A/B = B/C, then (1) B is the mean proportional to A and C and (2) C is the third proportional 

to A and B. In Book V of Euclid’s Elements, proportionals are magnitudes which have the same ratio, i. 

e. “when the first of four magnitudes is said to have the same ratio to the second, that the third has to 

the fourth, when any equimultiples whatever of the first and the third being taken, and any 

equimultiples whatever of the second and the fourth, if the multiple of the first be less than that of the 

second, the multiple of the third is also less than that of the fourth, and if the multiple of the first is 

equal to that of the second, the multiple of the third is also equal to that of the fourth, and if the multiple 

of the first is greater than the first, the multiple of the third is also greater than that of the fourth” 

(Todhunter, 1967, p. 134). 

 
20

 The relations denoted by the “=”–sign are to be understood here as purely proportional. 
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In the first step of this proof the lemma from [3.4], which serves as (part of our) theoretical 

knowledge here, is applied in order to infer the initial information that I(AB)/I(AC) = AC/AB. 

By the given third proportional, we are able to establish a relation between the impetus 

acquired along AC and the impetus acquired along AD: I(AC)/I(AD) = AC/AD. This 

proportion is further combined with inferences derived from other pieces of theoretical 

knowledge (the definition of naturally accelerated motion and Corollary II to Proposition II) in 

order to obtain the desired result: I(AB) = I(AC). The relation of (mean) proportionality is 

used to establish a relation between the impetuses acquired along AB, AC and AD. It is an 

abstract property of this mathematical model that facilitates the required inferential steps.
21

 

 

[2.6] Theorem VI, Proposition VI – known as the theorem of the isochronism-of-the-chords – 

is also of considerable interest. This proposition states that if “from the highest or lowest point 

in a vertical circle there drawn any inclined planes meeting the circumference the times of 

descent along these chords are each equal to the other” (ibid., pp. 188-189). Galileo provides 

three different proofs of this theorem. I will only discuss the first one. AB and AC are the 

planes along which the motion is supposed to take place (see figure 6). AI is the mean 

proportional between AE and AD. We know by elementary geometry that: (1) the rectangles 

FA.AE and FA.AD are to each other as the squares of AC and AB, and that (2) FA.AE and 

FA.AD are to each other as AE to AD. From this we obtain that the squares of AC and AB are 

to each other as AE is to AD. Since AE is to AD as the squares of AI and AD, it follows that 

the squares of AC and AB are to each other as the squares of AI and AD (and hence, that AC 

is to AB as AI is to AD). 

 

 

Figure 6. 

 

                                                 
21

 I want to thank Mauricio Suárez for pushing me towards that point.  
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Then Galileo continues as follows: 

 

But it has previously been demonstrated that the ratio of the time of descent along 

AC is to that along AB is equal to the product of the two ratios AC to AB and 

AD to AI; but this is the same as that of AB to AC. The ratio of these times is 

therefore unity [igitur ratio eorumdem temporum ratio aequalitatis]. (ibid., p. 

189) 

 

Hence, it follows that the times of descent along different chords on the same (vertical) circle 

will be equal. This shows something interesting about Galileo’s reasoning: kinematical insight 

(t1/t2 = (x1.v2)/(v1.x2)) is used to interpret purely mathematically relations. Up until Galileo 

interprets the proportion of time needed to traverse AC to that of AB as the product of the two 

ratios AC/AB and AD/AI, the proof is purely mathematical. Notice that this mathematical 

model is only partially isomorphic to motion along inclined planes: only the two triangles 

inside the circle share their structure with an inclined plane. From the mathematical 

construction and the kinematical reading of it, it follows that this compound ratio equals 1. 

Hence, the times are equal. The inferences follow from combining purely mathematical 

relations with the kinematical knowledge that t1/t2 = (x1.v2)/(v1.x2). Pure mathematics and 

kinematics allow the required inferential steps. 

 

 

3. Galileo’s Inferential Strategies 

 

As can be seen from the previous section, Galileo used a broad myriad of models (each having 

different theoretical sources and relying on various modelling or inferential strategies). In this 

part, I will systematize Galileo’s inferential strategies. The overview of models from Galileo’s 

propositions concerning accelerated motion (provided in the previous section) suggests that 

the following strategies are important: 

 

[3.1] ABSTRACTION FROM AND IDEALIZATION OF IRRELEVANT
22

 FACTORS
23

 

 

                                                 
22 Of course, both presuppose procedures for establishing that the abstracted or idealized features 

make no difference for our understanding of the real-world case. 
23

 See McMullin, 1985 and Koertge, 1977 on Galilean abstraction and idealization. 
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In order to facilitate inferential steps one abstracts from aspects that do not 

sensibly disturb a body’s motion (e.g. air resistance) and idealizes recalcitrant 

aspects of a body’s motion (cf. the assumptions of a perfectly smooth surface, 

perfectly spherical balls, etc.). 

 

This is especially clear from the example discussed in [2.1]. Galileo abstracts from air 

resistance which allows him to obtain the exact mathematical formulation he is interested in. 

In the same example, Galileo uses the ideal pendulum as an idealization of motion along 

inclined planes. The ideal pendulum perfectly allows the inferential steps that he is interested 

in. The inferential result is then transferred from pendulum motion to motion along inclined 

planes. The pendulum model turns out to be an idealization of the inclined plane situation: 

the trajectory along an inclined plane is deliberately distorted to allow the inferential steps 

that motion along an inclined plane by itself cannot provide. The neat result is only 

obtainable under the abstract and idealized conditions that hold in the model, but not in the 

natural world. 

 

[3.2] GEO-INFINITESIMAL REPRESENTATION 

 

Movements, which are processes that involve the decreasing, increasing of 

conserving of motion, are represented geo-infinitesimally, i.e. by geometrical 

entities consisting of an infinitude of points or lines. 

 

This is especially clear in Galileo’s demonstration of the mean-speed theorem (discussed in 

[2.2]). Galileo considered motion as an “intensive magnitude”, i.e. as a magnitude that 

increases by instantaneous additions. Now, this assumption is rather abstract to infer useful 

knowledge from. We need a geo-infinitesimal model to further concretise this thesis. Geo-

infinitesimal entities allow Galileo to represent instantaneous speeds and instants of time. 

Such representational strategies were of course crucial in the establishment of early-

mechanics. In Theorem I, instantaneous velocity is represented by infinitesimal, horizontal 

lines and the aggregate of the increase or constancy of motion is represented by geometrical 

surfaces (by triangles and rectangles). Infinitesimal lines represent the instantaneous gradus 

velocitatis. The aggregate of such lines, an area, represents the totality of the gradus 

velocitatis. By introducing time into the representation (time is represented by a vertical line 

consisting of an infinitude of points which corresponds to the infinitude of instances of time), 
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we can interpret the triangle and the rectangle as an accelerated motion or a uniform motion, 

respectively. This presupposes that time and velocity consist of an infinity of instants or 

degrees of velocity (or may at least be fruitfully considered as such). We notice that Galileo’s 

geo-infinitesimal models helped to concretize his conception of motion as an “intensive 

magnitude”. 

 

[3.3] SUBSTITUTION OF AN INFERENTIALLY RECALCITRANT TYPE OF MOTION FOR A LESS 

INFERENTIALLY RECALCITRANT TYPE OF MOTION 

 

In order to facilitate inferential steps concerning motions which are recalcitrant 

to generate the required inferential steps, one overcomes these limitations by 

substituting the inferentially recalcitrant motions for motions that are more easily 

treated. 

 

In [2.3] we saw how Galileo derived the squared-time law by applying the mean-speed 

theorem. In Theorem II, accelerated motion is reinterpreted as uniform motion (by the mean-

speed theorem). Now it becomes possible to derive the wanted proportionality by means of 

the relations that hold for uniform motion. By doing so Galileo succeeded in substituting 

uniformly accelerated motion for uniform motion and in paving the way for the inferential 

steps he was interested in. In [2.1] we have seen how Galileo similarly substituted movement 

along an inclined plane for movement along a pendulum.  

 

[3.4] PHYSICAL INTERPRETATION BY MEANS OF A PREVIOUSLY ESTABLISHED THEOREM 

 

A physical situation is interpreted by previously established theorems which now 

function as theoretical knowledge. 

 

In [2.5] Galileo applied the lemma from [2.4] in order to establish that the impetus along AC 

is to that along AB inversely as their corresponding distances. The model is then used to 

further constrain these theoretical sources. 

 

 [3.5] TRANSFERENCE OF GEOMETRICAL RELATIONS TO RELATIONS ON MOTION 
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In order to establish a relation between motions, one uses information about the 

relations that hold between the geometrical entities that (by being isomorphic to 

the targeted physical system) represent these motions. 

 

From the drawing presented in [2.6] Galileo infers from some elementary geometry that 

AC/AB = AI/AD. No kinematical knowledge enters the scene at all. But then Galileo 

suddenly adds information on the ratio between the times of descent along AC and AB. Here 

the mathematical figure becomes a kinematical model. The mathematically obtained 

proportion is then used in Galileo’s kinematical interpretation. 

 

[3.6] PROPORTIONALITY AS A PROXY FOR OTHERWISE UNRELATED MOTIONS
24

 

 

(Third or mean) proportionals are used to establish relations between otherwise 

unconnected geometrical entities (and thus, indirectly, between otherwise 

unrelated motions). 

 

A striking example of this can be found in [2.5]. Galileo only has information about the 

impetuses along AC and along AB at his disposal. By means of the third proportional AD, he 

is able to obtain a relation between the impetuses along AC and AD and to infer the further 

steps that he is interested in. Such proportionalities are properties that pertain to the models 

themselves. 

 

These diverse modelling strategies, I would consider as being prototypical for Galileo, were 

crucial for him to get a grasp on the phenomenon of motion (and in particular free fall). 

Obviously, these strategies can be mutually combined, so that a very complex image of 

Galileo’s models arises. 

 

 

4. In Conclusion 

 

One important lesson is that in Galileo’s proto–mechanics there was no unifying theoretical 

principle. This “handicap” forced Galileo to use a heterogeneity of inferential strategies and 

                                                 
24

 As one can notice this is a specific case of the previous strategy. Because it is so prominently 

present in Galileo’s reasoning, I have chosen to list it separately. 
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theoretical assumptions. Galileo’s models were derived from a broad myriad of theoretical 

knowledge. Galileo’s models amply show how theoretical knowledge needs to be concretised 

by models in order to obtain the desired inferential steps. In virtue of certain abstract 

properties pertaining to the models themselves (in Galileo’s very often proportionality), we 

are able to obtain novel results. Another way of putting it is that the information provided by 

a model helps to constrain the theoretical knowledge. In this paper, I have tried to bring the 

diversity of Galileo’s representational and inferential techniques to the fore. 
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