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Abstract. In this paper, we formulate and analyze a model of the resequenc-
ing buffer at the receiver’s side for the Selective Repeat protocol over a general

class of transmission channels. Thanks to its efficiency, Selective Repeat is a
ubiquitous error control mechanism in many different settings, in particular in
wireless protocols such as WiMax and WiFi.

In view of the correlated nature of transmission errors over wireless chan-

nels, the receiver buffer model considers a general Markovian error process. We
provide both an exact mathematical analysis of the receiver buffer behavior as
well as a computationally efficient large-deviations result. An asymptotic anal-

ysis of the delay is also given. Numerical examples show that the correlation of
the error process has an important influence on the performance of the receiver
buffer.

1. Introduction. Retransmission protocols are a crucial part of almost any means
of telecommunications, in almost any layer of the protocol stack. They play an es-
pecially important role in protocols over wireless links such as WiFi and WiMAX,
as these links often exhibit an error process that is both bursty and has high error
rates. The principle is simple: the sender transfers data (in the form of a numbered
packet stream) to a receiving unit over an unreliable channel. The receiver ac-
knowledges the status of each of the received packets, to which the sender responds
by resending the incorrectly received packets. Many retransmission protocols have
been proposed, each distinguished by the way that the retransmissions and the
acknowledgements are organized.

Of the basic types, the Selective Repeat protocol is the most efficient protocol
in terms of throughput, and as such it is widely implemented in numerous appli-
ances. However this efficiency comes at a price, as it is one of the most complex
retransmission protocols to implement and to analyze.

As packets might arrive out of order, Selective Repeat requires – in contrast to
other protocols – a resequencing buffer at the receiver’s side, in which a correctly
received packet can be stored until the original packet order can be restored.
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We provide in this paper both an exact and a large-deviations analysis of the
receiver buffer behavior. The latter results in computationally simple and insightful
formulas of the essential performance characteristics. It is our belief that these
may be more useful to the network analyst than an exact and elaborate analysis
that is tedious to compute and to interpret. The analysis in this paper might
prove to be instructive beyond the present application, as it shows a way to obtain
efficiently computable performance measures for a model that is particularly struck
by the curse of dimensionality. That is, the state space explodes exponentially as
a function of the roundtrip time, which means that traditional solution techniques
become intractable for even moderate values of that parameter. We show in this
paper that we can nevertheless extract with only minor efforts the decay rate of
the buffer content distribution, a performance measure that is often argued to be
among the most useful for teletraffic engineers.

The goal of the paper is first of all to study the performance characteristics of
the SR protocol and especially to clarify the behavior of the reordering buffer at
the receiver side and the true effect of error correlation. These issues have not yet
been properly been clarified before. A further goal of the paper is to communicate
another successful application of large-deviation theory to the performance modeling
community.

Previous work has been done on the queueing performance of the Selective Repeat
protocol, most papers focusing on the buffer at the sender’s side. The classic paper
by Konheim [17] provides an exact solution, that however suffers from the above-
mentioned curse of dimensionality. Various approximations with diverse levels of
accuracy and mathematical justification have been proposed in [16, 11, 1]. More
recent papers also study the impact of correlation on the protocol performance (see
e.g. [8, 7, 4, 13]). A key asset of the present paper is that we provide mathematical
proofs of the proposed approximations.

Papers which focus on the queue at the receiver’s side have been less numerous.
In the papers [5, 19], independent and identically distributed (IID) error processes
were considered, whereas in the present paper we extend this to general Markovian
error processes. More recent efforts are reported in [6] and [22]. In [6], as in the
present work, Markovian instead of IID processes were considered, however in the
arrival process instead of the error process. The analysis of [22] shares with this
paper a strong emphasis on tractable formulas, but it is applied to a situation where
packet delays are variable and packet errors are non-existent, quite different from
the lower-layer Selective Repeat setting that is the subject of this paper.

The outline of this paper is as follows. In section 2, we describe the mathematical
model of the resequencing buffer. Section 3 contains a method to compute the exact
solution. The large-deviations analysis is performed in section 4, and in section 5
we look at how exactly large buffer occupancies occur. We study the asymptotic
distribution of the packet delay in section 6. Thereafter, in section 7, we explore the
similarity with a well-known combinatorial problem, the coupon-collector problem.
Next, we show some numerical results in section 8. We conclude in section 9.

2. Mathematical Model of the Resequencing Buffer. We extend the math-
ematical model of [5] and [19] to more general error processes. The sender is as-
sumed to operate under saturated-buffer conditions, which means that there are
always packets available to be sent. This assumption frees us from specifying any
arrival process, and can moreover be considered as a worst case. Indeed, the fact



RECEIVER BUFFER BEHAVIOR FOR SELECTIVE REPEAT 3

that sometimes there are no new packets to be sent, can only have a positive ef-
fect on the performance of the system. We assume that the time is divided into
slices of equal length, called slots, and the transmission of one packet is assumed
to take exactly one slot. The receiver sends an acknowledgement message of each
packet. If a packet is incorrectly received, the transmitter sends a new copy, that
arrives at the receiver exactly L slots later. This duration of L slots is called the
roundtrip time or the feedback delay of the channel, and has a tremendous effect on
the performance of the system, as we will see. If the transmitter receives a positive
acknowledgement message, it just takes a fresh packet and attempts to send it.

When looking at a sample path as in Figure 1, it is handy to fit it into a rect-
angular strip of width L. Time proceeds as in a Western text, left to right, top to
bottom. As in [5] we call a vertical line in such a plot a ‘group’ and note that every
transmission attempt of the same packet takes place during the same group. How
can we determine how many packets are waiting in the resequencing buffer at an ar-
bitrary slot boundary t ? It is simply the number of all the correctly received packets
that were first transmitted after the eldest erroneously received packet (EEP). This
EEP can be detected as the longest uninterrupted gray region looking from bottom
to top. The buffer content at time t is hence simply the number of white squares,
counted from time t backwards until we meet the EEP (the dashed squares do not
count as they represent packets that are elder than the EEP). This is basically the
reasoning in [5] and in [19].

Figure 1. First method to determine the resequencing buffer con-
tent at a given time instant (L = 6). Erroneous transmissions are
indicated in gray. Dashed boxes represent transmissions of pack-
ets that have already left the buffer. We identify the EEP (here:
packet 10) and then count the number of packets with higher se-
quence numbers that are already successfully transmitted. We thus
find 10 packets in the resequencing buffer.

In the present paper, we take a related, and arguably a somewhat more elegant
approach (and in case of correlated errors, perhaps the only feasible one). We define
a process that runs backwards in time from a random slot boundary onwards, and
we count the number of correct packets that we encounter, as illustrated in Figure 2.
We stop the process when there has been a correct packet in every group. It appears
that the buffer content at that random slot boundary is the total number of correct
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packets minus L. This means that the buffer content at stationarity has the same
distribution as the random variable UT , which is defined in terms of the discrete-
time process (Ut,Vt) and the stopping time T , which have the following definition:

U0 = −L; V0 =

L
︷ ︸︸ ︷

(0, 0, · · · , 0);

Ut+1 = Ut + Pt; Vt+1 = rotate(Vt) ∨ (Pt, 0, · · · , 0), (1)

and

T = min{t : Vt = 1}. (2)

A few words on the notation. The random vector Vt is a Boolean vector of length
L (i.e., it consists only of zeros and ones). We denote the set of such vectors by B

L.
The function rotate(.) rotates a vector as follows:

rotate(v1, v2, · · · , vL) = (v2, · · · , vL, v1), (3)

and the operator ∨ performs an elementwise logical or. Finally, Pt is the stationary
ergodic error process, with Pt = 0 if an error occurs at time t, and Pt = 1 otherwise,
where it must be understood that Pt runs backwards in time. The random variable
U of the stationary buffer content hence corresponds in distribution to the random
variable UT .

It is easily verified that T is indeed a stopping time with respect to the process
(Ut,Vt), i.e., it is adapted to the natural filtration of the process. The above
process can be viewed as a variant of the classic ‘coupon-collector’ problem [12],
which goes as follows. Let n objects be picked repeatedly according to a certain
random process. Find the earliest time at which all n objects have been picked at
least once. The difference between the problem at hand and the classic problem
is that in the former, one attempts to get a specific object at any given time, in
a cyclic manner, whereas in the latter one typically receives a random coupon at
every attempt. In section 7 we show that in high-error environments, we obtain in
the limit the familiar coupon-collector solution. Note that the same solution was
obtained in [5], although without mentioning the relation with the coupon-collector
problem.

With respect to the packet error process, we mainly consider two classes: (1) the
classical independent and identically distributed (IID) error process, in which packet
errors occur with a fixed error probability p; and (2) finite state-space Markovian
error processes, which have become the model of choice in many performance studies
over wireless links [4, 3, 9, 20]. The large-deviations analysis can be extended to
more general error processes as well, a fact we briefly elaborate on in section 4.

The Markovian error processes we consider in this paper consist of a discrete-
time Markov chain (the background Markov chain) with a finite number of states
M , which we require in the present work to be irreducible. Furthermore, each
state has a distinct packet error probability. Let matrix Q denote the transition
probability matrix of the background Markov chain, and let vectors p0 and p1

record respectively the error and success probabilities during each state. The vector
π denotes the steady-state probability vector of the Markov chain. That is, π is
the unique normalized vector which satisfies the equation π = πQ. As is well-
known, the transition matrix Q(r) of a time-reversed Markov process is related to
the transition matrix Q of the original process by the following formula:

Q(r) = diag(π)−1QT diag(π), (4)
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Figure 2. The alternative method to determine the resequencing
buffer content, which accents the kinship with the classical coupon-
collector problem. Erroneous transmissions are again indicated in
gray. We travel backwards and count the number of successful
transmissions until every group has at least one. Here, the dashed
boxes represent successful transmissions that are not counted (that
is, after time T ). The buffer content is then found by subtracting
the length of a roundtrip time. Hence, we find 16− 6 = 10 packets
in the resequencing buffer.

where diag(v) denotes the diagonal matrix constructed from vector v and QT is
the transpose of Q. In order to minimize notational clutter, we denote in the sequel
by Q the transition matrix of the Markov process that travels backwards in time,
as this will prove to be by far the most prevalent. We also introduce the matrices
P0 and P1, defined as follows:

P0 = diag(p0)Q and P1 = diag(p1)Q. (5)

3. Exact Analysis of the Receiver Buffer Content. In this section we present
a method for the exact analysis of the buffer content distribution. That is, we want
to find the distribution of Ut when Vt hits the state (1, · · · , 1), (i.e. at stopping time
T ). This is related to so-called exit problems. While exit problems are about the
distribution of the time until a certain set of states are hit, here we are interested
in the value of an auxiliary process UT at the hitting time.

We define a vector generating function Uv(y, z) that keeps track of the time, of
Ut, Vt, and of the background state xt of the error process:

[Uv(y, z)]i =

∞∑

t=0

yt E[zUt1{Vt=v,xt=i}], (6)

where notation 1A denotes the indicator function, i.e., it is equal to 1 when event
A is fulfilled and zero otherwise. Note that Uv(y, z) is a ‘transient’ generating
function, that is, it explicitly keeps track of the time t through the argument y.
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After fairly straightforward manipulations in the transform domain, we can derive
from the definition of the process (Ut,Vt) that the following set of equations holds:

U0(y, z) = z−L
π + yU0(y, z)P0; (7)

U1v(y, z) = yzUv0(y, z)P1 + yUv1(y, z)(P0 + zP1); (8)

U0w(y, z) = yUw0(y, z)P0; (9)

U1(y, z) = yzU10(y, z)P1, (10)

for all v ∈ B
L−1\{1} and for all w ∈ B

L−1\{0}.
Looking at the definition of the process (Ut,Vt), we can deduce that the gen-

erating function U(z) of the buffer content under steady-state conditions is equal
to

U(z) = U1(1, z)1. (11)

In principle, the above derivations supply us with a system of 2L equations
from which the generating function U(z) can be obtained. By way of example, we
explicitly derive the buffer content distribution for the case L = 2. We have that

U00(1, z) = z−2
π(I − P0)

−1;

U10(1, z) = zU00(1, z)P1 + U01(1, z)(P0 + zP1);

U01(1, z) = U10(1, z)P0;

U11(1, z) = zU10(1, z)P1.

From this set of equations, we see that the buffer content distribution has the
following generating function:

U(z) = π(I − P0)
−1P1(I − P2

0 − zP0P1)
−1P11. (12)

Although for L = 2 the expression is simple enough, for larger L it simply becomes
intractable to solve this system of 2L equations. As we already stated in the in-
troduction, this problem is severely affected by the curse of dimensionality. Note
that, as in [5], we can circumvent this curse for IID error processes, as in that case
we can perform some tricks to obtain an explicit expression for U(z) for general L.
The non-commutativity of matrices however prevents us from using these tricks in
case of Markovian error processes.

As a numerical procedure, we find that this kind of analytical solution falls a bit
short. In fact, for large L, it is very well possible that even a Monte-Carlo simulation
of the stochastic process (Ut,Vt) can produce meaningful numerical results faster
and with less memory usage than the solution sketched above, especially if that
simulation program makes optimal use of importance sampling, or a similar variance
reduction technique. In the next section we therefore show some computationally
efficient analytical approximations.

4. Large-Deviations Analysis. Since the first steps were made in the works of
Cramér in the 1930s, and especially after Donsker and Varadhan put it on a firm
mathematical basis, large-deviations (LD) theory has always been a useful tool for
practitioners in such diverse areas as risk management, statistical physics and tele-
traffic engineering. Roughly speaking, large-deviations theory concerns the asymp-
totical behavior of stochastic processes, that is of situations that are large deviations
from the mean. Typically, it can only tell something about the exponential decay
rate of the probability of rare events, and as such it is not the most detailed of
analytical tools. However, the decay rate of certain rare events is often the most
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crucial performance measure, and furthermore, the power of large-deviations theory
resides in the fact that it can be generalized rather easily, and that it can, with rela-
tive simplicity tell us something about systems for which other methods – including
simulations – may fail.

In the following, we set out to compute the exponential decay rate for the buffer
content distribution. That is, it is often observed (from simulations etc.) that for
large k,

Pr[u > k] ≈ Ce−kδ, (13)

and we would like to compute the decay rate δ efficiently, (which is in practice of a
far greater importance than C). Formally, δ is defined as the limit

δ = − lim
k→∞

1

k
log Pr[u > k], (14)

provided that this limit exists.
We start out from the definition of the stochastic process (Ut,Vt). If UT ends up

with a value larger than k, it is because Ut reaches a value of k while the stopping
time has not yet occurred, i.e., there exists a time instant t for which Ut becomes k
and Vt 6= 1. This leads to:

Pr[UT > k] =
∑

t

1

t
Pr[Ut−1 = k − 1,Vt 6= 1, Pt−1 = 1]. (15)

If the stopping time has not yet been reached, it means that no successful transmis-
sion has occurred in (at least) one of the groups. Let us define the modified process
Y s

t where parameter s indicates that group s is entirely erroneous:

Y s
t = Ut1{Pt=1}

∏

k≥0,kL+s<t

1{PkL+s=0}. (16)

We derive a large-deviations principle for process Y s
t by means of the Gärtner-

Ellis Theorem [10]. In order to do so, we define the scaled cumulant generating
function Λs,t(θ):

Λs,t(θ)
.
=

1

t
log E[eθY s

t ], (17)

and the corresponding limit t → ∞:

Λs(θ) = lim
t→∞

Λs,t(θ). (18)

For Markovian error processes, Λs,t(θ) is equal to

Λs,t(θ) = log πP(θ)s−1R(θ)kP(θ)rP1e
θ1, (19)

where k and r are uniquely defined by relations t = s + kL + r + 1 and 0 ≤ r < L.
Also, we defined P(θ) = P0 + eθP1, and R(θ) = P0P(θ)L−1. Note that when t
goes to infinity, so does k, with k → L−1t whereas s and r remain bounded. This
enables us to invoke the Perron-Frobenius theory as follows:

Λs(θ) = lim
k→∞

1

kL
log v(θ)R(θ)kw(θ) (20)

=
1

L
log ρ(R(θ)), (21)

where the notation ρ(.) denotes the spectral radius of a matrix. In the first step,
we performed a change of variables in the limit, and assembled the asymptotically
vanishing parts into the row vector v(θ) and the column vector w(θ). In the second
step, we made use of a property that is proved in [10], §3.1, and that holds whenever
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matrix R(θ) is an irreducible matrix. Note that the spectral radius in that case is
identical to the largest eigenvalue, and hence an intuitive explanation resides in the
fact that in the limit, the contribution of the largest eigenvalue dominates all the
other contributions. Also note that Λs(θ) is independent of s, and hence we drop
the s when no ambiguity can arise and simply write Λ(θ).

The Gärtner-Ellis Theorem states that the rate function is equal to the Legendre-
Fenchel transform of Λ(θ):

Λ∗(x) = sup
θ

(θx − Λ(θ)), (22)

under certain regularity conditions on Λ(θ) (that is, it must be finite in a neighbor-
hood of θ = 0, essentially smooth and lower-semicontinuous). These conditions are
fulfilled in this case, see eg. [14], p. 43.

The rate function Λ∗(x), in turn, allows us to find the exponential decay of prob-
abilities associated with process Y s

t : for sufficiently ‘nice sets’ A (such as intervals)
the following powerful result holds:

Pr[t−1Y s
t ∈ A] = exp(−t inf

x∈A
Λ∗(x) + o(t)), (23)

where o(t) denotes a function that decays faster than any linear function. Also
note that the application of the Gärtner-Ellis Theorem is not restricted to the finite
Markov error processes we are considering here. As long as the process Y s

t admits
a scaled cumulant function, for which the limit Λs(θ) exists and fulfills the above
mentioned regularity conditions. Its computation can be performed either in closed
form, numerically, or even by sampling (i.e., by a Monte-Carlo based technique).

Now, we are ready to derive the large-deviations result for the buffer content
distribution proper.

Theorem 4.1. The buffer content distribution satisfies

lim
x→∞

1

x
log Pr[UT > x] = −δ,

where δ = infx>0
Λ∗(x)

x or equivalently,

δ = sup{θ > 0 : Λ(θ) < 0}. (24)

Proof. We start out by showing that the two definitions of the decay rate δ are
equivalent. In fact, this is proved in many articles and books on large deviations,
but for the sake of completeness, we repeat the proof here. Note that

θ < δ = inf
x>0

Λ∗(x)

x
iff θx − Λ∗(x) < 0 for x > 0.

By the duality of the Legendre-Fenchel transform under convexity, we get

Λ(θ) = sup
x>0

(θx − Λ∗(x)), (25)

and hence, θ < δ, if and only if Λ(θ) < 0, which leads to the desired

δ = sup{θ > 0 : Λ(θ) < 0}. (26)

It is this last relation that proves to be far more useful. It amounts to finding a
root of the cumulant generating function, without any need for Legendre-Fenchel
transforms and so on.

Next, we derive a lower bound for the exponential decay rate. Observe that for
any given s, t and x,

Pr[Y s
t > x] ≤ Pr[UT > x], (27)
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as the event Y s
t > x implies UT > x. Hence, for any c > 0, and x > 0, and

s : 0 ≤ s < L,

1

x
log Pr[UT > x] ≥

1

c⌈x
c ⌉

log Pr[
Y s
⌈ x

c
⌉

⌈x
c ⌉

> c], (28)

where the notation ⌈a⌉ denotes the smallest integer larger than a. Choose t = ⌈x
c ⌉,

then we get

lim inf
x→∞

1

x
log Pr[UT > x]

≥
1

c
lim inf
t→∞

1

t
log Pr[

Y s
t

t
> c] = −

Λ∗(c)

c
. (29)

Since c is chosen arbitrarily (as long as c > 0), we have indeed proved the lower
bound

lim inf
x→∞

1

x
log Pr[UT > x] ≥ −δ. (30)

For the upper bound, we start from the inequality

Pr[UT > x] ≤
∑

t≥1,0≤s<L

Pr[Y s
t ≥ x], (31)

The reasoning behind this inequality is that if the event {UT > x} occurs, then
there exists s, t for which {Y s

t ≥ x}. Hence, summing over all possible s and t, we
get the desired inequality.

Using Chernoff’s bound, we get:

Pr[Y s
t ≥ x] ≤ exp(−θx) E[exp(θY s

t )]

≤ exp(−θx + tΛs
t (θ)), (32)

where in the second step we applied the definition of Λs
t (θ). Pick some θ > 0

such that Λ(θ) < 0 (we know that there exists such θ since R(0) is a substochastic
matrix, and hence Λ(0) < 0 and Λ(θ) is differentiable in the neighborhood of θ = 0).
Choose ǫ > 0 such that Λ(θ) + 2ǫθ < 0. Since Λs

t (θ) → Λ(θ), there exists t0 such
that for t > t0

Λs
t (θ) < Λ(θ) + ǫθ, (33)

and hence

Pr[UT > x] ≤ e−θx




∑

1≤t≤t0,0≤s<L

etΛs

t
(θ) +

∑

t>t0,0≤s<L

e−ǫθt



 . (34)

The first sum is finite because each of the terms is finite, and the second sum is
clearly finite. Hence

lim sup
x→∞

1

x
log Pr[UT > x] ≤ −θ, (35)

As we can choose θ as long as Λ(θ) < 0 or equivalently 0 < θ < δ, this concludes
the proof.

Note that thanks to a careful choice of the processes (Ut,Vt) and Yt, we were
able to derive the decay rate δ along similar lines as for the standard G/G/1 queue,
see for example the proofs in [14, 15, 18], which is somewhat remarkable as the
workings of the resequencing buffer are very different. For example, it is hard to
attribute a meaning to workload processes in resequencing buffers, which are the
central tool in the LD derivation of standard queues.
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For IID error processes (with error probability p), we are able to come up with
an exact solution. Note that the cumulant generating function of Y s

t is in this case
equal to

Λ(θ) =
1

L
log(p(p + (1 − p)eθ)L−1), (36)

so that

δ = log
p−

1
L−1 − p

1 − p
. (37)

One of the appeals of large-deviations techniques is that the lengthiest derivations
can often be summarized by a simple intuitive explanation. Here, this would be
something along the lines of: in Selective Repeat resequencing buffers, large buffer
contents occur only when there are many erroneous transmissions for one particular
packet.

Note that the value of δ stays invariant under the reversion of the Markov chain.
Indeed, let λ(θ) be an eigenvalue of R(θ), and let v(θ) be the corresponding left
eigenvalue. When we construct the corresponding matrix expression R(r)(θ) for the
reversed background Markov process Q(r), we get

R(r)(θ) = diag(π)(−1) diag(p0)Q
T
(
(diag(p0) + eθ diag(p1))Q

T
)L−1

diag(π)

= diag(π)(−1) diag(p0)(P(θ)L−1)TQT diag(π). (38)

We find that w(θ) = diag(π)(−1) diag(p0)v(θ)T is a right eigenvector of R(r)(θ),
corresponding to eigenvalue λ(θ). Indeed,

R(r)(θ)w(θ) = λ(θ) diag(π)(−1) diag(p0)v(θ)T. (39)

As this holds for every eigenvalue λ(θ), this means that the spectra of R(θ) and
R(r)(θ) are identical, so that naturally the spectral radii are the same as well.

Summarizing the results of this section, in order to find the decay rate δ, we
must find the smallest real root of an expression involving a spectral radius. By
combining a good root-finding algorithm (such as the secant method or the Newton-
Raphson method) with an efficient algorithm to compute the spectral radius (see
e.g. [21]), this is a computationally feasible task, even for larger matrix dimensions.

5. A Closer Look at the Large Deviations Limit. In the previous section,
we looked at the probability that an exceptionally large buffer content occurs. In
this section, we have a closer look at how this rare event exactly occurs. Indeed,
we know that one group will stay erroneous during a large time, but what is the
expected number of successful transmissions in the other groups? Is it larger or
smaller than during ‘typical’ runs of the process? Is it the same for all groups?
These questions are not merely of theoretical interest, but they are also important
for the design of efficient simulation algorithms.

For an IID error processes, the error rate during a build-up to the rare event is
of course the same for every group except the erroneous one. In our finite Markov-
chain setup, the situation is not as simple. An equal error rate in each of the groups
is not assured. We introduce the L−1-dimensional functions Λ(θ) and Λ∗(x), which
are respectively the limiting cumulant generating function and the rate function.
They are defined as follows:

Λ(θ) = log ρ(P0P(θ1) · . . . · P(θL−1)) and Λ∗(x) = sup
θ

(θ · x − Λ(θ)). (40)
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Intuitively, the rate function Λ∗(x1, x2, · · · ) gives the decay rate when the success
rate during the first group is x1, during the second, x2, and so on. We thus bring
the large-deviations principle to a more detailed space.

We bring the definition (24) of δ also into this finer space as follows:

δ = sup{θ > 0 : Λ(θ, · · · , θ) < 0}. (41)

As eigenvalues are differentiable in a parameter whenever the original matrix is
differentiable in that parameter, we have that Λ(θ) is differentiable in the relevant
domain. Hence, the Legendre-Fenchel transform of Λ(θ) reduces to the simpler
Legendre transform, and in particular,

Λ∗(x) = (δ, · · · , δ) · x − Λ(δ, · · · , δ), where x = ∇Λ(θ)|θ=(δ,··· ,δ). (42)

It is exactly this vector x in which we are interested. With the help of some
matrix manipulations we get simple formulas for x. Indeed, its ith component is
equal to

xi =
∂Λ

∂θi
|θ=(δ,··· ,δ)

=
1

ρ(R(δ))

∂

∂θi
ρ(P0P(θ1) · . . . · P(θL−1))|θ=(δ,··· ,δ). (43)

Due to the definition of δ, the fraction is equal to 1, whereas the remaining factor
can be rewritten by the formula for the derivative of an eigenvalue. Indeed, let ℓ
and r denote the left an right eigenvectors corresponding to the Perron-Frobenius
eigenvalue of R(δ), then we have that

xi = ℓ
∂

∂θi
(P0P(θ1) · . . . · P(θL−1))r

= ℓP0P(δ)i−1P1P(δ)L−i−1r. (44)

Hence, we found that in sample paths leading to large buffer contents, the success
rate in each of the groups is not necessarily equal but given by equation (44). After
some trivial manipulations, we find that for IID error processes, the success rate is

the same in each of the groups, and equal to 1 − p
L

L−1 , which is (slightly) higher
than during a typical run.

The relationship between large-deviations results and exponentially tilted impor-
tance sampling is well-known, see e.g. [2]. From the fact that the optimal decay rate
δ is reached in Λ(δ, · · · , δ) (with all arguments the same), we see that the optimal
change of measure tilts the Markov chain equally with parameter δ in all of the
groups, except for the first group, where it is tilted with parameter −∞. We have
put this knowledge to use to improve the efficiency of our simulation program.

6. Asymptotic Analysis of the Packet Delay. We now tackle the asymptotics
of the packet delay. The heuristic reasoning is as follows. An exceptionally long
delay of a packet is only possible when there is a long burst of errors in one of the
groups. Let D be the random variable denoting the delay of an arbitrary packet.
Then we postulate the following on the decay rate ν of the packet delay:

Theorem 6.1. The packet delay distribution has an exponential asymptotic with

decay rate ν:

lim
k→∞

1

k
log Pr[D > k] = −ν,
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where

ν = −
1

L
log ρ(QL−1P0). (45)

Proof. We find lower and upper bounds of the probability for the event {D > k},
and show that they have the same exponential asymptotic.

We start with an upper bound. If we have a delay larger than k, then necessarily,
there is a group with minimally ⌈(k−1)/L⌉ consecutive errors. Let i be the channel
state of the slot during which series of errors starts. For the upper bound we are
interested in the channel state that maximizes the probability. Thus we have has
an upper bound:

Pr[D > k] ≤ sup
i

Pr[# errors in a group = ⌈(k + 1)/L⌉]

= sup
i

ei(Q
L−1P0)

⌈(k+1)/L⌉1, (46)

where ei is a row vector for which the ith component is 1, and the other components
are zero. From the Perron-Frobenius theorem it is hence easily seen that

lim
k→∞

1

k
log Pr[D > k] ≤ −ν. (47)

Now we look at the lower bound. We construct a superset E of {D > k} in the
event space, so that when E holds, then necessarily also {D > k}. The probability
of E is then smaller than Pr[D > k], giving us the desired lower bound. Informally
speaking, we need two ingredients so that a sample path produces a packet delay
larger than k: (1) there must be a packet that is erroneously transmitted for a large
number of times, say n, where n ≥ ⌈(k+1)/L⌉+1, and (2) there must be an arrival
in the reordering buffer of a packet that is younger than said packet. This means
we have a situation as in figure 3. But since we track the delay of an arbitrary
packet, we condition on the event that the arrival indeed occurs. Also note that for
the lower bound, we look for the combination of channel state i and ‘gap’ j that
minimizes the probability. Hence we have:

Pr[D > k] ≥ inf
i,j,m

Pr[n errors|packet arrives with certain i, j,m]

= inf
i,j,m

eiP1Q
j−1P0(Q

L−j−1P0Q
j−1P0)

m−1QL−j−1P1Q
j−1P0×

× (QL−1P0)
n−11×

× (eiP1Q
j−1P0(Q

L−j−1P0Q
j−1P0)

m−1QL−j−1P11)−1. (48)

For large k, the contribution of the matrix power on the middle line dominates and
hence we can apply the Perron-Frobenius theorem as before. Even if m is large,
it cannot dominate as the terms in numerator and denominator cancel each other.
Hence we have the lower bound

lim
k→∞

1

k
log Pr[D > k] ≥ −ν, (49)

and this concludes the proof.

7. Approximations for High Error Probabilities. When the error probabili-
ties approach one, the time between two error-free transmissions will be sufficiently
high, so that (1) the groups of successive error-free transmissions are almost inde-
pendent, and (2) the Markov chain of the channel has reached stationarity. Under
such conditions, we can directly apply the results of the coupon-collector problem.
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Figure 3. Necessary event for the occurence of a large packet
delay. As before, white blocks denote correct transmissions, gray
blocks denote incorrect ones and dashed blocks denote transmis-
sions which may be either. The variables j, m and n are as defined
in the text.

The value of interest in the original problem is the time τ (which in our problem
translates to the number of successful transmissions) until we have collected all
coupons. Under the above stated conditions, the buffer content during regime UT

can be approximated as UT = τ − L. We mention the mean, variance and tail
probabilities (the derivations can be found in most textbooks on combinatorics, e.g.
in [12]):

E[UT ] = L(HL − 1) ≈ L log L + γL +
1

2

Var[UT ] = L2H
(2)
L−1 − LHL−1 ≈

π2

6
L2

Pr[UT > k] ≈ e−k L

L−1 . (50)

In these equations, HL denotes the Lth harmonic number, and H
(2)
L the Lth second

order harmonic number. By γ we denote the Euler-Mascheroni constant: γ ≈
0.5772157 · · · .

Note that the mathematical elegance of this high-error approximation surpasses
its practical usability, as consensus seems to be that the usage of retransmission
protocols over channels with an extremely high packet error rate leads to poor
performance.

8. Numerical Results and Discussion. In this section, we show the validity of
our large-deviations technique by means of some specific numerical examples. First,
we consider some cases where the error process is IID. In Figure 4, the decay rate δ
of the buffer content distribution is plotted against the packet error probability p,
for different values of the feedback delay L. We notice that the decay rate is higher
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Figure 4. Plot showing the influence of the error probability p
on the decay rate δ of the buffer content distribution, for different
values of the feedback delay L.
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Figure 5. Plot showing the exact distribution of the buffer con-
tent, obtained by simulations (with importance sampling; full
lines) and also the tail approximations obtained by large deviations
(dashed lines), for p = 0.3 and different values of the feedback delay
L.

for small error probabilities, which is consistent with the intuition that in that case,
higher buffer contents are very unlikely. Also as intuitively expected, the decay rate
decreases with increasing values of the feedback delay. For p → 1, the decay rate
approaches the value of log L

L−1 that is predicted by the high error rate analysis.
In Figure 5, we show that our model indeed predicts the decay rates right. We

repeat that large deviations in general predict only the decay rate and not the offset
of the tail, and therefore, we have chosen an offset of zero (corresponding to C = 1
in the form C exp(−δn). We obtain accurate simulation results with the help of
importance sampling.

In the next pair of plots, we show some results in case of Markovian error pro-
cesses. We take a three-state error model that has been derived in [20] by means
of the Hidden Markov estimation techniques. They found for a fading margin
F = 20dB and a Doppler frequency normalized to the slot length of fDT = 0.01,
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Figure 6. Plot showing the influence of error correlation on the
decay rate δ of the buffer content distribution.

the following matrices:

P0 =





0 0.002708 0.000213
0 0.646523 0
0 0 0.878338



 ,

P1 =





0.997079 0 0
0.353477 0 0
0.121662 0 0



 . (51)

In Figure 6, we show the influence of the correlation on the decay rate. That
is, we compare the decay rate of the Markovian channel with the decay rate of the
corresponding IID channel (i.e. with the same time-average error probability, which
in this case is given by p = 0.009324). We see that especially for smaller feedback
delays, there is a considerable difference between the correlated and uncorrelated
error process. In Figure 7, we compare the obtained asymptotics with simulations.

Finally, in figure 8, we show the decay rates of buffer content and the packet
delay, for both the Markov process and the corresponding IID process. A fairly
remarkable fact is that although for smaller roundtrip times there are important
differences in decay rates, for very large decay rates the four curves converge to the
same asymptote.

9. Conclusions. We have analyzed the performance of the resequencing buffer for
the selective-repeat protocol over correlated channels. We found an exact solu-
tion for the buffer content distribution over Markovian error channels, as well as
computationally efficient large-deviations results. We touched upon the similarity
with the coupon-collector problem, to which it reduces in the limit as packet error
probabilities increase. Comparisons with simulations confirm the validity of our
approach.
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