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The fragmented and ever more specialized nature of today’s railway systems makes it more and more 

complex to operate. An increasing number of actors are involved in the operation of a railway service. 

Infrastructure management is being separated from the operational aspect. Apart from the traditional 

state-owned train operators, open access and private operators start using the same infrastructure as 

well. Additionally, an increasing number of information systems, such as for real-time passenger 

information and entertainment need to exchange information. Therefore, Information & Communication 

Technologies have an increasingly vital role to play in the operation of the railways. However, as the use 

of stand-alone information systems improves the efficient operation of a single railway stakeholder, due 

to the complex fragmented nature, there is a clear need to integrate and correlate the available 
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information. A high level of structured interoperability between information systems is required to 

correctly combine and manage this complex information. Several mechanisms exist to integrate 

information systems. The approach presented in this paper discusses the integration on data level. The 

main benefit of this approach is that it supports independent application development. It is after all 

undesirable and nearly impossible to centralise application development in world-wide fragmented and 

large systems, such as the railways. We will discuss a number of approaches towards data integration. 

Two main technologies are considered, namely UML (Unified Modelling Language) and ontologies. An 

ontology-based solution is compared with an UML-based approach. The advantages and disadvantages of 

both UML and ontology-based approaches are presented. The results are evaluated by means of a 

demonstrator developed as part of the InteGRail project (Intelligent Integration of Railway Systems), an 

FP6 EU research project. We believe that this demonstrator, the Network Statement Checker, is an ideal 

candidate to demonstrate the advantages of an ontology-based integrated information system. This tool 

allows the infrastructure operators to combine the network statements of different countries in different 

formats and to analyse them in a transparent way. The ontology-based approach shows clear advantages 

compared to the UML approach, by means of the formally defined model, but on the other hand the 

performance of the currently available tools is still to be improved. However, we believe that the 

augmented value of an ontology-based approach is also to be found in lower development costs because 

of its potential reuse in multiple applications, since their philosophy is to serve as a domain model instead 

of as a data model for a specific application. 

Keywords: Ontology, Information-Integration, Railway, Network Statement Checker, InteGRail 
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1. Introduction 

From an engineering point of view, the railway domain is a large-scale integration challenge. Historically, 

this has been the case in the mechanical field, for instance wheel and track dimensions. This is 

witnessed by numerous standards. Unfortunately in Europe with its history of national railway 

companies, standards are mostly nation-specific. In the field of electrical integration a large body of 

knowledge has been built up as well. For example electromagnetic compatibility norms and a 

standardized validation procedure make for a smooth electrical integration.  

Industry-wide integration in the information domain is only in its infancy. From an efficiency point of 

view, this field leaves much room for improvement (as did the integration in the mechanical and 

electrical domain). A number of potential integration mechanisms exist. Firstly, one could integrate 

individual applications by means of re-implementing them in one domain-wide application. Secondly, 

Application Programming Interfaces (API) could be exposed as well offering application developers the 

possibility to use one another’s applications and business information. Lastly, the integration could also 

be done at data level. This means that the individual applications continue to be developed 

independently, but a commonly agreed domain model is established to exchange information between 

the collaborating stakeholders. This last mechanism is elaborated in this paper and more precisely, an 

ontology-based approach is compared with a UML-based one. In a large world-wide and fragmented 

domain, such as the railways, we believe the first approach is unfeasible. After all, centralising 

application development in such an environment would be problematic. The second approach is also 

not ideal, because of the dependency on the exposed APIs. Even the slightest change in this interface 

results in a necessary adaptation of numerous other applications, since many stakeholders might be 

using this particular API. The integration by means of commonly agreed domain models is therefore a 

better suited approach. Additionally, by using ontologies as a means of constructing these models, the 



4 

 

additional benefit of formally defined and description logics supported models is exploited. It does not 

only define the syntax of the information exchanged, but also the semantics of that information, by 

using a shared and extendable domain-wide model. 

Information integration is not exclusively a challenge for the railway domain. The TeleManagement 

Forum (TM Forum), for example, is a consortium in the telecom industry. It consists of over 800 partners 

(Network Operators, Service Providers, Equipment Suppliers, Software Suppliers, and System 

Integrators) and provides a set of recommendations and guidelines for building efficient network and 

service management applications in telecom oriented companies. Their focus is on telecom business 

process modelling and models for data exchange between different IT systems in telecommunication. 

The main goal is the standardized interaction between different telecom stakeholders and optimized 

internal organization in telecom companies. Important examples of telecom business processes are: DSL 

fulfilment, Repair Management and Bill Invoice, Payments and Inquiry Management. 

An important outcome of TM Forum is SID (Shared Information Data), which is an information and data 

model. It describes how to model telecom business process information and data and is a common 

vocabulary that creates a bridge between the telecom business and IT, which then simplifies the 

integration of IT systems. SID also describes relationships (associations) between entities. The basic 

building blocks are ABEs (Aggregate Business Entities). Example ABEs in the Resource category are: 

Resource Specification, Resource Topology, Resource Performance, Resource Usage, etc. Example ABEs 

in the Customer category: Customer Order, Customer Problem, Customer Bill, Customer Bill Inquiry, etc. 

UML (Unified Modelling Language) is used to describe the different ABEs and the relations (Reilly & 

Wilmes 2008). A number of integration tools exist which allow semantic data integration through visual 

programming. 
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For wider specifications of system integration, as is the case in the railway domain, the preferred 

solution for the integration of data is one that avoids any major alteration to existing system design.  

Further to this, there is a requirement to enable systems to provide data to other stakeholders that can 

be extended at any time without major redesign.  This interaction can be achieved through the 

implementation of a common vocabulary that forms the foundation for communication between 

applications.  In this paper, we propose an underlying technical framework and methodology to realize 

the data integration in the railway domain. Section 2 introduces the InteGRail approach towards 

information integration. InteGRail was an FP6 European Rail Research project. Section 3 describes the 

advantages and disadvantages of both a UML- as well as an ontology-based integration approach, while 

Section 4 presents a number of methodologies to construct information integration ontology models. By 

means of a demonstrator, we evaluate in Section 5 the performance of the ontology-based 

methodology for an important railway use case. In Section 6, we present our views on how to bring the 

idea of an ontology-based information platform forward towards an industrial deployment. Section 7 

concludes this paper. 

2. Data integration to improve business opportunities and efficiency 

Data and information integration in the field of the railway (and also the intermodal) transportation is 

the subject of several ongoing and finished European Research projects. Their goal is to define 

information standards to improve the efficiency of the industry. At the communication protocol level, 

the Internet Protocol (IP) has become the de facto standard. At the syntactical level, the Euromain 

project (EuRoMain Consortium, 2003) has standardized towards XML and has proposed schemas for a 

limited number of cases of data integration. While this approach reaches the goal of syntactical 

integration, the need exists to have on top of that a semantic integration. The syntactical integration has 

no answer for the integration of existing data sets in the same information domain that happen to have 
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a semantic mismatch, for example the synonym problem as defined further in this paper. A 

transformation step is needed in this case. For the integration of datasets extending the information set 

currently defined in schemas, standardization effort is needed before this data can be used. These 

examples show that in the current railway state of the art a new interface definition is needed for each 

new usage of the information. It is the semantic mismatch - or undefinedness - that obstructs the single 

specification of information.  

Many railway undertakings nowadays encounter the boundaries of their proprietary isolated 

information systems. There is a growing need to integrate these systems in order to correlate the 

information. Firstly, the integration of this data augments its value drastically, for example when sensor 

measurement data is augmented with its exact time, location or measurement accuracy.  Secondly, the 

correlation aspect improves the handling of the enormous amounts of data readily available today. 

Moreover, due to the amounts of data available, there is a need to adopt a well-structured approach. At 

the same time, the reduction of the costs to maintain the systems and assets is of great importance in 

the current environment of increasing competition. Further cost reduction is limited because of the lack 

of knowledge of the world outside these systems.  These islands of systems often contain duplicated 

data, counterproductive for the optimization of business processes. 

To augment the value of the available data, semantic context information should be attached to it. In 

the example given in Figure 1a, this annotation is the addition of the time and place to the raw 

measurement. This is the second step in the process to create intelligence out of the raw data, as 

generally accepted in the Semantic Web world; the first step being the exposure of raw data without 

any annotation at all. A possible third step is to create knowledge out of the information available. This 

means that the systems using the semantically annotated information should be thought how the 

augmented information should be used. The ultimate goal is to create a self-organizing system, which 
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does not only understand the data, but also has the intelligence to understand when to use the 

knowledge. Figure 1b shows the process with a concrete example illustrating the differences in every 

step in the chain. The raw data is just a measurement, while the information adds the place and time to 

it as context information. The knowledge in the third step represents the domain rules that need to be 

followed in case of such a measurement, while the last step indicates the situation when further 

processing of this information is not necessary anymore. 

The InteGRail approach (InteGRail Consortium, 2008) currently developed has to be positioned on the 

border between step 2 and step 3, with the emphasis on augmenting the data with context so that a 

structured and meaningful exchange of information between railway stakeholders is supported. As will 

be indicated in the following paragraphs, example implementations of knowledge injection in the 

system have been demonstrated in the use cases developed by the consortium.  

 [Figure 1a][Figure 1b] 

 Not only example domain modelling has been performed within the project, but InteGRail has also 

specified a modular and generic platform for such systems to cooperate and exchange information. At 

the end of the project, a Proof-of-Concept platform implementation has been demonstrated. The 

continued implementation and deployment of a well-developed and moderated InteGRail Service 

Platform is therefore still necessary to exploit the InteGRail results in a commercial and industrial 

environment. Such a platform should be a robust, secure and scalable service platform for semantic data 

exchange and integration. 
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3. Evaluation of ontology-based data integration 

3.1.  The data integration problem 

Data integration is concerned with unifying data with some common semantics but originating from a 

set of heterogeneous, distributed and autonomous (unrelated) sources (Buccella, et al., 2003). The 

integration process provides the users with a unified view of this data. This data can be distributed on 

different hosts that are connected through a network. The data sources are autonomous, which means 

that users and applications can access them through a local or a federated system. On top of that, the 

data can also exhibit four types of heterogeneity (Cui & O’Brien 2000):  

• Structural heterogeneity: The data sources have different data models.  

• Syntax heterogeneity: The data sources have different languages and data representations. 

• Implementation heterogeneity: The different data sources run on different hardware and 

operating systems. 

• Semantic heterogeneity: The conceptualisation of the different data sources is influenced by 

the designers’ view of the concepts and the context to be modelled. The different data sources use 

different contexts to give meaning to the data.  

Semantic heterogeneity can give rise to semantic conflicts between the different data sources. Three 

types of conflicts can be identified (Goh, 1997). Confounding conflicts occur when data items seem to 

have the same meaning, but differ in reality for example owing to different temporal contexts. The 

usage of different reference systems to measure a value causes scaling conflicts, for example gallons 

versus litres. Naming conflicts take place when the naming schemes of the different information sources 

differ significantly. Three common problems are:  
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• Synonyms: The concepts are semantically equivalent. Models can use different terms to refer to 

the same concept or the same properties are modelled differently by different systems. 

• Homonyms: The concepts are semantically unrelated. The same terms are used for different 

concepts.  

• Classification: The concepts are semantically related. For example, a concept is a generalization 

or a specialization of another concept. 

 

All these characteristics make it difficult to integrate the data. Heterogeneity is the most challenging 

problem. In order to achieve semantic interoperability in a heterogeneous information system, the 

meaning of the information that is interchanged has to be understood across the systems. Thus, a 

common semantic model of all the data in the different sources is required. 

3.2.  Introduction to the OWL technology 

A short, but comprehensive definition of an ontology, based on the definition by Gruber (Gruber, 1993), 

is: “An ontology is a formal specification of an agreed conceptualization of a domain in the context of 

knowledge description”. An ontology thus describes in a formal commonly agreed manner the concepts 

in a certain domain, their attributes and their relationships. 

Confusion often rises about the difference between ontologies and conceptual schemas. The processes 

of constructing a conceptual schema and a domain ontology are similar. However, the objective (scope) 

of these models is very different (Fonseca & Martin 2007). Conceptual schemas are built with a specific 

information system in mind. They have the practical purpose of defining, constraining and limiting what 

knowledge and data is going to be used in a certain information system. Ontologies have as purpose to 

make all the knowledge about a certain domain explicit. Although ontologies can be used by an 

information system or to support its development, they are not constructed with this information 
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system in mind. Ontologies can therefore be easily re-used by various information systems or 

applications.  

The most used and well-known language to describe ontologies is OWL (Ontology Web Language) 

(Horrocks, et al., 2003; Bechhofer, et al., 2004; McGuinness & van Harmelen 2004). This technology 

allows for a common, formally defined and description logics supported data-format to be specified. 

Effectively, it models the world around the systems in a graph model. This graph contains the concepts 

present in the modelled domain, the relations between those concepts and potentially classification 

axioms which specify generic knowledge about the domain and can be exploited by the business logic of 

an application at a generic level of abstraction, by means of generic reasoning mechanisms. This 

common, agreed data-format can then be used to exchange the information and its attached domain 

model beyond the undertakings’ system boundaries, thus facilitating an integrated view of the asset’s 

conditions. Moreover, the ontology technology not only allows to model the data in a formalized 

manner, but also to reflect the semantics of that data, thus the information and the knowledge of those 

systems. 

Due to the foundation of ontologies in description logics (Nardi, et al., 2003), the models and description 

of the data in these models can be formally proofed.  It can also be used to detect inconsistencies in the 

model as well as infer new information out of the correlation of this data. An example of such inference 

is root-cause analysis. However, for the latter to be possible, it is paramount that extra effort and care 

has to be taken to model the system in such a way that this inference is made possible. This is perhaps 

the most difficult part of the entire task to integrate a system in such a semantic information exchange 

platform. This proofing and classification process is referred to as reasoning. Due to the supporting 

paradigm of the ontology constructs being founded in description logics, these reasoners are 

implemented as generic software modules, independent of the domain-specific problem. The reasoning 
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process can be adopted in a number of ways. On the one hand, it can be used to check the model 

offline, before deployment in the service platform. On the other hand it can also be used at-runtime to 

classify and realize the data, according to their relationships and the values of these relationships.  

[Figure 2] 

An example of such domain-knowledge modelled in the ontology instead of in the application is 

graphically illustrated in Figure 2. The example shows how the transfer of domain-specific rules from the 

application to the model can facilitate a reusable and generic end-user application. As the domain logic 

is incorporated inside the model, the application does not need to be changed when the characteristics 

of the that logic change. The first approach, illustrated at the top of the diagram, has the domain rules, 

i.e. that a fault is a measurement with a value of 10 in the first system, and a measurement with a value 

of 20 in the second measurement system, included in the application. Thus, with every other 

deployment with yet another type of measurement systems, the end-user application would have to be 

altered as well. In the second approach, illustrated at the bottom of the diagram, the logic is included in 

the model. Together with a reasoner, the end-user application would not have to be changed for new 

deployments with other types of measurement systems. This work is shifted towards the model 

engineering process, a task of domain experts. As a result, the application should only ask for Faults. The 

reasoner can then automatically infer for every domain, using the ontology model, which measurements 

are actually faults for that specific domain. 

OWL has different levels of expressive power. This was motivated by the principle of minimality, not 

including as many modelling features as possible, but constriction of expressivity to make inference 

feasible. It consists of three sublanguages, each of them varying in their trade-off between 

expressiveness and inferential complexity. They are, in order of increasing expressiveness: 

• OWL Lite: supports classification hierarchies and simple constraint features. 



12 

 

• OWL DL: OWL Description Logics, a subset providing great expressiveness without losing 

computational completeness and decidability. 

• OWL Full: supports maximum expressiveness and syntactic freedom however without 

computational guarantees. 

 

Using one of the three sublanguage-flavours of OWL, one can easily adapt to the required 

expressiveness. Arguably the most interesting sublanguage for many application domains is OWL DL, 

balancing great expressiveness with inferential efficiency. Due to its foundation in Description Logics, 

OWL DL is also very flexible and computationally complete. This means that all conclusions are 

guaranteed to be computable. The decidability of OWL DL, being that all conclusions will be reached in 

finite time, is an imported aspect as well.   

[Figure 3] 

 

OWL is also compatible with the web architecture. It has, amongst others, an XML-based (Bray, et al., 

2006) encoding and it is backward compatible with RDF Schema (Guha, et al., 2004), which can be seen 

in Figure 3. As ontologies are also tailored towards the distributed nature of the Web, OWL additionally 

provides constructs for (de-)composition, extension, adaptation, sharing and reuse. 

3.3. Comparison of OWL and UML 

In order to achieve semantic interoperability in a heterogeneous information system, the meaning of 

the information that is interchanged has to be understood across the systems. Thus, a common 

semantic model of all the data in the different sources is required. Two languages have been commonly 

used to express this common semantic model, namely UML (OMG, 2009; OMG, 2007) and OWL.  
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UML and OWL originated from very different ideas (Hart, et al., 2004). UML was designed to integrate 

competing proposals for modelling languages in the area of software engineering and to promote 

object-oriented design. It is meant to be used by humans to document and communicate about their 

software designs. It is a standard of the OMG (Object Modelling Group). OWL, on the other hand, was 

designed as standard language for the representation of ontologies on the World Wide Web. It was thus 

meant to be used by systems rather than humans. OWL is a standard recognized by the W3C (World 

Wide Web Consortium) since 10 February 2004. 

These languages also have different notational foundations and views with respect to expressivity. The 

main notation of UML is in terms of a graphical model rather than a formal language. UML is a 

combination of different model types each covering a specific aspect of the overall software system, for 

example class diagrams or sequence diagrams. This decision was driven by allowing as much expressive 

power as possible. OWL is based on a formal language (Description Logics) and thus has well-founded 

semantics.  

OWL and UML also differ in their ability to express semantics. Some formal constraints of UML can be 

captured by using OCL (object constraint language) (OMG, 2006). OCL attempts to define formal 

semantics of parts of the language, for example for class diagrams. Validation and transformation 

methods exist for these partials semantics, such as RationalRose (Quatrani, 2000), but they are not 

popular or often used.  As there is no reasoning, the user has to define the whole classification tree 

himself. OCL is also able to express some rules, but OCL has no formal semantics. Additionally, no 

dedicated query language exists for UML. Because OWL has formal semantics, automated reasoning is 

possible. The consistency of the model can be checked, classification can be done by the system and 

new knowledge can be derived by logical inference. This means that the user doesn’t have to define the 

whole classification tree himself. OWL can be easily integrated with different rule platforms. RDF, of 
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which OWL is an extension, also has a dedicated query language namely SPARQL (Prud’hommeaux & 

Seaborne 2008).  

As can be seen, the two languages complement each other. UML is designed for model building by 

human experts, while OWL is designed to be used at runtime to provide guidance for intelligent 

processing methods. A lot of information is already specified in UML class diagrams, but this format 

does not allow reasoning and is not compatible with the World Wide Web. Approaches were developed 

for transforming UML class diagrams into OWL to overcome these problems (Baclawski, et al., 2001; 

Falkovych, et al., 2003). UML has also been used as modelling syntax for knowledge representation 

languages because there was a lack of tools available to visualize and edit ontologies in the past.  

3.4.  Why use ontologies for data integration 

To address the problem of semantic heterogeneity, a common semantic model of all the data in the 

different sources is required. This makes hidden and implicit knowledge explicit. It includes two 

necessary steps, namely building the local vocabularies and defining the mappings. Sometimes a third 

step is included in which a shared vocabulary is built. By using a shared vocabulary, new information 

sources can be added without need of modification to the other sources or their vocabularies. Only new 

terms and relations need to be added to the shared vocabulary. This shared vocabulary is not a necessity 

in case mappings between the different local vocabularies can easily be established in a direct way. 

Defining direct mappings is however often a difficult task. This is further explained in Section 4.1. 

Both UML and ontologies (OWL) could be used to construct the vocabularies. However, as discussed in 

the previous section, these languages differ a lot from each other. Below it is explained how these 

differences exactly make OWL more suitable to perform data integration.  

A first advantage of OWL is that it has well-founded semantics. This allows for reasoning to be 

performed. The consistency of the model can be checked to automatically discover inconsistent data. 
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Additionally, classes can be defined as logical constraints, e.g. using intersectionOf or unionOf. The 

classification of these classes will be performed at runtime. This frees the user from defining the whole 

classification tree himself, which is often a difficult and error-prone task. It also makes the data 

integration more future-proof: a reasoner can be used to infer new knowledge from the existing 

information in the ontology. Applications are able to use this new knowledge. However, inference can 

be very resource-intensive. Luckily OWL can easily be integrated with various rule platforms to 

accomplish more resource-intensive reasoning.  

A second advantage is the fact that ontologies are more and more being picked up by the industry. A 

wide range of (mature) tools have been developed to construct an ontology (Protégé (Stanford Center 

for Biomedical Informatics Research, 2009; Knublauch, et al., 2004), Swoop (Kalyanpur, et al., 2007; 

Kalyanpur, et al., 2006), etc.), visualize it (OWLViz(Horridge, et al., 2005; Ellson, et al., 2002), Yambalaya 

(Chisel, 2008; Storey, et al., 2002), etc.), query it (using SPARQL in for example Protégé or Jena (Carroll, 

et al., 2004)) and reason about it (Pellet (Clark & Parsia, LLC, 2009; Sirin, et al., 2007), Racer Pro (Racer 

Systems GmbH & Co. KG., 2009; Haarslev & Moller 2003), Drago (Tamilin, et al., 2006; Serafini & Tamilin 

2005, etc.).  

A third advantage is that the main-stream serialization of OWL is XML-based, which allows OWL models 

to be easily manipulated and exchanged by applications, regardless of platform. Both the domain 

modelling and the data are sent, so the same model and semantics can be used. Furthermore, it is 

straightforward to extract the contents of an OWL model into any format. For example, OWL can be 

serialized into N3 (Berners-Lee, 1998) or Turtle (Beckett & Berners-Lee 2008), which are more easily 

read by humans.   

The language itself also has some attractive modelling advantages. Ontologies can be divided into 

different smaller ontologies that inherit from each other, which allows for a modular design and 
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distribution. This is not the spirit of UML. As OWL was designed for distributed information description 

rather than program definition, it is more intuitive and easier to use for describing real-world concepts 

than UML. There is a universal class Thing that subsumes “everything”. This allows for open world 

reasoning, which states that the truth-value of a statement is unknown until it is explicitly stated to be 

true or false. It is the opposite of closed world reasoning which states that any statement that is not 

known to be true is false. For example, a knowledge base contains the statement “Steve speaks French” 

and the question “Does Steve speak English?” is asked. In a closed world the answer is “No”, but in an 

open world it is “Maybe”.  

The use of ontologies also has some specific advantages for data integration. The ontology can be used 

as a global query model or to verify the mappings between the global and the local schemas. These 

advantages will be further explained in the next section.  

4. Existing practical approaches to construct ontologies for data 

integration 

In the previous section, we presented the theoretical foundation of the ontology approach towards 

information integration.  This section builds further on this basis and discusses a number of practical 

approaches towards actual implementation of the ontology concept in the context of this information 

integration problem. A lot of tools exist that use ontologies for data integration. They can be compared 

by (Wache, et al., 2001): 

• The use of ontologies: Ontologies can play different roles in the data integration process. They 

can be used to make the context explicit and express the semantics or as a global query model.  

• Ontology representation: The representational capabilities of the used ontologies can vary 

amongst the different tools.  
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• Use of mapping: Mappings are used to link the ontologies to the actual information and to each 

other if multiple ontologies are used. 

• Ontology engineering: The ontologies can be built and re-used in different manners.  

 

These points will be further explained in the following subsections. 

4.1. Three approaches for using ontologies 

Ontologies can play different roles in the data integration process. Firstly, ontologies can be used to 

make the context of the data explicit and express the semantics. Three approaches exist: the single 

ontology approach, the multiple ontology approach and the hybrid approach. All three approaches are 

graphically presented in Figure 4. 

In the single ontology approach, one global ontology is constructed which expresses the shared 

semantics between all the data sources for a domain, for example the railway sector. This approach has 

two disadvantages. First, the single global ontology is very susceptible to changes if more data sources 

are added to the integration process. Second, it might also be difficult to find the minimal ontological 

commitment. Each statement in an ontology commits the user of this ontology to a particular view of 

the domain. If a definition in an ontology is stronger than needed, then we say that the ontology is over-

committed. For example, if we state that the name of a person must have a first name and a last name 

we are introducing a western bias into the ontology and we may not be able to integrate new data using 

the ontology.  

[Figure 4] 

In the multiple ontology approach, each information source has its own ontology. The domain of each 

data source is modelled in the context of semantics of that data alone. This makes the construction of 

the ontologies easier, as the minimal ontological commitment problem is less difficult and the 
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ontologies are less susceptible to changes. However, the lack of a common vocabulary makes it difficult 

to compare the different ontologies. Mappings between ontologies can be defined, but this is a difficult 

process due to different granularity and aggregation of the ontologies. The problem of semantic 

heterogeneity has now shifted to the mappings. Two options are available for adding a new data source. 

A new ontology can be constructed for this data source and new mappings can be defined to all the 

other ontologies. Or an existing ontology, which already has mappings to the other ontologies, can be 

re-used to represent this data source. The first option is a lot of work and entails the difficulty of 

defining the mappings with the other ontologies. The second option is often not possible as the new 

data source often contains data that cannot be represented in the existing ontology or contradicts with 

the knowledge present in this ontology. This means that the ontology needs to be adapted. This has to 

be done without violating the meaning of the data present in the original source for which this ontology 

was made.  

In the hybrid approach, each source has its own ontology and they are built on top of one shared 

ontology. The shared ontology contains the primitives of a domain. It forms a sort of minimal skeleton of 

shared knowledge between the different data sources on which the local ontologies can be built. By 

using the local ontologies, the global ontology is less susceptible to change and the minimal ontological 

commitment problem is less difficult because knowledge that contradicts each other can be encoded in 

the local ontologies. For example, if a severe fault of a train is defined differently in different countries, a 

concept SevereFault can be created in the shared ontology. Each local ontology, which represents the 

data from a certain country, can then contain a concept that inherits from this SevereFault concept and 

encodes the definition that is used to detect a severe fault in that country. Ontologies can easily be 

compared by using the shared ontology. Each time a new data source is added, a new ontology is 

constructed extending the shared ontology. This is the approach that was adopted by the InteGRail 

project.  
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Secondly, the ontology can also be used as a global query model in the data integration process. The 

user can specify the query in SPARQL in function of the concepts and relationships in the global 

ontology. The query is than divided into different sub-queries for the different sources. The results are 

combined and returned together. This frees the user from specifying the query himself each time for 

each different data source. The structure of the query model also becomes more intuitive for the user. 

4.2. Approaches for ontology representation and mapping 

The existing tools for data integration mainly use Description Logic-based languages such as OWL, 

RDF(S) or OIL. Some tools additionally use Rules to handle the more resource-intensive reasoning tasks. 

This way a reasoner can be used to check consistency or to infer new knowledge.  The remainder of 

tools mainly use Frame-based representation languages such as Ontolingua. In the InteGRail project all 

the ontologies were encoded in OWL and SPARQL was used to query these ontologies.  

Mappings are used to connect the ontologies to the actual information sources and to each other if 

multiple ontologies are used. The mappings can be done to a database scheme or directly to single 

terms used in the database. In the first method, called the structure resemblance method, the ontology 

is a direct representation of the database schema in a knowledge representation language (one-to-one 

copy). The second method only defines semantic terms in the ontology that relate to the terms in the 

database, but does not represent the terms itself in the ontology. The third method, called the structure 

enrichment method, is the most common approach and combines the two previous methods. A one-to-

one copy of the database scheme into an ontology is made. This ontology is enriched with additional 

terms that express additional domain knowledge about the terms in the database. These additional 

concepts only relate to concepts in the ontology, i.e. no mapping to the original data. This leads to more 

semantic strength. A fourth and last method simply annotates the source data with semantic 

information, e.g. for example SHOE (Heflin, et al., 1999).  
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The inter-ontology mappings are more difficult to define. Mapping different ontologies is a well-known 

and much researched topic. This only needs to be done in the multiple ontologies approach, see Section 

4.1. The mappings can be defined by the users or domain experts. This allows for much flexibility, but is 

a tiresome and error-prone task. Users can define arbitrary mappings, even if they don’t make sense or 

produce conflicts, which may corrupt the semantics of the ontology. One can also define intuitive or 

well-founded semantics for the mappings between different concepts of the ontology. Methods are still 

under development to do this in an automated manner.  

The exploitation of a robust and scalable service platform to implement one of the mapping 

methodologies described above is of paramount importance to transfer the conceptual data-integration 

ideas into an industrial usage. In other domains, such as telecom and complimentary to the previous 

described examples, commercial platforms for this structured and semantic-enabled data integration 

are emerging (Ontology Systems, 2009; LogicU, 2008; Metatomix, Inc., 2009).  

An open-source variant, based on the same principle, i.e. exposing the information contained in existing 

systems in an ontology-based manner can be found in (Bizer & Cyganiak 2007). It is an implementation 

of the third approach as described earlier in this section. D2R serves as a virtual triple store layer on top 

of a relational database. A triple store is the common name used to refer to ontology-enabled 

databases. After all, an ontology is represented as a graph-like model, consisting of a subject, predicate 

and object. These three items together form a triple. The D2R library is able to publish the contents of a 

relational database as a virtual RDF-Graph on which SPARQL-queries can be executed. This library then 

performs an on-the-fly conversion between the SPARQL-query and corresponding SQL-queries. These 

retrieve the needed information from the relational database. Consequently the result-sets are 

converted into semantic RDF data, and are then returned as an answer on the original SPARQL-query. 

One of the advantages of this approach is the online conversion of the SPARQL-query into SQL-queries. 
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The results returned are therefore always an online and up-to-date RDF-representation of the tables 

and rows in the relational database. Therefore, extra care must not be taken in order to keep the triple 

store synchronized with the relational database. Additionally, extra semantic information can be added 

to the transformation. These extra annotations can be statically defined in the mapping files describing 

the relationships between the tables and columns of the relational database and the concepts and 

relationships in the ontology. In a first implementation phase this D2R Model could be used as 

temporary solution, and later on a transition could be made towards a real semantic triple store without 

the need to change the logic of the application for a second time. 

4.3.  Approaches for the construction of an ontology 

Well-known and good methodologies exist to construct an ontology, for example TOVE (Gruninger & Fox 

1995), ENTERPRISE (Uschold & King 1995) and METHONTOLOGY (Fernandez, et al., 1997). There are five 

widely accepted stages for building an ontology (Pinto & Martins 2004): 

• Specification: The purpose and the scope of the ontology are identified. 

• Conceptualization: A conceptual model of the ontology is constructed. It consists of the different 

concepts, relations and properties that can occur in the domain.  

• Formalization: The conceptual model is translated into a formal model for example by adding 

axioms that restrict the possible interpretations of the model.  

• Implementation: The formal model is implemented in a knowledge representation language, for 

example OWL. 

• Maintenance: The implemented ontology has to be constantly evaluated, updated and corrected. 

To update an ontology, the previous steps can be used.  
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Additionally there are three activities that should be done during all the stages, namely knowledge 

acquisition (for example brain storming or questionnaires for domain experts), documentation (for 

example what was done and how) and evaluation of the quality of the ontology.  The three mentioned 

methodologies only differ in the way these stages or activities are filled in. These approaches do not give 

the domain experts and users active roles in the development process. They are only consulted during 

the specification stage, while the conceptualization, formalization and implementation stages are mostly 

covered by the ontology engineer. The domain experts and users are often also consulted during the 

evaluation of the ontology. 

As a result, new methodologies have been developed which involve the users and domain experts more 

in the ontology development cycle, namely HCOME (Kotis & Vouros 2006) and DILIGENT (Vrandevic, et 

al., 2005). Both approaches emphasize that engineers must minimize their involvement during the 

engineering process of the ontologies, giving more control to the domain experts. As a consequence, 

both methodologies also consider distributed settings and evolving ontologies and elaborate on issues 

such as collaboration, version management and merger of ontologies. Both approaches allow users to 

develop individual conceptualizations of their domain and share them with other users. These 

conceptualizations are then merged to achieve a global conceptualization of the domain.  The main 

difference between both approaches is that DILIGENT employs a “control board” that guides and 

oversees the ontology development cycle. Many data integration tools encourage the use of these 

methodologies. The reuse of ontologies is also encouraged as this makes the application interoperable 

with other applications that use this ontology.  
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5. The Network Statement Checker: results 

The ontology-based approach towards data sharing and integration, as presented in the previous 

sections of this paper, will be illustrated in this section by means of an example use case 

implementation, namely the Network Statement Checker (InteGRail Consortium, 2008).  

European legislation to enhance the open market and competition in the railway has split railway 

undertakings into operators and infrastructure managers. The needed technical information to verify 

the feasibility of running a specific train on a specific track is in the so-called network statement. One 

can define a strict syntactic protocol to specify this network statement, for example the position of the 

track, the electrification properties, such as voltage, maximum current, installed safety system, etc. This 

allows an automation of the train-track matching in a tool called the Network Statement Checker 

(InteGRail Consortium, 2008). The need for a semantic level becomes apparent when one wants to 

integrate new datasets, for instance the network statement of a second country to organize a new 

international train service. Voltage and current are rather straightforward to integrate; safety systems 

on the other hand are more problematic: several names exist for similar systems (for example the 

Belgium LAT or crocodile system). Sometimes safety systems are identical (synonyms), sometimes one 

system is a superset of the other.  

Another semantic issue is the presence of duplicate records in a newly integrated dataset, for instance 

the border stations on a rail network. For the purpose of finding connecting track segments, border 

stations are to be treated as a single data record. For a passenger information system or a ticketing 

system, the two instances will be considered as belonging to a different country, with possibly a 

different language for the public address system or a different tariff plan. Therefore two instances are 

kept and the semantic relation that they are the same physical location is added to the information 

system. We can note here that a balance has to be found between merging the individuals together – 
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i.e. giving them the same type - or keeping them separate and matching them onto each other to reflect 

their relationship. Therefore, the modeller has to make a decision between realizing the individuals on 

the same concept or creating multiple concepts for different meanings for those individuals. 

The border station example already shows that one concept (station) is given different meanings by the 

different railway stakeholders, hence the need to store with the data also its meaning. This semantic 

information has to be added by domain experts. For such a vast industry as the railway industry, 

thousands of companies active in Europe, the largest ones, DB and SNCF having more than 200 000 

employees, the management of semantic information is necessarily a distributed effort.  

The Network Statement Checker used by an operator is based on an infrastructure database describing 

the rail network. A passenger information system providing vocal and visual travel information,  

on-board the train and at stations also needs a description of the rail network. In these cases, voltage 

and safety-system are not relevant but new concepts as language area or connecting trains are 

introduced. Overlapping concepts such as GPS position are the most important towards information 

integration. For the purpose of the Network Statement Checker, this will be used to identify 

concatenated track segments, which means that consistency of the positions is more important than 

accuracy. For an on-board passenger information system, the GPS position is needed for automated 

announcements of the current and next station. Accuracy is of more importance here, certainly if we 

want the on-board system to detect and announce a platform alteration when the train is entering the 

station. A semantic system that allows an elaborated and extendable concept of location information is 

therefore needed.   

Many efficiency improvements in the railway industry are dependent on information integration, for 

example optimal route planning in terms of cost or speed via a Network Statement Checker, condition-

based maintenance via track-wheel mutual measurements, improved maintenance scheduling with 
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evaluation on the impact on rail traffic or improved service to passengers through real-time update of 

passenger information, including schedule changes due to immediate maintenance actions. 

It is clear that with more and more cross-border traffic, information from different systems in different 

countries need to be integrated and converted in order to guarantee that the information from all 

countries can be taken into account by the application. Therefore, it is paramount that a commonly 

agreed data model is specified. We claim that an ontology-based methodology is highly suitable to do 

this. The Network Statement Checker application integrates information of The Netherlands and 

Belgium. The heterogeneity of the data is not only to be found in the structure of that information, but 

also in the information systems that contain this data, being in a text book spreadsheet style and in a 

relational database. 

The use of ontologies as a self-descriptive and extendible mechanism can hide this heterogeneity from 

the application. Existing libraries can be used to convert on-the-fly the data from the legacy systems into 

individuals of the commonly agreed ontology. Additionally, given the current development of those 

libraries and the emergence of commercial platforms to support this integration, it can be expected that 

ease of use and performance will improve significantly. 

Reasoning can support intelligent abstraction of the domain logic from the application using the 

information from different systems, as is presented in this paper, without the need to implement this 

logic in the application itself.. Additionally, transmission of data between these systems is supported by 

means of standardized serialisation formats, e.g. based on XML in RDF/XML. 

It thus allows decision makers to make better decisions once they have the right information at hand 

about their own processes and those of their partners. More concrete, the Network Statement Checker 

integrates the network statements of difference countries in a single semantically enabled information-

model. A screenshot of the application is illustrated in Figure 5. The main panel contains a map of, in this 
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case, The Netherlands and Belgium, displaying the Dutch and Belgian railway network. The top-right 

hand side contains an overview of the available trains. On the middle-right hand side of the screen, 

information can be obtained on the selected train. Some of these characteristics are voltage, maximum 

allowed axle load, etc. The lower-right hand side allows selecting a starting node and an ending node 

between which a route should be calculated, given the selected characteristics of the train. Optionally, 

specific characteristics to be considered can be enabled or disabled as well. The resulting list of 

connecting track sections is displayed in the lower panel of the screen. The route with all possible and 

prohibited diversions is also graphically displayed on the map. 

 [Figure 5] 

It is a web-based application that allows on-line access to the network statements of national 

infrastructure managers. The user of the tool can select a route on the European railway map and can 

find information about the characteristics of each track section on a route. This tool provides 

information needed to determine whether a route can be used, from a compatibility point-of-view, for a 

new future railway service an operator intends to offer to his customer. 

Additionally, the user can select a start and end node between which the route is to be checked. The 

Network Statement Checker application then calculates a route between those two points, using the 

information converted in the agreed ontology format, as retrieved from the heterogeneous legacy 

systems integrated in the platform, and matches it with the required characteristics as specified by the 

user. A proven algorithm, e.g. Dijkstra shortest path, is used to calculate the actual path using the 

ontology A-Box as dataset.  

In the present railway situation, the information this tool deals with can be found in each country’s 

individual network statement. It is the obligation of each infrastructure manager to publish this 

document annually. The network statements of each country already have the same structure, but the 
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information itself is not provided according to any standard. This makes retrieval and analysis of the 

network information an error-prone, difficult and time-consuming manual task. The Network Statement 

Checker will reduce the time and effort needed to retrieve the information, by automating this 

procedure. This automation is facilitated by the ontology-based approach. The national network 

statements of Belgium and The Netherlands have been integrated, either by converting the information 

available in text-documents into an ontology-format, or by defining an automated mapping, using D2R 

(Bizer & Cyganiak 2006), on a relational database already containing a digital version of the network 

statement.  

5.1.  The Network Statement Checker ontology-engineering process 

In Section 4.3 we presented a number of ontology engineering processes. As indicated by Pinto & 

Martins, there are five widely accepted stages for building an ontology (Pinto & Martins 2004). These 

are in order of execution: Specification, Conceptualization, Formalization, Implementation and 

Maintenance. The steps in the METHONTOLOGY (Fernandez, et al., 1997) methodology coincide largely 

with these. We have adopted this approach in the engineering process for the Network Statement 

Checker ontology. Alternative methodologies, which have a more elaborate and extensive involvement 

of the users, such as Diligent  or HCome, were considered not be necessary because of the strict 

regulatory nature of the railway domain and the fact that the knowledge about the domain was already 

largely present due to the involvement of the project partners. 

Together with partners from the industry, co-authors of this paper, the scope of the envisaged 

application was set out. As indicated in the introduction of this section, the goal was to develop a 

transparent application to present and integrate the information contained in the network statements 

of the railways in Belgium and The Netherlands. This application should also be easily extendible with 

potential new network statements from other countries. Additionally, a route planning functionality was 
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foreseen, so that the requirements of the rolling stock and the characteristics of the track were matched 

and a potential route between the two destinations is calculated. 

Once this application specification was finalized by the domain experts, a meeting was organized with 

the modelling engineers from Ghent University – IBBT and the domain experts from DeltaRail and 

Televic, in order to define the conceptual domain model. The resulting model is described in Section 5.2. 

Given the complex nature of the domain, the input from the industrial partners was of extreme 

importance to align the perception and meaning of the included concepts. During this meeting the two 

different views on the domain were defined, as can be seen in Figure 6 and Figure 7. Additionally, an 

abstraction of complex stations was agreed and was named the NetworkNodeIOPoint. This particular 

concept is illustrated in Figure 8. All information and discussions resulting from the brainstorms during 

this one-day meeting were written down in textual descriptions as well as graphical diagrams. For a 

more elaborate description of the difference between these concepts, we refer to Section 5.3. 

With this conceptual agreement in place, the ontology development started. The first version of the 

ontology model was created without the involvement of the domain experts, thus solely by the 

modelling engineers. Starting from the hybrid approach, using a core ontology with a core vocabulary 

and domain extensions, as developed in InteGRail (InteGRail 2009), the correct terms agreed by the 

wider industrial partners in the InteGRail Consortium were pinpointed. The development of the core 

ontology by the InteGRail Consortium proved to be a major task. Therefore, to reach a consensus, no 

specific logic constraints were specified in this core model. It should therefore be seen as a common 

vocabulary agreed by a wide range of railway stakeholders. From these terms, more specialized terms 

and additional concepts and relationships were defined in the Network Statement Checker ontology. As 

such, this ontology was constructed as a domain extension on the agreed core ontology. Once this first 

version of the ontology was drafted, a second meeting with the domain experts from DeltaRail and 
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Televic was planned to validate and finalize this ontology formalization. Additionally, the necessary 

queries were defined. These queries were specified according to the agreed Network Statement Checker 

ontology, and are as such independent of the underlying legacy information systems used in both 

countries. However, dual system specific queries were internally specified in order to be able to verify 

the results of the ontology queries. 

With the Network Statement Checker ontology in place, the independent implementation of both 

approaches was started. Close cooperation between the modelling engineers as well as the domain 

experts was pursued in this phase. In Belgium, a D2R (Bizer & Cyganiak 2006) conversion specification 

was defined between the existing tables in the relational database and the concepts in the ontology. 

This was configured and deployed on a machine at Televic, Izegem, B. In parallel, a different 

implementation approach was adopted for The Netherlands. The Dutch network statement was only 

available in textbook format. Therefore, we adopted a native ontology approach, implemented in Java 

by using the established Jena toolkit (Carroll, et al., 2004). The information was stored on a machine at 

the DeltaRail offices in Utrecht, NL and made available for integration. With this deployment in place, 

the results of the SPARQL ontology queries were verified with the results obtained from the native 

legacy systems. Once this verification was completed, both systems were integrated and used by the 

Network Statement Checker front-end web-based application. Finally, the merged results were verified 

with the results obtained directly from the legacy systems. The input from the domain experts of 

DeltaRail and Televic towards this validation was of paramount importance as well as their support in 

the demonstration as part of the InteGRail stand at the InnoTrans fair 2008, Berlin, Germany. 

5.2. The Network Statement Checker domain model 

In Section 6, we elaborate on the concept of a core ontology, with domain extension ontologies as a 

means of structuring the engineering process, named the hybrid ontology approach. This process also 
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promotes the reuse and adaptation of existing models. In order to be compliant with this engineering 

process, the Network Statement Checker ontology has been constructed as an extension of the 

InteGRail Core Ontology, as can be found in (InteGRail Consortium, 2009). 

Two major requirements should be distinguished for this ontology. On the one hand, there is the need 

to have a model for the different items required to describe a railway network. On the other hand, the 

corresponding characteristics of those items must be modelled as well. Furthermore, we have taken into 

account a distinction between the logical and the physical railway network.  The concept of a logical 

network is graphically presented in Figure 6. 

 [Figure 6] 

In this illustration, the items 1 to 10 refer to the line segments, the Network Lines, and the items A to J 

denote the junctions of two or more of those line segments, the Network Nodes. A network line is the 

concatenation of railway track sections that have the same characteristics, in the context of the network 

statement. This is illustrated in Figure 7, where four physical track sections make up a single logical 

network line. For the Network Statement Checker, it is sufficient to work on the logical level. After all, if 

the characteristics of all track sections within the network line are the same, there is no need for a 

further decomposition to know whether a certain route between two nodes is available for given rolling 

stock. 

 [Figure 7] 

Another abstraction introduced in this ontology, is that of a NetworkNodeIOPoint. According to the 

same principles and following the same arguments, the detailed physical modelling of a junction is not 

taken into account. If certain network characteristics exist on an incoming network line and the junction 

is to be used as a transit node, there should be an outgoing network line with the same characteristics; 
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otherwise there is no through-route for rolling stock which such characteristics through this junction and 

then this junction is an end-point in the network. This abstraction is presented in Figure 8. 

[Figure 8] 

5.3. The Network Statement Checker ontology 

Having introduced the general concepts of the domain model in the previous section, Section 5.2, this 

section presents the ontology model as implementation of that conceptual model. Two aspects of the 

ontology are detailed. Firstly, Subsection 5.3.1 presents the static ontology giving the semantic 

representation of the domain model described in Section 5.2. Secondly, the dynamic extension of the 

model is described. This dynamic extension facilitates a more intelligent view on the available 

information, which can additionally be augmented with information coming from other systems, e.g. 

such as a track monitoring application, so that a filtered dataset can be provided as well to the, by the 

Network Statement Checker application, implemented route planning algorithm.. This is detailed in 

Subsection 5.3.2. 

5.3.1. Static ontology model 

After considering the InteGRail Core Ontology, only a limited number of extra concepts had to be 

introduced in the Network Statement Checker ontology. More extensions were required however, to 

include the necessary relationships in the ontology to link the concepts together and to create a well-

designed and fundamentally complete model. To ease the description of the concepts and relationships 

in the Network Statement Checker ontology, the major items are illustrated in Figure 9. 

At the root of the concept-tree an abstract class is defined, namely the NetworkTopologyElement. This is 

the main concept from which all other Network Statement Checker concepts are derived. A distinction is 

then made between edges and nodes. After all, as has been described in the previous section, the 

network is modelled in a graph-like structure. Each of these edges and nodes in their turn has a logical 
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and physical representation. The logical representation is given by the LineNetworkEdge and -Node 

concepts. The instances of these concepts represent the ontology equivalent of the concepts defined in 

Figure 6. On the other hand, the physical concepts are defined by the TrackNetworkEdge and -Node 

concepts, representing the items as presented in Figure 7. Further subclassing of the nodes is rather 

straightforward and is represented in Figure 9.  

The physical TrackNetworkEdges are linked to the logical LineNetworkEdges by means of the 

isComposedOf relationship. After all, the physical characteristics, as defined by the concept 

TrackCharacteristic, are linked to the physical TrackNetworkEdges. In order to be able to take these 

characteristics into account for the representation of routes and to be able to check whether a certain 

type of train is allowed to use a particular given route, the LineNetworkEdges should be able to refer to 

these characteristics as well.  To create a full graph-like model for the complete railway network, the 

edges are linked to the nodes by means of two relationships, namely startsAt and endsAt. 

[Figure 9] 

5.3.2. Network Statement Checker ontology extended with intelligent filtering 

The previous section detailed the semantic representation of the domain model for the Network 

Statement Checker application. However, this model does not exploit the ontology methodology to its 

full extent because constraints were not used in this first model.  

Therefore, by making use of the inheritance mechanisms provided by OWL, the ontology has been 

extended with a number of additional concepts, defined by means of constraints, as subconcepts of the 

TrackNetworkEdge and TrackNetworkNode. A first potential extension is to specify predefined 

TrackNetworkEdges for given train configurations.  E.g. certain TrackNetworkEdges might not be suited 

for usage by “Class 66” train configuration. Instead of having these constraints checked by the 

applications, additional concepts are introduced in yet another extension of the Network Statement 
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Checker ontology, specifying by means of description logics axioms, the facts that have to be true for a 

given TrackNetworkEdge to be classified as Class66CapableTrackNetworkEdge. As a consequence the 

axioms by which this capability is specified can be consistently refined by each and every local ontology 

integrated in the application platform. Only the constraints in the ontology deployed on top of each 

local system should be altered in order to reflect the rules and regulations of this county. Given the 

nature of the partitioned deployment, i.e. for every single country or distinct dataset a separate server, 

potential contradicting constraints on the same data are avoided. After all, there is only one logical place 

in the platform where certain data is exposed. We do not, however, take load-balancing or redundancy 

techniques into account, since we are convinced that in such situations, these implemented techniques 

fall on the responsibilities of the same administrators, thus minimizing the potential for conflicts. 

Additionally, this specification can be altered over time as the rules and regulations change. The 

following definitions give a few examples illustrating the different restrictions for the same concept in 

The Netherlands compared to Belgium. 

In The Netherlands, for a given TrackNetworkEdge to be denoted as Class 66 capable – 

NLClass66CapableTrackNetworkEdge - at least the following statements have to be true: 

• subClassOf nso:Class66CapableTrackNetworkEdge 

• core:hasTrackCharacteristic min 1 nsoNL:ATB NG 

• core:hasTrackCharacteristic min 1 (nso:AAxleLoad or nso:D3AxleLoad) 

These constraints specify that at least the ATB New Generation safety system should be installed on the 

track and the train, and that either A Axle Load or D3 Axle Load is allowed on this specific track. These 

concepts are defined in the local extension of the Network Statement Checker ontology (indicated by 

the nsoNL namespace) as subconcepts of the Class66CapableTrackNetworkEdge concept, which is 

defined as a term in the common Network Statement Checker extension of the core ontology, illustrated 
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in Figure 9. For the Belgian ontology specification, the constraints should be changed, and in particular 

the safety system restriction. This means that the service exposing the Belgian ontology-based network 

statement (indicated by the nsoB namespace) should have a definition of 

BClass66CapableTrackNetworkEdge as follows, specifying the Crocodile safety system as compulsory: 

• subClassOf nso:Class66CapableTrackNetworkEdge 

• core:hasTrackCharacteristic min 1 nsoB:Crocodile 

• core:hasTrackCharacteristic min 1 (nso:AAxleLoad or nso:D3AxleLoad) 

Using this pre-processing of information, the Network Statement Checker application should not be 

adapted for every change in rules and regulations and additionally should not know the specifications of 

every country being queried. After all, the application only queries the services for 

Class66CapableTrackNetworkEdges, exploiting the inheritance mechanism. This reduces also the dataset 

being used by the Dijkstra algorithm in the route planning phase, as only the suited edges are being 

taken into account by the algorithm. 

Because individuals can be realised as belonging to more than one concept, further constraints can be 

added to the specification, e.g. by integrating information coming from other systems, such as track 

monitoring- or disturbances information systems. Exploiting the fact that an individual in the ontology is 

uniquely identified by its URI, this URI can be used by multiple information sources to link information 

denoting the same domain object. Therefore, the track monitoring information source uses the same 

URIs as those used in the Network Statement Checker to attach additional information to those 

representations, such as Statuses, Observations, Faults, etc.  

 Using this extra information, the modelling of UnavailableTrackNetworkEdges becomes as follows: 

• subClassOf TrackNetworkEdge 
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• (hasStatus some NotOKStatus) or (hasObservation some (hasFault some SevereFault)) 

The above statement specifies that for a TrackNetworkEdge to be classified as unavailable it should of 

course be a TrackNetworkEdge and it should either have a status which is NotOK or it should have an 

Observation which leads to a SevereFault. It is clear that more fine-grained definitions could be specified 

should the need exist to distinguish between more than a binary situation. Because of the Open World 

Assumption paradigm adopted by the reasoning mechanisms, the set of UnavailableTrackNetworkEdges 

would have to be subtracted from the complete set with all TrackNetworkEdges. This in fact boils down 

to closing the world. It is after all not possible to draw conclusions and to classify concepts or realize 

individuals in the situations where no information is available.  

Additionally, context information not directly related to the classification of the TrackNetworkEdges can 

be included as well. By re-using the URI of the TrackNetworkEdge, Status, Observation of Fault, this 

information can be attached to the individual concerned. Some of this information could be the date 

and time of the Observation, the weather condition at the moment the Fault was detected, etc. Figure 

10 illustrates the enhanced ontology model. 

[Figure 10] 

5.4.  Deployment details 

As has been detailed previously, we have adopted the hybrid ontology approach towards information 

integration. This inherently facilitates a distributed approach, which is presented in more detail in this 

subsection. 

The core ontology, as agreed between the partners in the InteGRail consortium (InteGRail Consortium, 

2009), should be considered as a common vocabulary. This ontology is very stringent and the semantics 

cannot be changed and should be adhered to by all the partners using or extending this core vocabulary. 
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Therefore, every participating distributed information system should expose its data in accordance with 

at least this commonly agreed core ontology. Of course it can define extensions, i.e. subclasses, in its 

locally deployed ontology T-Box. As a consequence, to include the local rules in the deployment, 

additional constraints should be specified in the extended ontology.  

The queries to retrieve the information from these distributed systems are – and should only be – 

defined according to the terms in the common core ontology. After all, these terms are the common 

denominator amongst all information sources participating in the distributed ontology-based 

information integration platform. Incidentally, this means that the core ontology can be seen as the 

mapping mechanism between the information in distinct sources in the platform. Using the example 

from Section 5.3, the concept Class66CapableTrackNetworkEdge, is known by all systems exposing the 

network statements in an intelligent manner. However, the different constraints are modelled locally 

and specifically according to the local rules and regulations. Therefore, it is up to the local administrator 

to define the exact constraints. There is no additional mapping language or mechanism specified. As 

long as the terms of the core ontology are used correctly, their semantics are inherited automatically. 

An exact and common definition of this core ontology is of extreme importance in order to avoid any 

ambiguity. However, we are convinced that in the railway domain, with its strict nature, sufficient 

regulatory organisations exist to monitor and enforce the adherence to these specific constraints. 

[Figure 11] 

As a result of this architecture and deployment approach, only the appropriate information is retrieved 

from the distributed information systems. The information integration, i.e. the merger of the individual 

results, is performed after the distributed execution of the queries. These queries, and thus the 

reasoning by means of classification and realisation which is triggered by the query invocation 

mechanism, are executed locally and only the results of these queries, reflecting the local knowledge 
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and implementation of the generic common vocabulary term, are returned to the front-end application. 

The deployment is graphically illustrated in Figure 11. The common core vocabulary, denoted with the 

namespace prefix nso, is extended with 2 distinct ontologies, as described earlier in a local manner. One 

of the extensions represents the Belgium network, with nsoB namespace prefix, and one represents The 

Netherlands, with nsoNL prefix. The 2 ontologies are deployed on individual machines in the 2 countries. 

The A-Box of these individual ontologies is populated with the local information of those two network 

statements. 

5.5.  Back-end implementation for the Network Statement Checker 

As indicated in the previous sections, the network statements of both the Belgian and the Dutch railway 

networks are contained in two totally different legacy systems, using two different persistency formats. 

On the one hand, the information was available in a relational database for the Belgium network 

statement. On the other hand, only textbook information was available for The Netherlands. Therefore a 

naive common back-end implementation was insufficient. However, using the ontology approach 

described in this paper, a single implementation of the domain logic was achieved. Instead, an additional 

conversion step was added to the overall software implementation. This part enables the legacy system 

specific format to be converted into the common agreed ontology format. As such, the Network 

Statement Checker application could integrate the information from both countries in a transparent 

manner. However, the two systems are still owned and maintained by different stakeholders. By no 

means should the information be stored in a single information system, because this information is 

owned by different stakeholders and it is desired that the current legacy systems remain operational. 

The introduction of conversion tools, such as RDF123 (Han, et. al, 2008) and D2R (Bizer & Cyganiak 

2006), ensures that the ontology representation of that data is always coherent with the original data. 

Additionally, in the case a new system is to be developed by a stakeholder, the adoption of a native 

ontology-based implementation, replacing the older legacy system, does not influence the logic of the 
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integrating application. This has been demonstrated by the inclusion of a Jena (Carroll, et al., 2004) 

based information source in the integrating Network Statement Checker application presented in this 

use case. Graphically, this is illustrated in Figure 12. 

[Figure 12] 

As can be seen from Figure 12, starting from the bottom of the diagram, a number of legacy systems can 

be found, which provide the data in their own legacy format. In the current use case this is either stored 

in a relational database, or written down in textbook format. The conversion modules included 

additionally in this platform, either convert the contents of the tables of the relational database into 

instances of the concepts in the ontology or read in the textbook files and use the native Jena library to 

convert it into the ontology format and store it using a specific ontology-enabled persistency 

mechanism. In this case a database was also used to store this converted information, but the 

organization and contents of this database is entirely managed by the Jena library. Both these 

approaches support a SPARQL interface. Using these SPARQL interfaces, the Network Statement 

Checker application can issue the same queries, as presented in Section 5.6 to both deployments 

without any adaptation.  

Illustrated in the third column is another example of the integration of information in an additional 

approach, when the information is available in spreadsheets. Again, a mapping can be defined between 

the cells of the spreadsheet and the concepts and relationships of the ontology. As a result, the same 

SPARQL queries can then transparently be issued to this deployment of yet another legacy system which 

stores its information in its own legacy format. 

5.6. Performance evaluation of the Network Statement Checker 

We have evaluated the ontology-based approach by means of an example integration application as 

described in the previous section.  The application uses the Network Statement Checker ontology as a 
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means of information modelling and integration. The network statements of both The Netherlands as 

well as Belgium were integrated in this way. For the Dutch network statement, the information was 

available in textbook format and had to be converted into the ontology format. This was a one-time 

conversion process, and the Jena (Carroll, et al., 2004) library with a MySQL relational database 

persistence layer was used for this purpose. The Belgian network statement was available in a relational 

database. In order to integrate this information into the same ontological model D2R (Bizer & Cyganiak 

2006) was used to create a mapping between the tables of the relational database and the concepts and 

the relationship of the ontology. Example mappings between the tables of the relational database and 

the concepts of the ontology are given in the following paragraphs. 

The LineNetworkNode instances of the ontology are created from the stations in the relational database.  

As can be seen, a new instance of Station is created for every row in the table tbl_station. Since the 

ontology model uses inheritance to define that every Station is also a LineNetworkNode, the Station 

individuals are also returned when the Network Statement Checker queries for LineNetworkNodes. 

map:tbl_station a d2rq:ClassMap; 

 d2rq:dataStorage map:database; 

 d2rq:uriPattern "tbl_station/@@tbl_station.stationID@@"; 

 d2rq:class core:Station; 

. 

Additional properties were defined according to the ontology model to store information of the 

characteristics of those nodes, e.g. concerning their location or name. Example mappings for the 

latitude, longitude and hasName properties as specified in the core (geo namespace prefix) and Network 

Statement Checker ontology (nso namespace prefix) model are given below: 

map:tbl_station_GPSPosX a d2rq:PropertyBridge; 

 d2rq:belongsToClassMap map:tbl_station; 
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 d2rq:property geo:latitude; 

 d2rq:column "tbl_station.GPSPosX"; 

 d2rq:datatype xsd:decimal; 

 . 

map:tbl_station_GPSPosY a d2rq:PropertyBridge; 

 d2rq:belongsToClassMap map:tbl_station; 

 d2rq:property geo:longitude; 

 d2rq:column "tbl_station.GPSPosY"; 

 d2rq:datatype xsd:decimal; 

 . 

map:tbl_station_shortName a d2rq:PropertyBridge; 

 d2rq:belongsToClassMap map:tbl_station; 

 d2rq:property nso:hasName; 

 d2rq:column "tbl_station.shortName"; 

 . 

The first definition creates instances of LineNetworkEdge for every row in the table tbl_net. Using the 

foreign keys for the start- and endpoints of these lines, a mapping is defined between these keys and 

the startsAt and endsAt relationships defined in the ontology. This is illustrated in definition 2 and 3. The 

mappings for the line characteristics are also specified. An example for the axle load and voltage system 

is given in definition 4 and 5. 

(1) map:tbl_net a d2rq:ClassMap; 

 d2rq:dataStorage map:database; 

 d2rq:uriPattern "tbl_net/@@tbl_net.netID@@"; 

 d2rq:class core:LineNetworkEdge; 

(2) map:tbl_net_startStationID a d2rq:PropertyBridge; 

 d2rq:belongsToClassMap map:tbl_net; 

 d2rq:property core:startsAt; 

 d2rq:refersToClassMap map:tbl_station; 
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 d2rq:join "tbl_net.startStationID = tbl_station.stationID"; 

 . 

 

(3) map:tbl_net_endStationID a d2rq:PropertyBridge; 

 d2rq:belongsToClassMap map:tbl_net; 

 d2rq:property core:endsAt; 

 d2rq:refersToClassMap map:tbl_station; 

 d2rq:join "tbl_net.endStationID = tbl_station.stationID"; 

 . 

(4) map:tbl_net_axleLoad a d2rq:PropertyBridge; 

 d2rq:belongsToClassMap map:tbl_net; 

 d2rq:property nso:hasAxleLoad; 

 d2rq:column "tbl_net.axleLoad"; 

 . 

(5) map:tbl_net_voltage a d2rq:PropertyBridge; 

 d2rq:belongsToClassMap map:tbl_net; 

 d2rq:property nso:hasVoltage; 

 d2rq:column "tbl_net.voltage"; 

 . 

For a detailed presentation of the constructs in the D2R mapping language, we refer to the excellent 

description given by Bizer & Cyganiak (Bizer & Cyganiak 2006). 

A number of queries were defined in order to retrieve the information from the ontology-based data-

stores. The queries are all formulated using the SPARQL (Prud’hommeaux & Seaborne 2008) query 

language. SPARQL is commonly used to query ontology models, mainly RDF-based. However, since the 

queries are mainly A-Box queries for individuals of a given concept defined by means of constraints, 

SPARQL is sufficient. It uses a triple pattern matching mechanism to find the triples in the dataset of the 

ontology model which satisfy the fixed concepts defined in the query. The results in those matches for 
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the unspecified concepts are then bound onto the variables in the query. Query 1 retrieves all 

LineNetworkEdges from the repository, while query 2 retrieves all the nodes interconnecting these 

LineNetworkEdges. The last query retrieves all characteristics of the track sections. The actual queries 

are presented in the Table 1. 

  



43 

 

Query 1 

LineNetworkEdgeQuery 

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

PREFIX geo:<http://pervasive.semanticweb.org/ont/2004/06/geo-

measurement>  

PREFIX nso:<http://www.owl-

ontologies.com/NetworkStatementCheckerOntology.owl#> 

PREFIX core:<http://www.integrail.info/ont/SP3A.owl#> 

SELECT DISTINCT ?name ?namenode1 ?namenode2 ?lat1 ?lng1 ?lat2 ?lng2  

WHERE { 

?line rdf:type core:LineNetworkEdge. 

?line core:startsAt ?nod1. 

?line core:endsAt ?nod2. 

?line nso:hasName ?name.  

?nod1 nso:hasName ?namenode1. 

?nod2 nso:hasName ?namenode2. 

?nod1 nso:hasCoordinate ?c1. 

?nod2 nso:hasCoordinate ?c2. 

?c1 geo:latitude ?lat1. 

?c1 geo:longitude ?lng1. 

?c2 geo:latitude ?lat2. 

?c2 geo:longitude ?lng2.  

}  

Query 2 

InterconnectingNodeQuery 

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

PREFIX geo:<http://pervasive.semanticweb.org/ont/2004/06/geo-
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measurement>  

PREFIX nso:<http://www.owl-

ontologies.com/NetworkStatementCheckerOntology.owl#> 

PREFIX core:<http://www.integrail.info/ont/SP3A.owl#> 

SELECT DISTINCT ?namenode ?lat ?lng  

WHERE {  

?line rdf:type core:LineNetworkEdge.  

?line core:startsAt ?nod1.  

?line core:endsAt ?nod2.  

?line nso:hasName ?name.  

{?nod1 nso:hasName ?namenode.} UNION {?nod2 nso:hasName 

?namenode.}.  

?nod1 nso:hasCoordinate ?c1.  

?nod2 nso:hasCoordinate ?c2.  

?c1 geo:latitude ?lat1.  

?c1 geo:longitude ?lng1.  

?c2 geo:latitude ?lat2.  

?c2 geo:longitude ?lng2.  

}  

ORDER BY ?namenode  

Query 3 

TrackCharacteristicsQuery 

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

PREFIX geo:<http://pervasive.semanticweb.org/ont/2004/06/geo-

measurement>  
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PREFIX nso:<http://www.owl-

ontologies.com/NetworkStatementCheckerOntology.owl#> 

PREFIX core:<http://www.integrail.info/ont/SP3A.owl#> 

SELECT DISTINCT ?line ?name ?namenode1 ?namenode2 ?lat1 ?lng1 ?lat2 

?lng2 ?voltage ?system ?axleload  

WHERE { 

?line rdf:type core:LineNetworkEdge. 

?line core:startsAt ?nod1.  

?line core:endsAt ?nod2. 

?line nso:hasName ?name.   

OPTIONAL { ?line nso:hasVoltage ?voltage. }  

OPTIONAL { ?line nso:hasSafetySystem ?system. }  

OPTIONAL { ?line nso:hasAxleLoad ?axleload. }  

?nod1 nso:hasName ?namenode1. 

?nod2 nso:hasName ?namenode2. 

?nod1 nso:hasCoordinate ?c1.  

?nod2 nso:hasCoordinate ?c2. 

?c1 geo:latitude ?lat1.  

?c1 geo:longitude ?lng1. 

?c2 geo:latitude ?lat2.  

?c2 geo:longitude ?lng2.  

}  

Table 1: Queries used in the evaluation phase of the Network Statement Checker information integration platform. 
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The execution time of these queries was measured and the results can be seen in Table 2. In this table, a 

comparison is made between a native ontology based system, as was the case in the Dutch Network 

Statement Checker repository and a legacy system integrated using a mapping engine in between, 

namely D2R-server, as was the case for the Belgian data. The same data-set was used in both 

measurements, however, in order to be able to correctly compare both approaches. Each query was 

issued 10000 times, and this resulted in an average execution time of 645.16ms for query 1 in the case 

of the D2R approach, 414.64ms in case of the native Jena approach and 6.19ms for the legacy relational 

database approach. For query 2 these average execution times were respectively 1889.51ms, 427.27ms 

and 10.86ms. For query 3 these were respectively 1796.62ms, 429.50ms and 6.67ms. The minimum, 

maximum, average execution times as well as the standard deviation can be found in the Table 2. 
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Query1(D2R) Query1(Jena) Query1(DB) Query2(D2R) Query2(Jena) Query2(DB) 

AVG 645.16ms 414.64ms 6.19ms 1889.51ms 427.24ms 10.86ms 

MIN 640ms 382ms 6ms 1867ms 423ms 10ms 

MAX 1140ms 827ms 50ms 2287ms 582ms 13ms 

STDDEV 5.86ms 4.6ms 0.59ms 6.33ms 2.41ms 0.45ms 

       

 

Query3(D2R) Query3(Jena) Query3(DB) 

 

AVG 1796.62ms 429.5ms 6.67ms 

MIN 455ms 425ms 6ms 

MAX 1935ms 444ms 9ms 

STDDEV 16.12ms 1.51ms 0.54ms 

Table 2: Measurement results for the processing of the 3 queries on the Network Statement Checker information integration 

platform. 

All measurements were performed on an isolated Linux machine, running the Debian Etch distribution 

with kernel 2.6.17.14. It has an AMD Athlon(tm) 64 Processor 3000+ processor and 512MB of RAM 

available. Java version 1.6.0 update 6 was installed. In the case of the D2R measurements, D2R Server 

version 0.4 was used. A comparison graph with these measurements can be seen in Figure 13a and 

Figure 13b. 

The ontology version of the dataset contains 13 classes, 5 object properties, 68 data properties in the T-

Box model, having an ALCIF(D) description logics expressivity. The A-Box contains 5055 individuals, 

resulting in 5749 class assertion axioms, 1093 object property assertion axioms and 27170 data property 

assertion axioms. The relational database version of the dataset contains 13 tables. The two most 

important and data-intensive tables describing the network and the stations each contain respectively 

133 rows by 5 columns and 561 rows by 6 columns. 
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 We have also converted the queries into a non-ontology pure SQL query, in order to properly evaluate 

the overhead introduced by the ontology approach. It can be expected that by using the ontology-based 

integration mechanism, a considerable overhead is introduced, because of the addition of annotations 

and relationships. With this evaluation we want to present the overhead introduced by the ontology-

based methodology. The longer times needed to process the same information in an ontology manner 

can be explained on the one hand by the required online conversion of the SQL results of potential sub-

optimal SQL queries generated by the D2R mapping engine and on the other hand because of the 

description logics processing introduced by the pure Jena based approach. However, in the context of 

non time-critical applications, such as the Network Statement Checker, this extra overhead introduced 

by this approach is worth the effort compared with the increased transparency and adaptability of the 

suggested approach towards future systems.  

Additionally, we believe that, given recent commercial initiatives, the performance of the ontology 

processing tools will improve. Moreover, given the reduced development effort and potential reuse 

supported by the notion of domain-modelling, the usage of ontology-based implementations in non-

time critical applications is still a very good candidate. Its other characteristics, such as the foundation in 

formal descriptions logics and the extensibility, support its usage in such distributed information 

integration applications even more. 

 [Figure 13a] [Figure 13b] 

Despite the fact that the ontology-based approach does introduce a certain overhead in the processing 

of the queries, this should not be an issue for non real-time critical applications. Moreover, the added 

value of using a domain model instead of an application specific model will make sure that the models 

will not change frequently. After all, once a common agreed view on a particular domain is reached, this 

is not likely to change very often as is the case with application specific models. 
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6. Transition from research demonstrator towards domain-wide 

commercial deployment 

The biggest challenge for domain-wide adoption is arguably the creation of the ontologies, describing 

the domain of which the railway undertakings’ systems provide data. These models need to be well-

defined and formally proofed as in a semantic environment and in contrast to database schema, they do 

not only define the syntax of the data, but also the meaning of that data. A flawed model will lead to 

flawed integration and thus false decision making. 

The addition of new ontological models and the alteration of existing ontologies should be coordinated 

by a standardisation body as well. This is of paramount importance to ensure that these additions and 

alterations do not turn the existing models inconsistent. After all, the injection of ill-formed new 

information and knowledge could potentially corrupt the already existing deployments. However, using 

the hybrid ontology approach, as presented in Section 4.1, some of these issues can be prevented more 

easily. After all, the core of the ontology should be strictly coordinated and enforced in a domain-wide 

adoption and should be the responsibility of the standardisation body while the additional domain 

ontologies could be used in a non-standardised and proprietary deployment. All these models can co-

exist together, without the proprietary domain ontologies influencing the core ontology used by all 

stakeholders. 

InteGRail proposed the notion of a core ontology, which describes the general railway concepts and its 

relations. Specific domain models can be attached to this core ontology, by means of subclasses and 

extensions of existing concepts. Additionally, new concepts and relationships can be created as an 

extension of this core model. In this way, more specific domain knowledge is inserted in the general 

model, and the existing applications, when reasoning is enabled, can take this extended information into 

account. This is similar to the conceptual description of the examples given in Section 3.2. Figure 14 
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presents in an abstract way the notion of the core ontology, with its possible extensions with more 

specific domain ontologies. The core ontology is constructed out of the general concepts, common and 

generally accepted in the entire railway domain. Some of these common concepts are e.g. rail, sleeper, 

vehicle, locomotive, station or timetable. However, the detailed characteristics of a certain type of 

vehicle will be modelled as an extension of the core ontology in so-called domain ontologies. This can be 

the exact number of doors in this vehicle or the subsystems and their relationships onboard this vehicle. 

 [Figure 14] 

As an upcoming standard within the railway domain, the Technical Specification for Interoperability 

regarding Telematic Applications for Freight (TAF-TSI) and the Technical Specification for Interoperability 

Traffic Operation and Management Subsystem (OPE-TSI) requires that especially the Railway Undertaker 

(RU) should be informed if there are restrictions on the infrastructure.  

“On the 18th of January 2006, the Technical Specification for Interoperability regarding Telematic 

Applications for Freight (TAF TSI regulation) has entered into force. 

 This European regulation requires that the European railway industry develops and implements common 

standards to increase the interoperability of information, i.e. to facilitate the exchange of information 

between companies regarding rail freight services, notably as far as cross-border services are concerned. 

The regulation does NOT require replacing the existing IT systems of IMs (Infrastructure Managers) and 

RUs. It essentially requires that the interfaces between individual IT systems use a common language and 

follow certain specifications. The political intention behind the regulation is to boost the quality and 

productivity of rail freight (notably for cross-border services) in Europe, in the context of an increasing 

road competition.” (Strategic European Deployment Plan for the European-wide implementation of the 

technical specification for interoperability telematic applications for freight, 2006) 
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A number of such TSIs are currently being defined. We believe that the ontology-based approach as 

presented in this paper satisfies the requirements described in these specifications and could serve as a 

technical means to implement the requirements posed in the TSIs. The evaluation of the Network 

Statement Checker in Section 5 shows how the ontology mechanisms can be used to include existing 

information systems into an ontology-based information sharing platform. 

Other business domains, with wide-scale deployment of semantic technologies, are law enforcement in 

the area of intelligent querying across various independent and unrelated systems and intelligent 

recognition and filtering (Gottschalk, 2007).  A second example is supporting the Logistics sector in the 

area of planning, control and exchange between independent planning entities (Metatomix, Inc., 2009; 

Karageorgos, et al., 2003). A third example can be found in Medicine, where the Semantic Technology 

supports the field of decision support systems (Metatomix, Inc. 2009).  
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7. Conclusions 

In this paper we presented why data integration is an important problem, especially in the railway 

domain. A number of challenges were presented to successfully pursue such integration. On the one 

hand there is both the integration at syntactic and semantic level, but on the other hand there is also 

the issue that many stakeholders are rightly not willing to expose all data, but only certain parts of high-

level not commercially sensitive information. Of all problems, heterogeneity is the most challenging one. 

In order to achieve semantic interoperability in a heterogeneous information system, the meaning of 

the information that is exchanged has to be understood across the systems. Thus, a common semantic 

model of the data in the different sources is required. Two distinct methods for expressing this common 

semantic model have been evaluated, namely UML and OWL. Their advantages and disadvantages were 

discussed as well.  

We have studied in detail how this semantic model can be constructed by using one or more ontologies 

and what the advantages are of the different methods, how the ontologies can be used for more than 

information integration alone and how the mappings should be made between the ontologies and the 

real data. Mappings form an important aspect, as this mechanism facilitates the integration of existing 

legacy systems in an ontology-enabled integration environment. As such an additional interface, 

exposing a semantic view on the legacy data, is exposed. We also presented an overview of the different 

methods to construct an ontology model. We are convinced that the hybrid approach is the most suited 

approach for the railways. In this approach, a common core ontology should be created, standardized 

and maintained, modelling the main domain concepts and relationships, generally defined and accepted 

within the industry. Based on this core ontology, the systems to be integrated should be modelled.  We 

evaluated this concept by an example application, the Network Statement Checker, which has been 

developed in the scope of the InteGRail project (InteGRail Consortium, 2009), a European Research 

project in the scope of FP6, and evaluated its performance, namely the query execution times for 3 
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different typical queries. This exposed that the processing times for these queries is considerably slower 

than in a pure relational database approach. However, more and more commercial initiatives are 

emerging that provide ontology-based integration platforms and tools to manage the models and the 

integration on that platform. This will inevitably result in better performance in the coming years. 

However, despite this current performance issue, we believe that OWL is the preferred model because 

in contrast to most information models, the baseline idea of ontologies is that their philosophy is to 

model the domain and not the application. Compared to other data integration mechanisms, the 

commonly agreed view of the data to be exchanged and integrated is the view of the domain and not 

the view of some commonly agreed application. More specifically OWL-DL is based on formal 

description logics and allows for consistency to be checked and inference mechanisms to be defined 

inside the information model itself. The semantics, and not only the syntactic correctness, of the 

information are kept strictly together with the data itself. Additionally, because of the fundamental 

standards on which the models are constructed, generic tools can be used to process these ontologies. 

This is a very important aspect, as given the current interest in the Semantic Web, these tools are likely 

to become more and more powerful and thus better performing. We are convinced that the way 

forward for data-integration is based on ontologies, because of the current research and development 

in this domain, their foundation in strict mathematics, adaptability and their suitability to be used in a 

distributed environment. Admittedly, the performance of these technologies in terms of processing 

times to answer queries is currently not as good compared to other techniques, such as relational 

database engines. However, an ontology model is more than just a data-model. It is a common agreed 

view of a domain, which can easily be extended or adapted with domain rules for a specific application, 

in order to use reasoners to infer inherent information from the asserted data in the model. This 

facilitates the reuse of generic application models, because the logic can be transferred from the 

application towards the semantic model. Additionally, the shift towards using formal domain models 
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instead of application specific data models, results in lower development costs, as the same model can 

be reused and easily adapted in multiple applications. A number of modelling techniques have been 

presented in this paper. We believe that, given the complex structure of the railway domain, the hybrid 

approach is the best suited approach. An agreed vocabulary and common model is shared in this 

methodology, and this model is then extended with a proprietary model for the specific domain 

information systems to be integrated. This approach has been successfully validated by means of a 

demonstrator implementation, namely the Network Statement Checker. The ontology-based 

information integration approach formed the basis in this implementation. Given these characteristics, 

combined with their foundation in formal description logics, we are convinced that ontologies are an 

ideal mechanism to construct a heterogeneous data integration platform. 
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Captions 

Figure 1a: How to get from raw data to intelligent wisdom  

Figure 1b: Example illustrating the knowledge engineering process 

Figure 2: Example illustrating the use of descriptions and restrictions in an ontology 

Figure 3: Layered view on Semantic Web enabling technologies 

Figure 4: Three approaches for using ontologies in information systems 

Figure 5: Screenshot of the Network Statement Checker Web Application 

Figure 6: Logical representation of nodes and edges in a railway network 

Figure 7: Decomposition of a Logical Network Line into Physical Track Sections and Track Nodes 

Figure 8: Abstraction of the detailed Physical Track Node 

Figure 9: The Network Statement Checker Ontology 

Figure 10: Expanding the Network Statement Checker Ontology with context-information and 

observations coming from other monitoring systems. 

Figure 11: Distributed deployment illustrating the hybrid ontology approach 

Figure 12: Back-end platform for the Network Statement Checker application, illustrating how the 

heterogeneous information from both countries is transformed into a common agreed ontology format. 

Figure 13a: Overview of Query Execution Times, plotting the average time in ms for the ontology-based 

approach. The standard deviations are shown as well. 
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Figure 13b: Overview of Query Execution Times, plotting the average time in ms for the relational 

database approach. The standard deviations are shown as well. 

Figure 14: The Core ontology (in the centre) extended with domain ontologies (on the outside) 

 


