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Abstract. A finite element modesolver and beam propagation (BPM)
algorithm are applied to the optical analysis of liquid crystal waveguides.
Both approaches are used in combination with advanced liquid crystal
calculations and include a full dielectric tensor in solving the Helmholtz
equation to model the liquid crystal behavior properly. Simulation of the
beam propagation in a waveguide with tunable liquid crystal cladding
layer illustrates the coupling of a Gaussian beam to the fundamental
waveguide mode obtained with the modesolver. Excellent quantitative
agreement between both approaches illustrates the potential of these
methods for the design of advanced devices. The high accuracy of the
BPM algorithm for wide angle propagation, essential in the analysis of high
index contrast waveguides, is illustrated for angles up to 40 deg. C© 2011
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1 Introduction
The breakthrough of liquid crystal devices during the past two
decades is remarkable. Liquid crystal displays1–3 have led to
a new era in the mobile and display market segment because
of their excellent performance in specifications such as power
consumption, contrast ratio, viewing angle, and refresh rate.
Furthermore, the electro-optic properties of liquid crystals
have been widely applied to design tunable photonic com-
ponents such as optical switches,4 directional couplers,5 ring
resonators,6 and filters.7 The liquid crystal is typically used
in these waveguide structures either as a tunable cladding
material8 or as the guiding material itself.9–11

Nematic liquid crystals (LCs)12 are uniaxial mesophases
that exhibit a long range orientational order in combination
with a translational freedom of the molecules. The orien-
tation of the liquid crystal can be controlled externally by
electrical bias because of the dielectric anisotropy of the
molecules which leads in combination with the optical uni-
axiality to excellent electro-optical properties. It is essen-
tial to have a good understanding of the light propagation
in advanced liquid crystal devices to keep their improve-
ment ongoing. Optical modeling of such devices is however
complicated because the optical tensor contains up to six
different coefficients due to the inhomogeneous nature and
optical anisotropy of the liquid crystal. This is often han-
dled with some approximations in terms of the anisotropy or
dimensionality.13–16

The finite element method has been applied for decades
as a versatile numerical tool to obtain approximate solu-
tions to boundary-value problems. Using a finite element
scheme offers high accuracy in combination with the flexibil-
ity to model arbitrarily curved structures. Two rigorous finite
element approaches for the optical analysis of waveg-
uides with a liquid crystal cladding layer are applied and
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compared in this work. The most common approach in the de-
sign of waveguides is to analyze the electromagnetic modes
supported by the structure. A finite element modesolver for
anisotropic devices has been reported recently17 to make this
approach also applicable to waveguides with liquid crys-
tal as the guiding material or cladding layer. Alternatively,
the light propagation in waveguides can be simulated with
a beam propagation method (BPM).18–25 The BPM is an
efficient and versatile numerical method that simulates the
electric field propagation of a user-defined input optical field
through arbitrary structures. The computational complexity
of the method can be considered as optimal because the nu-
merical effort is directly proportional to the number of mesh
points used in the simulation.21 Several finite element BPMs
for LC devices have been described but the descriptions
are either limited to transverse anisotropy15, 16 (εzx = εzy
= 0) or paraxial propagation.26 Recently, a full-vector wide
angle finite element beam propagation method dedicated
to the optical analysis of liquid crystal devices has been
presented.27

In this paper, the modesolver and BPM are compared for
the optical analysis of liquid crystal waveguides to illustrate
the consistency of both methods and to show they are both
attractive for modeling and designing LC waveguides. The
basic principles of the finite element modesolver and BPM
are reviewed in Sec. 2. The liquid crystal orientation is first
calculated with an external solver28 and the obtained direc-
tor profile is considered in the optical analysis. The results
obtained with both approaches are compared in Sec. 3.1. It is
important to consider the wide angle properties of the BPM
because they are essential to have an accurate description
of the light propagation in high index contrast waveguides.
Section 3.2 illustrates the propagation of a Gaussian beam
in vacuum at various angles up to 40 deg with respect to the
propagation direction z. The results are compared with the
classical analytical description of Gaussian beams in homo-
geneous media to prove the high accuracy of the presented
BPM algorithm for wide angle propagation.
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2 Finite Element Modesolver and BPM for Liquid
Crystal Devices

The inhomogeneous nature of the liquid crystal has to be
taken into account when solving the Maxwell equations to
calculate the light propagation or waveguide eigenmodes in
LC devices accurately. Therefore, a full dielectric tensor has
to be taken into account in the finite element discretization
of the Helmholtz equation as presented in Sec 2.1. Next, the
obtained wave equation can be applied for the calculation of
waveguide eigenmodes or propagation analysis as described
in Secs. 2.2 and 2.3, respectively.

2.1 Finite Element Discretization of the Wave
Equation

The Helmholtz equation for the electric field E(x, y, z) is the
starting point to consider time harmonic fields:

∇×( ¯̄μ−1∇×E) − k2
0

¯̄ε · E = 0, (1)

where k0 is the wavenumber in vacuum, ¯̄ε is the rela-
tive permittivity tensor, and ¯̄μ is the relative permeability
tensor. A slowly varying envelope approximation is as-
sumed to separate the electric field E into a slowly
varying complex field �(x, y, z) = φx (x, y, z)1x + φy(x,
y, z)1y + φz(x, y, z)1z and a phase factor exp(− jk0n0z),
where z is the propagation direction:

E(x, y, z) = �(x, y, z) exp(− jk0n0z), (2)

with n0 an appropriate reference refractive index (see
Sec. 3.1). Equation (1) is discretized in the finite element
method by dividing the structure cross section � into small fi-
nite vector elements.29 Such hybrid edge/nodal elements have
been successfully applied in the modeling of vector fields in
electromagnetism and optics because spurious solutions are
excluded while the desired continuity conditions at dielectric
interfaces are incorporated. The transverse and longitudinal
field components are expanded within each element as:⎡
⎢⎣

φx

φy

φz

⎤
⎥⎦ =

⎡
⎢⎢⎣

N T
x 0

N T
y 0

0 j LT

⎤
⎥⎥⎦

[
φe

t

φe
z

]
, (3)

where φe
t and φe

z are the edge and nodal values, respectively,
in the element being considered. Hybrid LT/QN elements
that use combined linear/quadratic tangential Nx and Ny and
quadratic normal (QN) L shape functions for interpolation
of the transverse and longitudinal field,29 are applied.
The LT/QN shape functions are preferred over first order
functions for their higher-order convergence. The full
dielectric permittivity tensor ε is maintained to model
general anisotropic dielectric materials and a Galerkin
procedure30 is applied to the wave equation from Eq. (1).
Substituting Eqs. (2) and (3) into Eq. (1) yields the basic
equation for finite element optical analysis:[

Btt 0

0 0

]
∂2

∂z2

[
φt

φz

]
−

[
2 jk0n0 Btt j Btz

j Bzt 0

]
∂

∂z

[
φt

φz

]

−
[

Att + k2
0n2

0 Btt − jCtz + k0n0 Btz

jCzt + k0n0 Bzt Bzz

][
φt

φz

]
= 0.

(4)

The submatrices in Eq. (4) can be calculated for general
anisotropic dielectric materials according to the expressions
in Ref. 27 if the variation ∂εi i/∂z is sufficiently small. It
is possible to derive a finite element modesolver and beam
propagation algorithm based on Eq. (4) as described in
Secs. 2.2 and 2.3, respectively.

2.2 Modesolver Algorithm
The waveguide eigenmodes can be calculated by assuming
steady-state fields in Eq. (4) and rearranging the resulting ex-
pression as an eigenvalue problem. The numerical accuracy
of the eigenvalue calculation can be improved by changing
the finite element expansion in Eq. (3) to have edge and nodal
values with comparable magnitudes. This can be achieved
by multiplying the finite element expansion of the longi-
tudinal field component in Eq. (3) with a factor kz = k0n0

(according to the divergence relation ∇ · ε · E=0), yielding
φz = jkz[L]T φe

z . As a result, the eigenvalue system changes
to the following quadratic problem:17{

k2
z

[ Btt Btz

Bzt Bzz

]
+ kz

[ 0 jCtz

− jCtz 0

]
−

[ Att 0

0 0

]}

×
[

φt

φz

]
= 0, (5)

which reduces to a linear eigenvalue problem in the ab-
sence of dielectric anisotropy in the longitudinal direction
(i.e., εzx = εzy = 0). The quadratic eigenvalue problem from
Eq. (5) can be reduced in the general case to a linear system
by doubling the number of unknowns.31

2.3 Wide Angle Beam Propagation Algorithm
The beam propagation method is used to calculate the evolu-
tion of time harmonic fields upon propagation. As described
in, Ref. 27, it is possible to derive a recurrence scheme for
the transverse field by eliminating φz from the second row
of Eq. (4) and substituting the result into the first row of this
equation. The resulting expression can be formally rewritten
as a first order differential equation for the transverse field
component:[

A11 A12
I 0

]
∂

∂z

[
φt

∂φt

∂z

]
+

[
B11 0

0 −I

][
φt

∂φt

∂z

]
= 0, (6)

where I is the identity matrix of the same dimensions as the
submatrices A11, A12, and B11 which are defined as:

A11 = −2 jk0n0 Btt − Btz B−1
zz (Czt − jk0n0 Bzt )

+ (Ctz + jk0n0 Btz) B−1
zz Bzt , (7)

A12 = Btt − Btz B−1
zz Bzt , (8)

B11 = (k0n0 Btz − jCtz) B−1
zz ( jCzt + k0n0 Bzt )

−Att − k2
0n2

0 Btt . (9)

Discretizing the derivative in Eq. (6) yields a recurrence
scheme to propagate the transverse field in the z-direction:

Yi

[
φt

∂φt

∂z

]
i+1

= Zi

[
φt

∂φt

∂z

]
i

(10)
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with i the iteration number and

Yi =
[

A11 A12

I 0

]
i

+ ϑ�z

[
B11 0

0 −I

]
i

, (11)

Zi =
[

A11 A12

I 0

]
i

− (1 − ϑ)�z

[
B11 0

0 −I

]
i

, (12)

where �z is the propagation step and ϑ is a parameter that
controls the stability of the scheme. The subscript i for the
system matrices Y and Z in Eq. (10) can be omitted for struc-
tures with a cross section that is invariant in the z-direction
(e.g., waveguides). The evolution of the electric field upon
wide angle propagation of the input optical field through
the structure of interest can be calculated from the trans-
verse field and its derivative at z = 0 by iteratively applying
Eq. (10). This efficient scheme yields the transverse field
φt and its derivative with respect to z in subsequent planes
separated by �z and the longitudinal field component φz
is calculated from the transverse field. Furthermore, the ap-
proach automatically includes the effects of radiating fields
as well as mode coupling and conversion.

2.4 Implementation
The modesolver and BPM have been implemented in MATLAB
and take advantage of the efficient sparse matrix operations.
Free versions of both methods can be downloaded from
http://www.elis.ugent.be/ELISgroups/lcd/research/research.
php. Calculating the waveguide eigenmodes for a mesh
consisting of 5000 LT/QN elements typically takes about
300 s on a 2.5 GHz Intel Core 2 Duo CPU. The total
calculation time to simulate light propagation with the BPM
over, e.g., 100 μm in liquid crystal devices for a mesh
consisting of 500 LT/QN elements takes about 400 s on
the same computer. Perfectly matched layers (PML) for
anisotropic media32 are applied in the BPM for reflectionless
absorption of electromagnetic waves at the borders of the
computational window. Typically, the stability parameter is
ϑ = 1 and the propagation step is chosen equal to the light
wavelength.

3 Applications and Accuracy Analysis
The modesolver and BPM are applied in Sec. 3.1 for the
optical analysis of a waveguide with a liquid crystal cladding
layer and the obtained results are compared to check their
consistency. The liquid crystal orientation is first calculated
with an external finite element solver28 and the obtained di-
rector profile is considered in the optical simulations. Such
compatibility is an important advantage of the presented fi-
nite element approach to realize accurate device modeling.

It is essential to prove that wide angle light propagation
is correctly described in the BPM to show that the method is
well-suited for accurate modeling of the light propagation in
high index contrast waveguides. Therefore, the propagation
of a Gaussian beam in vacuum at various angles up to 40 deg
with respect to the propagation direction z is illustrated in
Sec. 3.2. The results are compared with the classical analyti-
cal description of Gaussian beams in homogeneous media to
prove the wide angle propagation properties of the presented
BPM algorithm.

3.1 Waveguide with a Liquid Crystal Cladding Layer
A square strip waveguide of 1 μm × 1 μm with refractive
index n1 = 1.65 (e.g., a high index polymer) is considered
on a glass substrate with n3 = 1.5 as sketched in Fig. 1.
The cladding layer is a 5-μm thick liquid crystal slab with
ordinary and extraordinary refractive indices n2,o = 1.475
and n2,e = 1.577, respectively. The orientation of the liquid
crystal can be controlled by applying a voltage between the
two electrodes E1 and E2 indicated in Fig. 1 because of
the dielectric anisotropy. A homogeneous orientation of the
liquid crystal slab in the 0 V state can be realized by using an
appropriate alignment layer33 at the interfaces between this
layer and the surrounding media. In this example, the liq-
uid crystal has an initial planar alignment oriented along the
z-axis with a 2 degree pretilt. Calculating the director pro-
file in a liquid crystal device involves minimizing the total
energy F (which comprises terms related to elastic, electric,
and surface energy) while satisfying the boundary conditions
(applied voltage and director orientation at the interfaces). To
include variable order effects in calculations, a generalization
of the theory on the free energy in liquid crystals has been de-
scribed by Landau and de Gennes.34 Instead of using a vector,

the liquid crystal orientation is described by a tensor Q

Q = S1

2
(3L ⊗ L − I ) + S2

2
(3m ⊗ m − I ), (13)

where ⊗ is the tensor product, I is the identity matrix, and
S1, respectively S2 represent the order along the director L
and a perpendicular unit vector m. In addition to the elastic,
electric and surface free energy densities and also a bulk
free energy density fbulk is included. The bulk free energy
is a function of the order parameter and describes the phase
of the material: uniaxial/biaxial nematic or isotropic. To
calculate the swithing behavior of the liquid crystal, the free
energy is supplemented by a dissipation term D to account
for the dissipation of kinetic energy due to viscous forces.
The variation of the director in time is calculated according
to a dissipation principle:

∂

∂α

∂ F

∂ Q,α

− ∂ F

∂ Q
− ∂ D

∂
˙
Q

= 0. (14)

A two-dimensional finite element implementation described
in Ref. 28 is used here to solve Eq. (14) with a time stepping

Fig. 1 Transverse cross section of the waveguide with a liquid crystal
cladding layer.
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Fig. 2 Director profile of the liquid crystal cladding layer when 0 V is
applied. The tilt θ of the director (the angle between the director and
the y-axis) is indicated in the color bar.

approach. The Q-tensor is calculated at t0 and the correspond-
ing free energy F of the configuration is evaluated. Next,

the time derivative of the Q-tensor
˙
Q is calculated and the

dissipation D is evaluated. The values of {Q,
˙
Q, D, F} are

updated in Eq. (14) and the procedure is repeated. In this way,
the dynamic behavior of the liquid crystal in time is obtained.

Figures 2 and 3 show the obtained director profiles when 0
V and 7 V, respectively, are applied across the liquid crystal
slab. It is clear from Fig. 3 that applying 7 V is sufficient
to change the original planar alignment of the liquid crystal
(Fig. 2) to a nearly vertical orientation. Changing the orien-
tation of the liquid crystal alters the optical properties of the
cladding layer because of its optical anisotropy.

The propagation of an input optical field [0, Ey, Ez] with
a vertical linear polarization and wavelength λ = 1.5 μm
is simulated with the BPM to assess the optical properties
of the waveguide with tunable cladding layer. The Ey field
component has a Gaussian intensity profile centered in the
waveguide. The computational window shown in Fig. 1 with
dimensions l1 = 3 μm, l2 = 5 μm, l3 = 4 μm, and l4 =
9 μm is divided into 430 triangular finite elements and the
propagation step is �z = 1 μm. Figures 4 and 5 show the
obtained evolution of the Ey component upon propagation
along the waveguide for the 0 and 7 V situation.

Upon propagation, the original Gaussian field profile
couples to the fundamental mode supported by the waveg-
uide which is single-mode for λ = 1.5 μm. It is interesting
to compare the evolution of the optical field in Figs. 4 and

Fig. 3 Director profile of the liquid crystal cladding layer when 7 V is
applied. The tilt θ of the director (the angle between the director and
the y-axis) is indicated in the color bar.

Fig. 4 The Ey field component after propagation over (a) 25 μm and
(b) 75 μm in the waveguide when no voltage is applied. The contour
plots are normalized to have equal maximum values for each frame.

5 to the waveguide modes calculated with the modesolver
for anisotropic waveguides. Figures 6 and 7 show the
TM mode profiles obtained for the 0 and 7 V director
profiles. The effective indices of the modes are calculated
as neff,0 V = 1.5603 and neff,7 V = 1.5710, respectively. As
shown in Fig. 6, the mode is confined in the waveguide when
no voltage is applied because of the high index contrast
�n = n1 − n2,o between the core and the cladding layer.
This index contrast is reduced to �n ≈ n1 − n2,e for the
7 V case for vertically polarized light because of the near-
vertical orientation of the liquid crystal. Therefore, the optical
power is less confined as observed in Fig. 7. Comparing the
simulated mode profiles from Figs. 6 and 7(a) to the optical
fields obtained after beam propagation over d ≥ 75 μm
[Figs. 4(b) and 5(d)] reveals good qualitative agreement. As
expected, the original Gaussian beam is clearly converted to
the waveguide mode upon propagation.

Fig. 5 The Ey field component after propagation over (a) 25 μm,
(b) 50 μm, (c) 75 μm, and (d) 100 μm in the waveguide when 7 V
is applied. The contour plots are normalized to have equal maximum
values for each frame.
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Fig. 6 TM mode profile when 0 V is applied: (a) Ey and (b) Ez .

The agreement between both approaches can be assessed
in a quantitative way by comparing the evolution of the ref-
erence index n0 upon propagation to the effective indices neff
of the calculated waveguide modes. This reference index n0
is renewed for every iteration step i as follows:15

n0,i = 1

k0
Re

⎡
⎣−bi +

√
b2

i − 4ai ci

2ai

⎤
⎦ (15)

with

ai = {φ}†i
[

Btt 0

0 0

]
{φ}i , (16)

bi = {φ}†i
[

0 Btz

Bzt 0

]
{φ}i , (17)

ci = {φ}†i
[

Att − jCtz

jCzt Bzz

]
{φ}i (18)

where † denotes a Hermitian transpose. The expression for
n0,i is obtained by solving the quadratic equation which
is obtained by setting ∂φt/∂z = 0 and ∂φz/∂z = 0 in
Eq. (4). Therefore, it follows that the value of n0,i according
to Eq. (15) converges for waveguide modes to the effective
index neff . Figures 8 and 9 show the evolution of n0 upon
propagation for the 0 V and 7 V case. In these simulations,
PMLs are applied in the BPM for reflectionless absorption
of the light which is not coupled to the waveguide mode.
This mainly occurs at the beginning of the beam propagation
when the Gaussian beam is converting to the waveguide
mode. Once the mode is obtained, the light is trapped in
the waveguide and there is no radiation toward the edges of

Fig. 7 TM mode profile when 7 V is applied: (a) Ey and (b) Ez .

Fig. 8 Evolution of the reference index n0 upon propagation when no
voltage is applied. The dashed line indicates the calculated effective
index neff,0 V = 1.5603 of the waveguide mode.

the computational window. In this case, the influence of the
PMLs on the value of n0 is negligible. This is confirmed by
the observation that the imaginary part of n0 becomes zero
while its real part converges for both cases to the obtained
effective mode indices neff,0 V respectively neff,7 V. This
proves the conversion of the original field profiles to the
waveguide modes. This excellent quantitative agreement
illustrates the numerical accuracy of the presented methods.
Because the waveguide mode is more similar to the original
Gaussian field when no voltage is applied [Fig. 6(a)], the
input beam converges faster for the 0 V case than for the 7 V
case. This is confirmed in both the simulated profiles (Figs. 4
and 5) and the evolution of the reference index n0 (Figs. 8
and 9).

As shown in this example, the BPM and modesolver
are well-suited for the optical analysis of liquid crystal
waveguides and the results obtained with both approaches
are in good quantitative agreement. The modesolver ap-
proach might be preferred in designing waveguides because
only a single eigenvalue problem has to be solved to ob-
tain the updated effective mode indices after changing the
structure. However, the BPM can be more closely related
to experiments because the actual light propagation is cal-
culated. This allows us to model the light coupling from
a surrounding medium into a waveguide or to describe,
e.g., the influence of the beam shape on the propagation
characteristics.

Fig. 9 Evolution of the reference index n0 upon propagation for the
7 V case. The dashed line indicates the calculated effective index
neff,7 V = 1.5710 of the waveguide mode.
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Fig. 10 Gaussian beam propagating at an angle α with respect to
the z-axis.

3.2 Gaussian Beam Propagation at Wide Angles in
Vacuum

An assessment of the BPM accuracy for wide angle propaga-
tion can be made by considering a Gaussian beam propagat-
ing at an angle α with respect to the z-axis. The electric field
of the fundamental Gaussian beam solution to the wave equa-
tion in vacuum in a x ′y′z′ coordinate system is well-known
in optics:

E(x ′, y′, z′) ∝ ω0

ω(z′)
exp[− j(k0z′ − η(z′))]

× exp

[
−(x ′2 + y′2)

(
1

ω2(z′)
+ jk0

2R(z′)

)]
(19)

with the well-known expressions for the wavenumber k0, the
radius of curvature R(z′), the longitudinal phase delay η(z′),
the spot size ω(z′), and the beam waist ω0.35 The electric
field of the Gaussian beam with wavelength λ = 1 μm is
calculated from Eq. (19) in a plane σ through the origin
with the z-axis as normal as shown in Fig. 10. The beam is
centered in the origin of a mesh which extends from −5ω0
to 5ω0 in the X direction and from −5ω0 to 15ω0 along Y
where ω0 = 1 μm is the beam waist of the beam. The edges
of the elements are approximately equal to half the wave-
length λ and the mesh contains about 1700 elements. The
obtained field is discretized to a set of nodal and edge val-
ues and the recurrence scheme from Eq. (10) is applied with
�z = 1 μm to calculate the evolution of the electric field
in subsequent planes perpendicular to the z-direction. Ob-
viously, the beam center will undergo a vertical translation
�y = d tan α in these planes with d the propagation dis-
tance. Figure 11 shows the simulated vertical displacement
�y of the beam center (peak intensity) after propagation
over d = 5 μm in the z-direction as a function of the angle
α. Comparing the simulated translation of the beam center
with the theoretical translation �y in Fig. 11 shows that the
presented beam propagation algorithm offers high accuracy
to model wide angle propagation up to 40 deg. Although a
small numerical error for wide angles is inevitable because
of the discretization of the derivative in Eq. (6), the method
offers high accuracy because no first order approximations

Fig. 11 Theoretical (solid) and simulated (circle) translation �y of the
beam center as a function of the angle α with respect to the z-axis.

of the second order derivatives have been made in deriving
the recurrence scheme from Eq. (4).

4 Conclusions
A finite element modesolver and BPM algorithm for the
optical analysis of liquid crystal waveguides have been
compared. Both full-vector methods are compatible with
advanced liquid crystal calculations and benefit from the
flexibility to model arbitrary geometries. Furthermore,
the approaches include a full dielectric tensor in solving
the Helmholtz equation for the electric field to model
the inhomogeneous and anisotropic nature of the liquid
crystal properly. Simulation of the beam propagation in
the waveguide with tunable liquid crystal cladding layer
illustrates the coupling of a Gaussian beam to the funda-
mental waveguide mode obtained with the modesolver. The
excellent quantitative agreement between both approaches
illustrates the potential of these methods for the design of
advanced devices. The high accuracy of the BPM algorithm
for wide angle propagation, essential for the analysis of high
index contrast waveguides, is illustrated by comparing the
Gaussian beam propagation in vacuum at angles up to 40
deg with the classical analytical description.
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