
 

 

biblio.ugent.be 

 

The UGent Institutional Repository is the electronic archiving and dissemination platform for all 

UGent research publications. Ghent University has implemented a mandate stipulating that all 

academic publications of UGent researchers should be deposited and archived in this repository. 

Except for items where current copyright restrictions apply, these papers are available in Open 

Access. 

 

This item is the archived peer-reviewed author-version of: 

Title: On the support of tempered distributions  

Authors: Jasson Vindas and Ricardo Estrada  

In: Proceedings of the Edinburgh Mathematical Society (Series 2), 53 (1), 255-270, 2010   

Optional: doi:10.1017/S0013091508000102 

 

To refer to or to cite this work, please use the citation to the published version: 

J. Vindas, R. Estrada (2010). On the support of tempered distributions. 
P r o c . E d i n b . M a t h .S o c . ( 2 ) 5 3 ( 1 ) 2 5 5 - 2 7 0

. doi:10.1017/S0013091508000102 

http://dx.doi.org/doi:10.1017/S0013091508000102


ON THE SUPPORT OF TEMPERED DISTRIBUTIONS

JASSON VINDAS AND RICARDO ESTRADA

Abstract. In this article we show that if the summability means
in the Fourier inversion formula for a tempered distribution f ∈
S ′ (Rn) converge to zero pointwise in an open set Ω, and if those
means are locally bounded in L1 (Ω) , then Ω ⊂ Rn \ supp f. We
prove this for several summability procedures, in particular for
Abel summability, Cesàro summability, and Gauss-Weierstrass summa-
bility.

1. Introduction

In a recent study, González Vieli and Graham [7] characterized the
support of certain tempered distributions in several variables in terms
of the uniform convergence over compacts of the symmetric Cesàro
means of its Fourier inversion formula. Indeed, they proved that for a
large class of tempered distributions f ∈ S ′ (Rn) , if for some k ∈ N

(1.1) lim
a→∞

∫
|u|≤a

f̂ (u) e−iu•xdu = 0 (C,k) ,

uniformly on compacts of an open set Ω ⊂ Rn, then Ω ⊂ Rn\ supp f.
See also [6, 8, 9]. Results on this subject have a rich tradition that
goes back to the work of Kahane and Salem [10] and that of Walter
[18]. Here we use the constants in the Fourier transform such that

f̂ (u) =
∫

Rn f (x) eiu•xdx if the integral exists. Hence, the inversion

formula becomes f (x) = (2π)−n ∫
Rn f̂ (u) e−iu•xdu when the integral

makes sense. If instead of uniform convergence one has only pointwise
convergence, then it is easy to see that maybe Ω ∩ supp f 6= ∅.

The aims of this note are the following:

(1) To obtain the characterization of the support of any tempered
distribution.
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(2) To prove the result under weaker conditions than uniform con-
vergence of the means, in particular, when the means are locally
L1 bounded.

(3) To obtain the corresponding result for other summability meth-
ods such as Abel summability and Gauss-Weierstrass summa-
bility.

It should be pointed out that in the one-variable case one can com-
pletely characterize the support of a tempered distribution in term of
the pointwise Cesàro behavior if one uses slightly asymmetric means. It
was proved in [2] that a periodic distribution of period 2π, f ∈ S ′ (R) ,
with Fourier series

∑∞
n=−∞ ane

inx, has the distributional point value
f (x0) = γ in the  Lojasiewicz sense [11] if and only if there exists k
such that ∀a > 0,

(1.2) lim
y→∞

∑
−ay≤n≤y

ane
inx0 = γ (C,k) .

This result was recently generalized to arbitrary tempered distributions
[15, 16]: If f ∈ S ′ (R) then

(1.3) f (x0) = γ distributionally ,

if and only if

(1.4) e.v.
〈
f̂ (u) , e−iux0

〉
= 2πγ (C,k) .

The slightly asymmetric evaluation e.v. 〈g (x) , ρ (x)〉 (C,k) of a distri-
bution g ∈ D′ (R) on a test function ρ ∈ E (R) exists and equals L if
for each primitive G of ρg, G′ = ρg, we have that ∀a > 0,

(1.5) lim
y→∞

(G (y)−G (−ay)) = L (C,k) .

Therefore, since the  Lojasiewicz point values determine a distribu-
tion completely if they exist at all points [11], we obtain the following
characterization of the support of a distribution.

Theorem 1. Let f ∈ S ′ (R) . Let Ω be an open set of R. If there exists
k such that

(1.6) e.v.
〈
f̂ (u) , e−iux

〉
= 0 (C,k) , ∀x ∈ Ω ,

then Ω ⊂ R\ supp f .

The principal value evaluation p.v. 〈g (x) , ρ (x)〉 (C,k) of a distribu-
tion g ∈ D′ (R) on a test function ρ ∈ E (R) exists and equals L if for
each primitive G of ρg, G′ = ρg, we have that

(1.7) lim
y→∞

(G (y)−G (−y)) = L (C,k) .
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Naturally the Theorem 1 is not true for principal value evaluations, as
the example f (x) = δ′ (x) shows, since here the means converge to zero
in the p.v. sense for all x ∈ R.

The plan of the article is as follows. In Section 2 we recall the
definitions of  Lojasiewicz point values and of Cesàro behavior. Sec-
tion 3 gives the definition of the distributional φ−transform in several
variables and the proof of the distributional convergence. The basic
summability procedures for the Fourier inversion formula, and their re-
lation with the distributional φ−transform are presented in Section 4;
we observe that summability results for the Fourier transform and its
inverse can be considered as particular cases of results for the distri-
butional φ−transform. In Section 5 we show the uniform convergence
on compacts of the distributional φ−transform of a function continu-
ous in an open set and its converse, and consequently for summability
in the Fourier inversion formula. Finally in Section 6 we characterize
the complement of the support of a distribution in the case when the
means are locally L1 bounded.

2. Preliminaries

The spaces of test functions D, E , and S and the corresponding
spaces of distributions are well-known [5]. We shall also need the dis-
tribution space K′, the dual of K; the space K′ plays a fundamental
role in the theory of summability of distributional evaluations [5].

We shall use the notion of the distributional point value of gen-
eralized functions introduced by  Lojasiewicz, in one [11] and several
variables [12]. Let f ∈ D′ (Rn) , and let x0 ∈ Rn. We say that f has
the distributional point value γ at x = x0, and write

(2.1) f (x0) = γ, distributionally ,

if limε→0 f (x0 + εx) = γ in the space D′ (Rn) , that is, if

(2.2) lim
ε→0

〈f (x0 + εx) , φ (x)〉 = γ

∫
Rn

φ (x) dx ,

for all test functions φ ∈ D (Rn) . It can be shown that f (x0) = γ,
distributionally, if and only if there exists a multi-index k0 ∈ Nn such
that for all multi-indices k ≥ k0 there exists a k primitive of f, G with
DkG = f, that is a continuous function in a neighborhood of x = x0

and satisfies

(2.3) G (x) =
γ (x− x0)

k

k!
+ o

(
|x− x0||k|

)
, as x → x0 .
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It is important to observe that the distributional point values determine
a distribution if they exists everywhere, that is, if f ∈ D′ (Rn) is such
that f (x) = 0 distributionally ∀x ∈ Ω, where Ω is an open set, then
f = 0 in Ω [11, 12].

There is a related but different notion of distributional point value,
that of a symmetric value. We say that f has the symmetric distribu-
tional value γ at x = x0, and write

(2.4) fsym (x0) = γ, distributionally ,

if (2.2) holds for radial test functions. In the one variable case this
means that (f (x0 + x)+f (x0 − x))/2 has the distributional value γ at
x = 0. In several variables it means that R (r) =

∫
S f (x0 + rω) dσ (ω) ,

when suitable extended to D′ (R) , has the value γ at r = 0, where S
is the unit sphere. A distribution like δ′ (x) has the symmetric value 0
at all points, so, in general, the symmetric distributional point values
do not determine a distribution uniquely.

We shall follow [3, 5] for the notions related to Cesàro behavior of
distributions. If f ∈ D′ (Rn) and α ∈ R is not a negative integer, we
say that f is bounded by |x|α in the Cesàro sense for |x| large, and
write

(2.5) f (x) = O (|x|α) (C) , as |x| → ∞ ,

if there exists a multi-index k ∈ Nn and a k primitive, DkG = f, which
is a function for |x| large and satisfies the ordinary order relation

(2.6) G (x) = O
(
|x|α+|k|

)
, as |x| → ∞ .

Naturally (2.6) will not hold for all primitives of f, and if it holds for
k it will also hold for bigger multi-indices.

3. The distributional φ−transform

In this section we explain how we can extend to several variables the
distributional φ−transform introduced in [15]. Let φ ∈ D (Rn) be a
fixed test function with

(3.1)

∫
Rn

φ (x) dx = 1 .

If f ∈ D′ (Rn) we introduce the function of n+ 1 variables F = Fφ {f}
by the formula

(3.2) F (x, t) = 〈f (x + ty) , φ (y)〉 ,
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where (x, t) ∈ H, the half space Rn × (0,∞) . Naturally the evalua-
tion in (3.2) is with respect to the variable y. We call F the distri-
butional φ−transform of f. This transform also receives other names,
such as the standard average with kernel φ [1]. Whenever we consider
φ−transforms we assume that φ satisfies (3.1).

The definition of the φ−transform tell us that if f (x0) = γ then
F (x0, t) → γ as t → 0+, but actually F (x, t) → γ as (x, t) → (x0, 0)
in an angular or non-tangential fashion, that is if |x− x0| ≤ Mt for
some M > 0 (just replace φ (x) by φ (x−Mω) where |ω| = 1). On
the other hand, if fsym (x0) = γ distributionally then F (x0, t) → γ as
t→ 0+ whenever φ is radial, but in general F (x, t) does not approach
γ radially for general test functions and in general F (x, t) does not
approach γ in an angular fashion even if φ is radial.

We can also consider the φ−transform if φ ∈ A (Rn) satisfies (3.1)
and f ∈ A′ (Rn) , where A (Rn) is a suitable space of test functions,
such as S (Rn) or K (Rn).

We start with the distributional convergence of the φ−transform.

Proposition 1. If φ ∈ D (Rn) and f ∈ D′ (Rn) , then

(3.3) lim
t→0+

F (x, t) = f (x) ,

distributionally in the space D′ (Rn) , that is, if ρ ∈ D (Rn) then

(3.4) lim
t→0+

〈F (x, t) , ρ (x)〉 = 〈f (x) , ρ (x)〉 .

Proof. We have that

(3.5) 〈F (x, t) , ρ (x)〉 = 〈% (ty) , φ (y)〉 ,

where

(3.6) % (z) = 〈f (x) , ρ (x− z)〉 ,

is a smooth function of z. The  Lojasewicz point value % (0) exists and
equals the ordinary value and thus

(3.7) lim
t→0+

〈% (ty) , φ (y)〉 = % (0) = 〈f (x) , ρ (x)〉 ,

as required. �

The result of the Proposition 1 also hold in other cases. In order to
obtain those results we need some preliminary results. Recall that an
asymptotic order relation is strong if it remains valid after differentia-
tion of any order.
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Proposition 2. Let f ∈ E ′ (Rn) be a distribution with compact support
K. Let φ ∈ E (Rn) be a test function that satisfies (3.1) and

(3.8) φ (x) = O(|x|β) , strongly as |x| → ∞ ,

where β < −n. Then

(3.9) lim
t→0+

F (x, t) = 0 ,

uniformly on compacts of Rn \K.

Proof. There exist a constant M > 0 and q ∈ N such that

(3.10) |〈f (y) , ρ (y)〉| ≤M

q∑
|j|=0

∥∥Djρ
∥∥

K,∞ ∀ρ ∈ E (Rn) ,

where ‖ρ‖K,∞ = sup {|ρ (x)| : x ∈ K} . There exist r0 > 0 and con-

stants Mj > 0 such that
∣∣Djφ (x)

∣∣ ≤Mj |x|β−|j| for |x| ≥ r0 and |j| ≤ q.
Let L be a compact subset of Rn \ K, and let t0 > 0 be such that if
0 < t ≤ t0 then t−1 |x− y| ≥ r0 for all x ∈ L, y ∈ K. Then, since

(3.11) F (x, t) = t−n
〈
f (y) , φ

(
t−1 (y − x)

)〉
,

it follows that for 0 < t ≤ t0,

(3.12) |F (x, t)| ≤M2t
−n−β, ∀x ∈ L,

where M2 = M
∑q

|j|=0Mj is a constant. Since −β − n > 0, we obtain

that (3.9) holds uniformly on x ∈ L. �

The definition of the  Lojasiewicz point value is that if f ∈ D′ (Rn)
then f (x0) = γ distributionally if

(3.13) lim
ε→0

〈f (x0 + εx) , φ (x)〉 = γ

∫
Rn

φ (x) dx ,

whenever φ ∈ D (Rn) . If f belongs to a smaller class of distributions,
then 〈f (x0 + εx) , φ (x)〉 will be defined for test functions of a larger
class, not only for those of D (Rn) , and one may ask whether (3.13)
remains true in that case. There are cases where (3.13) is not true, for
instance if f ∈ E ′ (R) sometimes there are φ ∈ E (R) that do not satisfy
(3.13) [4]. However, it was shown in [4] that in the one variable case,
(3.13) holds if f (x0) = γ distributionally and the following conditions
are satisfied:

(3.14) f (x) = O (|x|α) (C) , as |x| → ∞ ,

(3.15) φ (x) = O(|x|β) , strongly as |x| → ∞ ,
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(3.16) α + β < −1 , β < −1 .

In particular, (3.13) is valid when f ∈ S ′ (R) and φ ∈ S (R) [4, 13, 17].
Actually a corresponding result is valid in several variables, and the
proof is basically the same.

Proposition 3. Let f ∈ D′ (Rn) with f (x0) = γ distributionally. Let
φ ∈ E (Rn) . Suppose that

(3.17) f (x) = O (|x|α) (C) , as |x| → ∞ ,

(3.18) φ (x) = O(|x|β) , strongly as |x| → ∞ ,

where

(3.19) α + β < −n , β < −n .

Then

(3.20) lim
ε→0

〈f (x0 + εx) , φ (x)〉 = γ

∫
Rn

φ (x) dx .

Proof. Suppose that x0 = 0. There exists a muti-index k and two
primitives of f, DkG1 = DkG2 = f such that

(3.21) G1 (x) = O
(
|x|α+|k|

)
, as |x| → ∞ ,

(3.22) G2 (x) =
γxk

k!
+ o

(
|x||k|

)
, as |x| → 0 .

Hence we can combine them into a single function G that satisfies∣∣∣∣G (x)− γxk

k!

∣∣∣∣ ≤M |x||k| , for |x| ≤ 1 ,

|G (x)| ≤M |x|α+|k| , for |x| ≥ 1 ,

and

(3.23) f = g + DkG ,

where g has compact support and x0 /∈ supp g. Then (3.20) holds
for g, because of the Proposition 2, and it holds if φ has compact
support. Therefore it is enough to prove (3.20) if f = DkG and
suppφ ⊂ {x : |x| ≥ 1} ; but in this case we may use the Lebesgue
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bounded convergence theorem to obtain

lim
ε→0

〈f (εx) , φ (x)〉 = lim
ε→0

(−1)|k| ε−|k|
∫

Rn

G (εx) Dkφ (x) dx

=
(−1)|k| γ

k!

∫
Rn

xkDkφ (x) dx

= γ

∫
Rn

φ (x) dx ,

as required. �

In particular, (3.20) holds if f ∈ S ′ (Rn) and φ ∈ S (Rn) .
Using the same argument as in the last proof we can prove that if

f (x) = 0 for x ∈ Ω, an open set, and the conditions (3.17), (3.18),
and (3.19) are satisfied, then the convergence in (3.20) is uniform on
compacts of Ω.

We can now extend the distributional convergence of the φ−transform,
Proposition 1, to other cases.

Proposition 4. If φ ∈ E (Rn) and f ∈ E ′ (Rn) satisfy the conditions
(3.17), (3.18), and (3.19), then

(3.24) lim
t→0+

F (x, t) = f (x) ,

distributionally in the space D′ (Rn) , that is, if ρ ∈ D (Rn) then

(3.25) lim
t→0+

〈F (x, t) , ρ (x)〉 = 〈f (x) , ρ (x)〉 .

In particular, distributional convergence, (3.24), holds if φ ∈ S (Rn)
and f ∈ S ′ (Rn) .

Proof. We proceed as in the proof of the Proposition 1 by observing
that 〈F (x, t) , ρ (x)〉 = 〈% (ty) , φ (y)〉 , where % (z) = 〈f (x) , ρ (x− z)〉 .
Next we observe that % is a smooth function, and that it satisfies
% (x) = O (|x|α) (C) , as |x| → ∞. Indeed, there exists a multi-index
k and a primitive of f of that order, DkG = f, which is an ordinary

function for large arguments and satisfies |G (x)| = O
(
|x||k|+α

)
as

|x| → ∞. We have then that

% (z) =
〈
Dk

xG (x) , ρ (x− z)
〉

= Dk
z 〈G (x) , ρ (x− z)〉 ,

and 〈G (x) , ρ (x− z)〉 =
∫

supp ρ
G (x + z) ρ (x) dx =O

(
|z||k|+α

)
as |z| →

∞, since supp ρ is compact. Hence the Proposition 3 allows us to obtain
that limt→0+ 〈% (ty) , φ (y)〉 = % (0) = 〈f (x) , ρ (x)〉 . �
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Observe also if φ ∈ E (Rn) and f ∈ E ′ (Rn) satisfy the conditions
(3.17), (3.18), and (3.19), then when the distributional point value
f (x0) exists then F (x, t) → f (x0) as (x, t) → (x0, 0) in an angular
fashion, while if the distributional symmetric value fsym (x0) exists and
φ is radial then F (x0, t) → f (x0) as t→ 0+.

4. Summability Methods

In this section we explain several methods of summability that one
can use in connection with the Fourier inversion formula. We start
with the ψ−summability.

4.1. The ψ−summability. Let ψ ∈ S (Rn) be any function with
ψ (0) = 1. If g ∈ S ′ (Rn) and ρ is a smooth function in Rn with
ρg ∈ S ′ (Rn) , then the evaluation

(4.1) 〈g (x) , ρ (x)〉 ,

is not defined, in general, because ρmay not belong to S (Rn) .However,
if ε > 0, the evaluation

(4.2) G (ε) = 〈g (x) , ρ (x)ψ (εx)〉 ,

is well-defined. If

(4.3) lim
ε→0

G (ε) = S ,

exists, then we say that the evaluation 〈g (x) , ρ (x)〉 is ψ−summable
to S, and write

(4.4) 〈g (x) , ρ (x)〉 = S (ψ) .

When g is locally integrable, then (4.4) can be written as

(4.5)

∫
Rn

g (x) ρ (x) dx = S (ψ) ,

while if g (x) =
∑∞

n=1 anδ (x− bn) , then (4.4) becomes

(4.6)
∞∑

n=1

anρ (bn) = S (ψ) .

In particular, if ψ (x) = e−|x|
2

then the (ψ) summability becomes the
Gauss-Weierestrass summability; we may write 〈g (x) , ρ (x)〉 (G-W) in
this case.
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Proposition 5. Let ψ ∈ S (Rn) with ψ (0) = 1. Let f ∈ S ′ (Rn) . Then

(4.7) f (x) =
1

(2π)n

〈
f̂ (u) , e−iu•x

〉
(ψ) ,

distributionally in the space D′ (Rn) , that is, ∀ρ ∈ D (Rn) ,

(4.8) lim
ε→0+

〈
1

(2π)n

〈
f̂ (u) , e−iu•xψ (εu)

〉
, ρ (x)

〉
= 〈f (x) , ρ (x)〉 .

Moreover, relation (4.7) holds pointwise at any point x where the dis-
tributional point value f (x) exists.

Proof. The result follows immediately from the Propositions 3 and 4
because

(4.9)
1

(2π)n

〈
f̂ (u) , e−iu•xψ (εu)

〉
= F (x, ε) ,

where F is the φ−transform of f for φ (x) = (2π)−n ψ̂ (x) . �

Observe, in particular, that the Fourier inversion formula is always
valid distributionally, in the space D′ (Rn) , in the Gauss-Weierestrass
summability sense for any tempered distribution.

We also have pointwise convergence at all points where the symmet-
ric point value exists, provided that ψ is radial.

Proposition 6. Let ψ ∈ S (Rn) be a radial test function with ψ (0) =
1. Let f ∈ S ′ (Rn) . Let x0 ∈ Rn be a point where the distributional
symmetric value fsym (x0) exists. Then

(4.10) fsym (x0) =
1

(2π)n

〈
f̂ (u) , e−iu•x0

〉
(ψ) .

4.2. Abel summability. The Abel method of summability follows by
taking ψ (x) = e−|x| in the (ψ) summability procedure:

(4.11) 〈g (x) , ρ (x)〉 = S (A) .

if

(4.12) lim
ε→0+

〈
g (x) , ρ (x) e−ε|x|〉 = S .

There is an obvious problem in the application of this method,
namely, the function e−|x| does not belong to S (Rn) since it is not
differentiable at x = 0. It is fair to say, however, that e−|x| does have
the behavior of the space S (Rn) as |x| → ∞. If g satisfies certain
conditions near x = 0, then

〈
g (x) , ρ (x) e−ε|x|〉 can be computed, for

instance, if g is a locally integrable function in a neighborhood of x = 0,
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or more generally if it is a Radon signed measure in such a neighbor-
hood.

We can consider Abel means for general g if we accept that in some
cases these means are not unique. Indeed, let e (g) be an extension

of g ∈ S ′ (Rn) to the dual space
(
X⊗̂D (S)

)′
, where we use polar

coordinates x =rω, r ≥ 0, ω ∈ S, and where X is the space of re-
strictions of functions ρ (r) for ρ ∈ S (R) to [0,∞). Then ρ (x) e−ε|x|

belongs to X⊗̂D (S) and thus we can consider the Abel means G (ε) =〈
e(g) (x) , ρ (x) e−ε|x|〉 , and its limit as ε ↘ 0 instead of (4.12). Some
g have canonical extensions e (g) , but in general e (g) is not uniquely
defined.

If we use Abel summability in the Fourier inversion formula, we
obtain the means

(4.13) U (x, t) =
1

(2π)n

〈
e
(
f̂
)

(u) , e−iu•x−t|u|
〉
,

which is harmonic in H : Utt +
∑n

j=1 Uxjxj
= 0. A similar analysis to

that of Proposition 5 yields

(4.14) lim
t→0+

U (x, t) = f (x) .

We also observe that for a fixed t > 0 the function U (x, t) belongs to
S ′ (Rn) .

We can thus say that the Abel means in the Fourier inversion formula
of a tempered distribution f ∈ S ′ (Rn) are those harmonic functions in
H with these properties. Functions like U (x, t) = t or U (x, t) = 3x2

j t−
t3 are Abel means of f = 0, and thus the source of non-uniqueness.

If f ∈ E ′ (Rn) , or more generally if f (x) = O (1) (C) as |x| → ∞,
then one can define a canonical Abel mean for the Fourier inversion
formula as

(4.15) U (x, t) = cn

〈
f (y) ,

t(
t2 + ‖x− y‖2)n+1

2

〉
,

where

(4.16) cn =
Γ

(
n+1

2

)
π

n+1
2

=

∫
Rn

dy(
1 + ‖y‖2)n+1

2

−1

,

and where the kernel in (4.15) is the Poisson kernel for H. In this case

U (x, t) is the φ−transform of f for φ (y) = cn
(
1 + ‖y‖2)−n+1

2 .
Observe that if the distributional symmetric value fsym (x0) exists

then for any Abel mean U (x, t) we have that U (x0, t) → fsym (x0) ,
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that is,

(4.17) fsym (x0) =
1

(2π)n

〈
f̂ (u) , e−iu•x0

〉
(A) .

4.3. Cesàro summability. We can also consider Cesàro summability
by spherical means [5, Section 6.8]. Summability by spherical means
can actually be reduced to summability in one variable since using
polar coordinates, x =rω, r ≥ 0, ω ∈ S, we obtain

(4.18) 〈f (x) , 1x〉 =
〈
F (r) , rn−1

〉
(C) ,

where

(4.19) F (r) = 〈f (rω) , 1ω〉D′(S)×D(S) .

The distribution F is not uniquely defined at r = 0, however we can
always write f = f1 + f2, where f1 has compact support and where
0 /∈ supp f2. The evaluation 〈f1 (x) , φ (x)〉 is well-defined for any φ ∈
E (Rn) , so we need to consider only the case when f = f2 satisfies that
supp f ⊂ {x : |x| ≥ a} for some a > 0. Then F will be uniquely defined
if we require that suppF ⊂ [a,∞).

We now explain when 〈f (x) , φ (x)〉 is Cesàro summable by spherical
means of order N,

(4.20) 〈f (x) , φ (x)〉 = L (C,N)r .

If φ = 1 the (C,N)r summability means that the one-variable evaluation

(4.21)
〈
F (r) , rn−1

〉
= L (C,N) ,

exists in the (C,N) sense. For a general φ it means that 〈φ (x) f (x) , 1x〉
= L (C,N)r . The notation (C)r is used for Cesàro summability by
spherical means, namely when there exists some N such that the eval-
uation is (C,N)r .

Observe that the (C,N)r summability corresponds to the case where

(4.22) ψN (x) = H (1− |x|) (1− |x|)N

N !
,

in the ψ−summability. Here H is the Heaviside function.
If f ∈ K′ (Rn) and φ ∈ K (Rn) , then the evaluation 〈f, φ〉 exists in

the (C)r sense, that is, it exists (C,N)r for some N. The value of N
depends on φ in this case: Consider the example where f (x) = eix

and φ (x) = xn. On the other hand, if f ∈ S ′ (Rn) and φ ∈ S (Rn)
then the evaluation 〈f, φ〉 also exists (C)r since 〈f, φ〉 = 〈φf, 1〉 , and
φf ∈ K′ (Rn) , but now if f ∈ S ′ (Rn) is fixed then there exists N such
that 〈f, φ〉 exists (C,N)r for all test functions φ ∈ S (Rn) .
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The Cesàro means of the Fourier inversion formula will converge
distributionally, as in the case of the Abel means and the (ψ) means,
but this happens if N is large.

Proposition 7. Let f ∈ S ′ (Rn) . Then there exists N such that

(4.23) f (x) =
1

(2π)n

〈
f̂ (u) , e−iu•x

〉
(C,N)r ,

distributionally in the space S ′ (Rn) , in the sense that for each ρ ∈
S (Rn)
(4.24)

lim
ε→0+

〈
1

(2π)n

〈
f̂ (u) , e−iu•xψN (εu)

〉
, ρ (x)

〉
= 〈f (x) , ρ (x)〉 (C,N)r .

Proof. Indeed,

(4.25)

〈
1

(2π)n

〈
f̂ (u) , e−iu•x

〉
, ρ (x)

〉
=

1

(2π)n

〈
f̂ (u) , ρ̂ (−u)

〉
,

and there exists N such that the evaluation
〈
f̂ , φ

〉
exists (C,N)r for all

test functions φ ∈ S (Rn) , in particular for φ (u) = ρ̂ (−u) . But since

(2π)−n
〈
f̂ (u) , ρ̂ (−u)

〉
= 〈f (x) , ρ (x)〉 , (4.24) is obtained. �

It is interesting to observe if f ∈ E ′ (Rn) then there is no need to use
Cesàro summability in (4.23), that is, we actually get convergence of
the spherical means. Similarly, if f is periodic of periods in

∏n
j=1 τjZ,

so that its Fourier transform is concentrated on a discrete set, and
the Fourier inversion formula is the Fourier series, then we also get
convergence. However, for a general f ∈ S ′ (Rn) there is a value N for
which (4.23) holds, but the spherical means are not (C,M) summable
if M < N.

When the distributional symmetric value fsym (x0) exists then (1.4)
implies that we have pointwise Cesàro summability,

fsym (x0) =
1

(2π)n

〈
f̂ (u) , e−iu•x0

〉
(C,N)r ,

if N is large.

5. Continuity

If U (x, t) is harmonic in H, with distributional boundary value f (x) =
U (x, 0+) ∈ S ′ (Rn) , and f is continuous in an open set Ω ⊂ Rn, then
it is well-known that actually U (x, t) can be extended as a contin-
uous function to H∪ (Ω× {0}) , and consequently, U (x, t) → f (x)
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uniformly on compacts of Ω. In fact, this is a general result for the
φ−transform.

Proposition 8. Let f ∈ D′ (Rn) and let F (x, t) be its φ−transform.
Suppose that φ ∈ D (Rn) or that (3.17), (3.18), and (3.19) are satisfied.
If f is an ordinary bounded function in a neighborhood of a point x0

and that function is continuous at x = x0 then

(5.1) lim
(x,t)→(x0,0)

F (x,t) = f (x0) ,

so that F can be extended as a continuous function to H∪ ({x0} × {0}) .
Proof. The results of Section 3 show that (5.1) holds if x0 ∈ Rn\supp f.
Hence, it is enough to prove (5.1) when f is an ordinary bounded
function with compact support. Let ε > 0, and let B be an open
neighborhood of x0, with compact closure, such that |f (y)− f (x0)| <
ε for y ∈ B. Write F (x,t)− f (x0) = G1 (x,t) +G2 (x,t) , where

G1 (x,t) = t−n

∫
B

(f (y)− f (x0))φ
(
t−1 (y − x)

)
dy ,(5.2)

G2 (x,t) = t−n

∫
Rn\B

(f (y)− f (x0))φ
(
t−1 (y − x)

)
dy .(5.3)

Then G2 (x,t) → 0 as t→ 0 uniformly on compacts of B, while

(5.4) |G1 (x,t)| ≤ ε

∫
Rn

|φ (y)| dy ,

and (5.1) follows. �

Observe that if the conditions of the Proposition 8 are satisfied and
f (x0) = γ distributionally then F (x,t) → γ as (x,t) → (x0,0) in a non-
tangential fashion, while if the distributional symmetric value exists,
fsym (x0) = γ, and φ is radial then F (x0,t) → γ as t→ 0+. According
to Proposition 8 if f is continuous at x = x0 then F (x,t) → γ as
(x,t) → (x0,0) in an unrestricted fashion.

Proposition 9. Let f ∈ D′ (Rn) and let F (x, t) be its φ−transform.
Suppose that φ ∈ D (Rn) or that (3.17), (3.18), and (3.19) are satisfied.
If f is a continuous function in an open set Ω ⊂ Rn then F can be ex-
tended as a continuous function to H∪ (Ω× {0}) , and F (x, t) → f (x)
uniformly on compacts of Ω. Conversely, if F (x, t) → f (x) uniformly
on compacts of Ω, then f is a continuous function in Ω.

Proof. The direct part follows immediately from the previous proposi-
tion, while the converse result follows because uniform convergence on
compacts implies distributional convergence. �
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In particular, we have the following result for summability of the
Fourier inversion formula.

Corollary 1. Let f ∈ S ′ (Rn) . If f is a continuous function in an open
set Ω ⊂ Rn then the ψ means, for any ψ ∈ S (Rn) , any Abel means, or
the Cesàro means of large order converge to f uniformly on compacts
of Ω :

(5.5) f (x) =
1

(2π)n

〈
f̂ (u) , e−iu•x

〉
(T) ,

uniformly on x ∈ K, K a compact subset of Ω, for (T) = (ψ) , (A) , or
(C,N)r for N large. Conversely, if (5.5) holds uniformly on compacts
of Ω then f is a continuous function on Ω.

6. The support of a distribution

We now show how we can obtain a characterization of the comple-
ment of the support of a distribution if we add some extra conditions to
the pointwise convergence to zero of the symmetric means. Naturally,
the uniform convergence to zero of the means on compacts of an open
set Ω gives that Ω ⊂ Rn \ supp f, because of the Proposition 1; this is
the result of González Vieli and Graham [7] when (T) = (C,N)r for N
large.

Let us start with the φ−transform.

Theorem 2. Let f ∈ D′ (Rn) and let F (x, t) be its φ−transform.
Assume that φ (x) ≥ 0 ∀x ∈ Rn, while φ (0) > 0. Suppose that φ ∈
D (Rn) or that (3.17), (3.18), and (3.19) are satisfied. Suppose that
pointwise

(6.1) lim
t→0+

F (x, t) = 0 , ∀x ∈ Ω ,

where Ω is an open set. Let p ∈ [1,∞] and suppose that for 0 < t ≤ t0
the function F (x, t) is locally bounded in Lp (Ω) , i.e., if K is compact
in Ω, there exists a constant M = M (K, p) such that

(6.2)

(∫
K

|F (x, t)|p dx

)1/p

≤M ,

for p <∞, or if p = ∞,

(6.3) sup {|F (x, t)| : x ∈ K} ≤M .

Then Ω ⊂ Rn \ supp f.
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Proof. It is enough to do it when p = 1, since local boundedness in
Lq (Ω) for q ≥ 1 implies local boundedness in L1 (Ω) . Now, local bound-
edness in L1 (Ω) plus distributional convergence yield that f is a signed
Radon measure in Ω : if {tn} is any sequence of positive numbers that
converges to zero then local boundedness in L1 (Ω) implies that there
exists a subsequence {tnk

} such that F (x, tnk
) converges ∗−weakly in

the dual space of C (Ω) , that is F (x, tnk
) → ν (x) where ν is a signed

Radon measure in Ω; but clearly f = ν in Ω.
We can then write, in Ω, f = fac + fdis + fsin, where fac, the abso-

lutely continuous part, is a locally integrable function in Ω, fdis (x) =∑
a∈A caδ (x− a) where A is countable at the most and

∑
a∈A∩K |ca|

converges for all K compact with K ⊂ Ω, and where fsin is a contin-
uous signed measure concentrated on a set of Lebesgue measure zero.
But the distributional point value fac (x) exists almost everywhere be-
cause fac is locally integrable and equals the distributional point value
f (x) almost everywhere since fdis (x) = fsin (x) = 0 almost every-
where, and from (6.1) those values are 0, so that the function fac is
null a.e. in Ω, and so the distribution fac = 0 in Ω. On the other
hand, if ca0 6= 0 then the contributions form

∑
a∈A\{a0} caδ (x− a) and

from fsin (x) give parts of F (a0, t) that are of order o (t−n) as t→ 0+,
so that the main contribution comes from ca0δ (x− a0) , which yields
F (a0, t) ∼ ca0t

−nφ (0) as t→ 0+. However, this is not possible because
of (6.1); hence the discrete part fdis also vanishes. Thus f = fsin = dµ,
a singular signed measure. We can write µ = µ+ − µ−, where µ±
are positive measures, concentrated on disjoint sets, Z±. But using
the results of [14, Chapter 4], the set of points x0 with infinite upper
symmetric derivative

(6.4) lim sup
ε→0+

ε−n

∫
|x−x0|<ε

dµ± (x) = ∞ ,

is of full measure with respect to |µ| , and at those points, because
φ (x) ≥ 0 ∀x ∈ Rn and φ (0) > 0,

(6.5) lim sup
ε→0+

|F (x0, ε)| ≥ lim sup
ε→0+

ε−n

∫
|x−x0|<ε

φ (0) dµ± (x) ,

contradicting (6.1); therefore fsin = 0. �

We immediately obtain a corresponding result for the characteriza-
tion of the complement of the support in the Fourier inversion formula.
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Corollary 2. Let f ∈ S ′ (Rn) . Suppose that pointwise

(6.6)
1

(2π)n

〈
f̂ (u) , e−iu•x

〉
= 0 (T) ,

for all x ∈ Ω, where Ω is an open set, and where (T) = (ψ) , (A) ,
or (C,N)r for N large. If the means are locally bounded in Lp (Ω) for
some p ∈ [1,∞] then Ω ⊂ Rn \ supp f.
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