
PhD Showcase: Applications of Graph Algorithms in GIS
∗

PhD Student: Stéphanie Vanhove
Department of Applied Mathematics and

Computer Science
Ghent University

Krijgslaan 281 - S9
9000 Ghent

Belgium

stephanie.vanhove@ugent.be

PhD Supervisor: Veerle Fack
Department of Applied Mathematics and

Computer Science
Ghent University

Krijgslaan 281 - S9
9000 Ghent

Belgium

veerle.fack@ugent.be

ABSTRACT
This paper describes ongoing PhD research on applications
of graph algorithms in Geographical Information Systems.
Many GIS problems can be translated into a graph problem,
especially in the domain of routing in road networks. Our
research aims to evaluate and develop efficient methods for
different variants of the routing problem.
Standard existing shortest path algorithms are not always
suited for use in road networks, e.g. in a realistic situation
forbidden turns and turn penalties need to be taken into
account. An experimental evaluation of different methods
for this purpose is presented.
Another interesting problem is the generation of alternative
routes. This can be modelled as a k shortest paths problem,
where a ranking of k paths is desired rather than only the
shortest path itself. A new heuristic approach for generating
alternative routes is presented and evaluated.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Routing and
Layout ; E.1 [Data Structures]: Graphs and Networks;
G.2.2 [Discrete Mathematics]: Graph Theory—Graph al-
gorithms, Network problems

General Terms
Algorithms, Experimentation, Performance

Keywords
Graphs, road networks, routing, turn penalties, alternative
shortest paths, k shortest paths, heuristics

∗The SIGSPATIAL Special, Volume 2, Number 3, November
2010. Copyright is held by the author/owner(s).

1. INTRODUCTION
Road networks can easily be modelled as a graph where
nodes represent intersections and dead ends and arcs repre-
sent directed road segments. Arc weights usually represent
either distances or travel times. The recent popularity of
route planners and navigation systems has renewed the in-
terest in the applications of graph algorithms to road net-
works, especially routing algorithms. However, there are
some additional requirements for these applications. On the
one hand, the used models must represent the real world
as realistically as possible. On the other hand, the algo-
rithms must be very fast, since users prefer short query times
and servers need to answer many queries. Even though the
shortest path problem is a classic problem in graph theory,
the existing standard algorithms such as the algorithm of
Dijkstra [2] cannot always immediately be used for route
planning. One example is the presence of forbidden turns
in road networks. Standard shortest path algorithms do not
take this into account at all, even though it would be unac-
ceptable if a navigation system instructs a driver to take an
illegal turn. Moreover, turns can imply additional waiting
times, e.g. at stoplights, another issue which is not handled
by standard shortest path algorithms. Figure 1 shows two
situations where a standard shortest path algorithm would
calculate either an incorrect or suboptimal route. Different

Figure 1: Two situations where a standard shortest
path algorithm would take the obvious left turn to
go from A to B. In reality however, the best route
is the detour shown in the pictures because of ei-
ther a forbidden turn (left) or a long waiting time
at stoplights (right).



Figure 2: Alternative routes from Ghent to Antwerp
in Google Maps.

methods have been proposed for this problem, but up to now
it has remained unclear how well these algorithms perform
on real-life road networks and how these algorithms compete
with each other. A study of these algorithms is presented in
Section 2.

Another interesting variant of the shortest path problem is
the generation of alternative routes. This is very commonly
used, as can be seen in Figure 2. In graph theory, the prob-
lem of calculating a ranking of shortest paths is called the
k shortest paths problem, where k is the number of paths to
be calculated. Not only can this be useful for generating al-
ternative routes, but k shortest paths algorithms also serve
as a basis for methods for optimizing multiple parameters.
Such methods (e.g. Mooney et al. [8]) can be used to find
e.g. a fast but scenic route. The most scenic route can be
chosen from a ranking of the k shortest paths. Similarly, a
set of dissimilar paths can be selected from a ranking of k

shortest paths. This can be used for generating dissimilar
routes for the transportation of hazardous materials in order
to spread the risk. Such a method is presented by Dell’Olmo
et al. [1]. However, algorithms for the k shortest paths prob-
lem tend to be very time-consuming. This is a major issue
in interactive routing applications. On the other hand, in
routing applications obtaining a good solution very fast can
be more interesting than obtaining the exact solution a lot
slower. In Section 3 we present a new heuristic which calcu-
lates an approximation of the k shortest paths with results of
good quality much faster than the exact algorithm. Section
4 outlines the possibilities for future work.

2. TURN RESTRICTIONS
There are two kinds of turn restrictions in road networks:
turns can either be forbidden (turn prohibitions) or imply
an additional cost (turn costs). In our examples we will
assume that U-turns are always forbidden. The next sections
describe the different methods for the shortest path problem
with turn restrictions and an evaluation of these methods.

2.1 Modelling turns

Direct method
Gutiérrez and Medaglia [5] present an adaptation of the al-
gorithm of Dijkstra which takes turn prohibitions into ac-
count. We will call this method the direct method since it
operates directly on the original graph, unlike the other con-
sidered methods. While the algorithm of Dijkstra assigns

Figure 3: Graph with forbidden turns. Dashed ar-
rows indicate forbidden turns: it is legal to move
from arc (d, b) to (b, c) but it is illegal to move from
arc (d, b) to (b, a).

a c

d

b1 b3

b2 b4

b5 b6

Figure 4: Node splitting: transformed graph for the
graph in Figure 3. Node b is split into 6 nodes: b1

.. b6, each representing an arc incident with node b.
Arcs between the split nodes represent legal turns.
Split nodes and the arcs between them are shown in
blue.

labels to nodes, the direct method assigns labels to arcs.
Also, for every transition from one arc to another, a check
is performed to make sure that the turn is not prohibited.
Since the graph itself does not model turn prohibitions, this
information is stored separately in a data structure outside
the graph. Turn costs are not considered in their work. We
have adapted the direct method in order to consider turn
costs as well. Further details of this method are omitted for
space reasons.

Node splitting
Kirkby and Potts [7] and Speičys et al [10] present another
method called node splitting. This method requires a graph
transformation. Every node in the graph with a turn cost
or turn prohibition is split into several nodes: one for every
incoming or outgoing arc. Then, for every legal turn, an
arc is added between the two nodes representing the arcs
of the turn. The weight of this new arc is the turn cost,
which can be zero or more. Illegal turns can no longer be
taken in the graph since there is no arc connecting the corre-
sponding nodes. Figure 3 shows a graph with two forbidden
turns. Figure 4 shows its transformed graph. The main ad-



Figure 5: Line graph: transformed graph for the
graph in Figure 3. Every node in the line graph
represents an arc in the original graph. Arcs in the
line graph represent legal turns in the original graph.

vantage of this method is that any standard shortest path
algorithm, e.g. the algorithm of Dijkstra can be applied to
the transformed graph, so no new algorithm is needed.

Line graph
The line graph method is another graph transforming method
presented by Winter [11]. While the node splitting method
only affects those nodes with turn costs or turn prohibitions,
the line graph method always transforms the entire graph.
Nodes in the transformed graph represent arcs in the orig-
inal graph. Arcs in the transformed graph represent legal
turns in the original graph. Arc weights in the transformed
graph represent arcs weights in the original graph as well as
turn costs. The transformed graph is called the line graph.
Figure 5 shows the transformed graph for the graph in Fig-
ure 3. Just like the node splitting method, this methods
allows running any standard shortest path algorithm on the
transformed graph.

2.2 Experimental evaluation
We performed several experiments aiming to evaluate the
methods mentioned above on real-life road networks. Of
course query time is important, so time measurements were
performed. However, memory usage is important too. Two
of the three methods require a graph transformation, which
can possibly result in a much larger graph, while the di-
rect method needs extra memory to store the information
on turn restrictions separately. Therefore, memory usage
was measured as well for the three methods. All algorithms
were implemented, compiled and executed in Java version
1.6.0 03. All tests were run on an Intel dual core 2.13 GHz
machine with 2 Gigabyte RAM running Linux. In the next
paragraphs we make a distinction between turn prohibitions
and turn costs, since different test data were used.

Turn prohibitions
For turn prohibitions, the experiments were performed on
road networks provided by Navteq [9] Swith real-world turn
prohibitions. The size of these road networks is in a range
bounded by 39,883 (Luxembourg) nodes and 1,017,242 nodes
(The Netherlands). As can be expected, only a small frac-
tion of the turns is forbidden (less than 1%). The results can
be seen in Figure 6. All results are ratios compared to the

Figure 6: Turn prohibitions: results for Navteq real-
world road networks. Memory usage ratio (top) and
average query time ratio (bottom) are shown for 4
different road networks. Three methods are com-
pared: the direct method (DIR), line graph (LINE)
and node splitting (SPLIT).

algorithm of Dijkstra. E.g. if the memory usage ratio is 3,
then the method needs 3 times more memory than the orig-
inal graph representation without turn restrictions. If the
query time ratio is 3, then the query time for this method
is 3 times the query time of the algorithm of Dijkstra. The
top chart shows that the direct method and node splitting
take about the same amount of memory, while the line graph
method has a much higher memory usage. When looking at
the time measurements in the chart in the bottom however,
the node splitting method is clearly the fastest. Hence, we
can conclude that the node splitting method performs best
on realistic road networks with turn prohibitions.



Figure 7: Turn costs: results for the Belgian road
network. Memory usage ratio (top) and average
query time ratio (bottom) for different percentages
of turn costs are shown. Three methods are com-
pared: the direct method (DIR), line graph (LINE)
and node splitting (SPLIT). The graph has 458,403
nodes, 1,085,076 arcs and 2,922,504 turns. The orig-
inal graph size is 57.72 MB. The average query time
for a standard Dijkstra algorithm is 254.49 ms.

Turn costs
To the best of our knowledge, no real-life data with turn
costs are available at this moment. To overcome this obsta-
cle, real-world road networks were used but the turn costs
were added randomly. The road networks are provided by
the University of Karlsruhe in the DIMACS format [3] and
represent the road networks for different European coun-
tries. In this abstract, results for the Belgian road network
are shown, but results are similar for the other countries.

In theory, when applying turn costs to a road network, ev-
ery turn has its own cost associated to it. However, in a
real-life situation, it is very likely that a data provider does
not provide a turn cost for every turn in the network, since
visiting every turn would be an extremely expensive and
time-consuming task. A data provider would probably fo-
cus initially on the busiest roads and intersections and pos-

sibly keep the less important roads for a later phase. The
data could e.g. contain turn costs for 5% of the turns. For
this reason, different percentages of available turn costs are
considered in the experiments, namely 5%, 10%, 15%, 20%,
25%, 50%, 75% and 100%. It should be noted that 100%
available turn costs can still be realistic if the turn costs are
calculated automatically, e.g. based on the angle.

The results can be seen in Figure 7. The results are again ra-
tios as explained in the previous section. The direct method
and line graph method show very similar query times, which
also seem to be independent of the percentage of turn costs.
This can be expected since these methods transform the
entire graph or perform no graph transformation at all, re-
spectively, so the number of nodes in the final graph is in-
dependent of the percentage of turn costs for both methods.
The node splitting method is never faster than the other
two methods. On the other hand, memory usage seems to
be independent of the percentage of turn costs for the line
graph method but not for the direct method. This can be
explained by the fact that the line graph always transforms
the entire graph and doesn’t store any additional informa-
tion, while the direct method keeps the original graph but
needs to store additional information for every turn cost.
As can be seen in the chart, this leads to increasing mem-
ory usage for higher percentages of turn costs. The direct
method appears to be more memory-efficient for lower per-
centages of turn costs. For higher percentages however, the
line graph method is more memory-efficient than the direct
method. So we can conclude that the direct method is best
suited for graphs with fewer turn costs (up to about 25%)
while the line graph performs better for graphs with many
turn costs.

3. ALTERNATIVE ROUTES
3.1 K shortest paths
The second problem we discuss in this paper is the genera-
tion of alternative paths. We will assume that loops in the
paths are forbidden, a natural assumption in road networks.
For this problem - k shortest paths without loops - an in-
fluential algorithm was proposed by Yen [12], which was the
basis for many of the currently known algorithms (e.g. Her-
shberger et al. [6], Gotthilf and Lewenstein [4]). However,
as mentioned in the introduction, routing applications are
very time-critical and the existing algorithms tend to be too
slow for this purpose. Therefore, we developed a heuristic
approach which does not aim to find an exact solution but
is much faster than the exact algorithms while the results
are still of good quality. In the next sections we describe
the general principle (deviation path algorithms) on which
most algorithms are based, present our heuristic approach
and report the results.

3.2 Deviation path algorithms
Our heuristic is based on the algorithm of Yen [12]. Both
are examples of deviation path algorithms, which are based
on the fact that any shortest path in the ranking always
deviates at some point from a path previously found. A
path can either immediately deviate from a path from the
start node, or coincide with a path up to some node and
then deviate from it. Figure 8 shows all possible deviations
from a path with 5 nodes (note that a path can deviate from
another path to join it again later).



Figure 8: All possible deviations (dashed lines) from
a path (solid lines) with 5 nodes.

Deviation path algorithms start by calculating the shortest
path using any shortest path algorithm. In our work the
algorithm of Dijkstra is used for this purpose. This short-
est path is then added to a collection C (usually a priority
queue). Then the algorithm fetches the shortest path P

from C in every iteration, adds it to a list L containing the
ranking of shortest paths found so far, and calculates de-
viations from P which are added to C. The algorithm is
finished after k iterations. Algorithm 1 outlines this general
principle, which is shared by all deviation path algorithms,
who then differ in their method for calculating deviations.

Algorithm 1 Deviation path algorithms

Require: graph G, number of shortest paths k, source s,
target t

Ensure: sorted collection L of k shortest paths
1: P ← calculate shortest path from s to t

2: add P to a collection C

3: for i from 1 to k do
4: P ← shortest path in C

5: remove P from C

6: add P to L

7: calculate deviations and add them to C {algorithms
differ here}

8: end for

3.3 Our approach
The method for calculating deviations used by our approach
is similar to the method used in Yen’s algorithm. The algo-
rithm of Yen forbids every arc (vi, vi+1) on a path P from s

to t one by one, and calculates the new shortest path P ′

from vi to t. In this calculation, all the nodes on P preced-
ing vi are also forbidden. A new path from s to t is then
created by appending P ′ to the subpath of P from s to vi.
This results in a very large amount of time-consuming short-
est path calculations. Our heuristic aims to speed up the
calculation of these shortest paths. Instead of performing
so many shortest path calculations, the shortest paths are
retrieved from precomputed information. The heuristic uses
a backward shortest path tree T which is precomputed and
thus computed only once. The shortest path from any node
in the graph to the target node t can be looked up in T very
fast. Instead of actually computing the shortest path from
a node vi to t, the heuristic calculates deviations by con-
catenating every outgoing arc (vi, x) from vi with x 6= vi+1

to the shortest path from x to t fetched in T . Of course,
the possibility exists that this path is no longer valid in the
graph since some nodes and arcs have been forbidden in the
meantime. This needs to be checked before creating the full
s− t path and adding it to C. Figure 9 illustrates this idea.

Figure 9: How the heuristic works. Solid lines indi-
cate the current path P from s to t. Red crosses indi-
cate forbidden nodes and arcs. A detour is necessary
from vi to t. Dashed lines indicate other outgoing
arcs from vi. Dotted lines indicate paths from these
neighbours to t, which can immediately be looked
up in the shortest path tree T . These paths are not
allowed to pass through already forbidden nodes or
arcs.

Complexity
When the algorithm of Dijkstra is used for shortest path cal-
culations, Yen’s algorithm has a time complexity of O(kn(m+
n log n)), with n the number of nodes and m the number of
arcs in the graph. Since road networks are sparse, it can
be assumed that m = O(n), resulting in a time complexity
of O(kn2 log n) for the algorithm of Yen. Our heuristic re-
duces this time complexity to O(n2k) (details omitted for
space reasons). Even though the complexities only differ by
a logarithmic factor, the heuristic performs much better in
practice. In the time complexity of the algorithm of Yen, a
factor O(n log n) is attributed to shortest path calculations
which can involve (almost) the entire graph. On the other
hand, the heuristic does not perform these shortest path cal-
culations, and the O(n2) factor is limited to iterating over
the found paths. Although theoretically a path can have a
length of n, this upper bound is never reached in practice, re-
sulting in much faster running times. The results presented
in the following section clearly confirm this statement.

3.4 Results
The heuristic was tested on several road networks. Figure 10
shows the results for the Navteq Belgian road network with
k = 1,000. The results are similar for other road networks
provided by Navteq and by the University of Karlsruhe.
Three different parameters were tested. The first param-
eter (shown in the first chart of Figure 10) is the ranking
of the kth path found by the heuristic in an exact ranking
of shortest paths. E.g. for k = 1,000, if the ranking of the
1,000th path found by the heuristic is 1,006, then the heuris-
tic has missed 6 paths. The results show that the heuristic
often misses very few paths or even no paths at all. In some
other cases, more paths are missed, but always within ac-
ceptable bounds, as can be seen from the results for the sec-
ond parameter in the second chart of Figure 10. This shows
the weight increase for the kth path found by the heuristic.
E.g. if the weight increase is 0.80%, then the kth shortest
path found by the heuristic is 0.80% longer than the exact
kth shortest path. The results show that this value is always



Figure 10: Results for the Navteq Belgium road net-
work (564,477 nodes and 1,300,765 arcs) with k =
1,000. The exact ranking of the kth path found by
the heuristic, the percentual weight increase and the
speedup are shown, for 100 random queries.

below 1%. A weight increase of less than 1% is neglectable in
a road network, making the results of the heuristic very use-
ful in practice. A third important parameter is query time,
since of course a heuristic calculating an approximation is
only useful if it is significantly faster than the exact algo-
rithm. The speedup of our heuristic compared to the exact
algorithm of Yen can be seen in the third chart. The re-
sults show that the heuristic is always faster than the exact
algorithm, often hundreds or even thousands times faster.
This is a very significant advantage of the heuristic for use
in interactive routing applications.

4. FUTUREWORK
In the future we aim to further optimize our heuristic for
the k shortest paths problem. Even though the heuristic
performs well in most cases, there is currently still a small
number of cases where the heuristic misses a substantial
number of paths. We aim to further reduce this number

or, ideally, eliminate these outliers. As mentioned in Sec-
tion 3.1, k shortest paths algorithms can also serve as a
basis for generating dissimilar paths. This can e.g. be inter-
esting for the generation of alternative routes which can be
used when weather conditions are not favorable on the usual
route. In this case the alternative routes should coincide as
little as possible with the first route, otherwise the alter-
native routes will suffer from the same weather conditions.
We aim to develop a new method for this problem based on
our heuristic for the k shortest paths problem. Eventually,
it would be interesting to include turn restrictions in our
methods for k shortest paths and dissimilar paths.

5. ACKNOWLEDGEMENT
Stéphanie Vanhove is supported by a research grant of the
Research Foundation - Flanders.

6. REFERENCES
[1] P. Dell’Olmo, M. Gentili, and A. Scozzari. Finding

dissimilar routes for the transportation of hazardous
materials. In Proceedings of the 13th Mini-EURO
Conference on Handling Uncertainty in the Analysis
of Traffic and Transportation Systems., pages 785–788,
2002.

[2] E. W. Dijkstra. A note on two problems in connexion
with graphs. Numerische Mathematik, 1:269–271,
1959.

[3] DIMACS. 9th dimacs implementation challenge on
shortest paths.
http://www.dis.uniroma1.it/∼challenge9/, 2005.

[4] Z. Gotthilf and M. Lewenstein. Improved algorithms
for the k shortest paths and the replacement paths
problems. Information Processing Letters,
109:352–355, 2009.

[5] E. Gutiérrez and A. L. Medaglia. Labeling algorithm
for the shortest path problem with turn prohibitions
with application to large-scale road networks. Annals
OR, 157(1):169–182, 2008.

[6] J. Hershberger, M. Maxel, and S. Suri. Finding the k

shortest simple paths: a new algorithm and its
implementation. ACM Trans. Algorithms, 3(4):45,
2007.

[7] R. F. Kirby and R. B. Potts. The minimum route
problem for networks with turn penalties and
prohibitions. Transportation Research, 3:397–408,
1969.

[8] P. Mooney and A. Winstanley. An evolutionary
algorithm for multicriteria path optimization
problems. International Journal of Geographical
Information Science, 20:401–423, 2006.

[9] NAVTEQ. Navteq network for developers.
http://www.nn4d.com/, 2007.

[10] L. Speičys, C. S. Jensen, and A. Kligys.
Computational data modeling for network-constrained
moving objects. GIS ’03: Proceedings of the 11th
ACM international symposium on Advances in
geographic information systems, pages 118–125, 2003.

[11] S. Winter. Modeling costs of turns in route planning.
Geoinformatica, 6(4):345–361, 2002.

[12] J. Y. Yen. Finding the k shortest loopless paths in a
network. Management Science, 17(11):712–716, 1971.


