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1 Introduction

The larger project broached in this paper is a form of reverse mathematics for
Π1

2 statements of the shape

WOP(f) “ if X is well ordered then f(X) is well ordered” (1)

where f is a standard proof theoretic function from ordinals to ordinals. There
are by now several examples of functions f where the statement WOP(f) has
turned out to be equivalent to one of the theories of reverse mathematics over
a weak base theory (usually RCA0). The first example is due to Girard [8].

Theorem 1.1 (Girard 1987) Let WO(X) express that X is a well ordering.
Over RCA0 the following are equivalent:

(i) Arithmetic Comprehension
(ii) ∀X [WO(X)→WO(2X)].

Recently two new results appeared in preprints [10,7]. These result give char-
acterizations of the form (1) for the theories ACA+

0 and ATR0, respectively,
in the form of familiar proof-theoretic functions. ACA+

0 denotes the theory
ACA0 augmented by an axiom asserting that for any set X the ω-th jump in
X exists while ATR0 asserts the existence of sets constructed by transfinite
iterations of arithmetical comprehension. α 7→ εα denotes the usual ε function
while ϕ stands for the two-place Veblen function familiar from predicative
proof theory (cf. [13]). More detailed descriptions of ATR0 and the function
X 7→ ϕX0 will be given shortly. Definitions of the familiar subsystems of re-
verse mathematics can be found in [15].

Theorem 1.2 (Montalban, Marcone, 2007) Over RCA0 the following are
equivalent:

(i) ACA+
0

(ii) ∀X [WO(X)→WO(εX)].

Theorem 1.3 (Friedman, Montalban, Weiermann 2007) Over RCA0 the fol-
lowing are equivalent:

(i) ATR0

(ii) ∀X [WO(X)→WO(ϕX0)].
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The proof of Theorem 1.3 uses rather sophisticated recursion-theoretic results
about linear orderings and is quite combinatorial. Theorem 1.3 uses a result
of Steel’s [16] about descending sequences of degrees which states that if Q ⊆
Pow(ω)× Pow(ω) is arithmetic, then there is no sequence {An | n ∈ ω} such
that (a) for every n, An+1 is the unique set such that Q(An, An+1), (b) for
every n, A′n+1 ≤T An.

For a proof theorist, theorems 1.2 and 1.3 bear a striking resemblance to cut
elimination theorems for infinitary logics. This prompted the first author of
this paper to look for proof-theoretic ways of proving these results. The hope
was that this would also unearth a common pattern behind them and possibly
lead to more results of this kind. The project commenced with [2] where a
purely proof-theoretic proof of Theorem 1.2 was presented. In this paper we
shall give a new proof of Theorem 1.3. It is principally proof-theoretic, the
main techniques being Schütte’s method of proof search (deduction chains)
[13] and cut elimination for ramified analysis. The general pattern, of which
this paper provides a second example, is that a statement WOP(f) is often
equivalent to a familiar cut elimination theorem for an infinitary logic which
in turn is equivalent to the assertion that every set is contained in an ω-model
of a certain theory Tf .

To guide the reader through the paper we shall briefly sketch the main parts
of the proof of Theorem 1.3, i.e., that (ii) implies (i). We start with the obser-
vation that ATR0 can be be axiomatized over ACA0 via a single sentence of
the form ∀X(WO(<X)→ ∀Z∃Y B0(X, Y, Z)) where B0(X, Y, Z) is an arith-
metical formula (cf. Lemma 3.2). Thus to verify ATR0 it suffices to show
that for every well-ordering <Q there exists an ω-model of M of ACA0 which
contains Q such that M |= ∀Z∃Y B0(X, Y, Z). To find M we employ Schütte’s
method of proof search from [13, II§4], which he used to prove the complete-
ness theorem for first order logic (cf. [13, Theorem 5.7]). The method has to
be extended to ω-logic, though. Rather than working in the Schütte calculus
of positive and negative forms we work in a Gentzen sequent calculus with
finite sets of formulas called sequents. Let C be a sentence that axiomatizes
arithmetic comprehension and let DQ(n) be the formula n ∈ Q if the latter
formula is true and n /∈ Q otherwise. The main idea is to start with the se-
quent {¬∀Z∃Y B0(Q, Y, Z),¬C,¬DQ(0)} and systematically apply the rules
of ω-logic for the second order sequent calculus backwards, giving rise to a
tree of sequents DQ. One also has to add the formula ¬DQ(n) to all sequents
generated in this way after n steps.

There are two possible outcomes. If the tree DQ is not well-founded then it
contains an infinite path P. Now define a set M via

(M)i = {n | n /∈ Ui occurs in P}
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and let M = (N; {(M)i | i ∈ N},+, ·, 0, 1, <). For a formula F , let F ∈ P
mean that F occurs in P, i.e. F ∈ Γ for some Γ ∈ P. Let U0, U1, U2, . . . be an
enumeration of the free set variables. For the assignment Ui 7→ (M)i one can
then show that F ∈ P ⇒ M |= ¬F . Whence M is an ω-model of ACA and
M |= ∀Z∃Y B0(Q, Y, Z). Also note that (M)0 = Q, thus Q is in M.

The other conceivable outcome is that DQ is well-founded, i.e. all paths in DQ
are finite, and thus every maximal path ends in a sequent which contains a
basic axiom. In other words DQ is proof tree and the Kleene-Brouwer ordering
of this tree is some well-ordering τ . The crucial step to perform next is viewing
DQ as a skeleton of proof tree in infinitary ramified analysis, dubbed RA∗ in
[13]. In actuality DQ can be viewed as the skeleton of a proof of the empty
sequent in RA∗. As we can remove all cuts in this proof we end up with a
cut free proof of the empty sequent. But this is impossible, and therefore DQ
cannot be well-founded. To be able to carry out the removal of all cuts we
require crucial help from arithmetical transfinite induction, roughly up to the
ordinal ϕτ0, hence this is where the principle ∀X [WO(X) → WO(ϕX0)]
enters the stage in showing Theorem 1.3(i).

2 The ordering ϕX0

Via simple coding procedures, countable well-orderings and functions on them
can be expressed in the language of second order arithmetic, L2. Variables
X, Y, Z, . . . are supposed to range over subsets of N. Using an elementary
injective pairing function 〈, 〉 (e.g. 〈n,m〉 := (n + m)2 + n + 1), every set X
encodes a sequence of sets (X)i, where (X)i := {m | 〈i,m〉 ∈ X}. We also
adopt from [15], II.2 the method of encoding a finite sequence (n0, . . . , nk−1)
of natural numbers as a single number 〈n0, . . . , nk−1〉.

Definition 2.1 Every set of natural numbers Q can be viewed as encoding a
binary relation <Q on N via n <

Q
m iff 〈n,m〉 ∈ Q. The field of Q, fld(Q) is

the set {n | ∃m [n <
Q
m ∨ m <

Q
n]}.

We say that Q is a well-ordering if <
Q

is a well-ordering, that is <
Q

is
a linear ordering of its field and every non-empty subset U of fld(Q) has a
<
Q

-least element.

Definition 2.2 Let Q be a linear ordering with least element 0Q. Let ϕua :=
〈0, 〈u, a〉〉, H := {ϕua | u, a ∈ N}, h(ϕua) = u and h(b) = 0Q if b /∈ H.

We introduce the ordering ϕQ0 by inductively defining its field fld(ϕQ0) and
the ordering <

ϕQ0
:
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(1) 0 ∈ fld(Q).

(2) 0 <
ϕQ0

α if α ∈ fld(ϕQ0) and α 6= 0.

(3) ϕuα ∈ fld(ϕQ0) if u ∈ fld(Q), α ∈ fld(ϕQ0) and h(α) ≤
Q
u.

(4) If α1, . . . , αn ∈ fld(ϕQ0) ∩H, n > 1 and αn ≤ϕQ0
. . . ≤

ϕQ0
α1, then

α1 + . . .+ αn ∈ fld(ϕQ0)

where α1 + . . .+ αn := 〈1, 〈α1, . . . , αn〉〉.

(5) If α1 + . . .+ αn, β1 + . . .+ βm ∈ fld(ϕQ0), then

α1 + . . .+ αn <ϕQ0
β1 + . . .+ βm iff

n < m ∧ ∀i ≤ n αi = βi or

∃i ≤ min(n,m)[αi <ϕQ0
βi ∧ ∀j < i αj = βj].

(6) If α1 + . . . + αn ∈ fld(ϕQ0), ϕuβ ∈ fld(ϕQ0) and ϕuβ ≤
ϕQ0

α1 then
ϕuβ <

ϕQ0
α1 + . . .+ αn.

(7) If α1 + . . . + αn ∈ fld(ϕQ0), ϕuβ ∈ fld(ϕQ0) and α1 <
ϕQ0

ϕuβ then
α1 + . . .+ αn <ϕQ0

ϕuβ.

(8) If ϕuα, ϕvβ ∈ fld(ϕQ0), then

ϕuα <
ϕQ0

ϕvβ iff u <
Q
v ∧ α <

ϕQ0
ϕvβ or

u = v ∧ α <
ϕQ0

β or

v <
Q
u ∧ ϕuα <

ϕQ0
β.

Lemma 2.3 (RCA0)

(i) If Q is a linear ordering then so is ϕQ0.
(ii) ϕQ0 is elementary recursive in Q.

3 The theory ATR0

Definition 3.1 Let A(u, Y ) be any formula. Define HA(X, Y ) to be the for-
mula which says that <X is a linear ordering and that Y is equal to the
set of pairs 〈n, j〉 such that j is in the field of <X and A(n, Y j) where
Y j = {〈m, i〉 | i <X j ∧ 〈m, i〉 ∈ Y }. Intuitively HA(X, Y ) says that Y is
the result of iterating A along <X .
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ATR0 is the formal system in the language of second order arithmetic whose
axioms consist of ACA0 plus all instances of

∀X(WO(<X)→ ∃Y HA(X, Y ))

where A is arithmetical.

Lemma 3.2 ATR0 can be axiomatized over ACA0 via a single sentence

∀X(WO(<X)→ ∀Z∃Y B0(X, Y, Z)) (2)

where B0(X, Y, Z) is of the form HA(X, Y ) for some arithmetical formula
A(u, Y, Z) with all free variables exhibited.

Proof: This is a standard result. One could for instance take B0(X, Y, Z) to
mean that Y is obtained from Z by iterated the Turing jump operation along
<X starting with Z; so A(u, Y, Z) would actually be a Σ0

1 (complete) formula.
Another (shorter and citable) way of showing this is to use the fact that ATR0

is equivalent over RCA0 to the statement that every two well-orderings are
comparable (see [15], Theorem V.6.8). The proof of the latter statement in
ATR0 just requires an instance HA of said form (see the proof of [15] Lemma
V.2.9). ut

Definition 3.3 Let T be a theory in the language of second order arithmetic,
L2. A countable coded ω-model of T is a set W ⊆ N, viewed as encoding the
L2-model

M = (N,S,+, ·, 0, 1, <)

with S = {(W )n | n ∈ N} such that M |= T .

This definition can be made in RCA0 (see [15], Definition VII.2).

We write X ∈ W if ∃n X = (W )n.

4 Main Theorem

The main result we want to prove is the following.

Theorem 4.1 RCA0 + ∀X [WO(X)→WO(ϕX0)] proves ATR0.

A central ingredient of the proof will be a method of proof search (deduction
chains) pioneered by Schütte [13].
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4.1 Deduction chains in ω-logic

Definition 4.2(i) Let U0, U1, U2, . . . be an enumeration of the free set vari-
ables of L2. For a closed term t, let t

N
be its numerical value. We shall assume

that all predicate symbols of the language L2 are symbols for primitive re-
cursive relations. L2 contains predicate symbols for the primitive recursive
relations of equality and inequality and possibly more (or all) primitive re-
cursive relations. If R is a predicate symbol in L2 we denote by R

N
the

primitive recursive relation it stands for. If t1, . . . , tn are closed terms the
formula R(t1, . . . , tn) (¬R(t1, . . . , tn)) is said to be true if R

N
(t

N
1 , . . . , t

N
n) is

true (is false).
(ii) Henceforth a sequent will be a finite set of L2-formulas without free number

variables.
(iii) A sequent Γ is axiomatic if it satisfies at least one of the following condi-

tions:
(1) Γ contains a true literal, i.e. a true formula of either form R(t1, . . . , tn)

or ¬R(t1, . . . , tn), where R is a predicate symbol in L2 for a primitive
recursive relation and t1, . . . , tn are closed terms.

(2) Γ contains formulas s ∈ U and t /∈ U for some set variable U and terms
s, t with s

N
= t

N
.

(iv) A sequent is reducible or a redex if it is not axiomatic and contains a
formula which is not a literal.

Definition 4.3 For Q ⊆ N define

DQ(n) =

 n̄ ∈ U0 if n ∈ Q

n̄ /∈ U0 otherwise

For the proof of Theorem 4.1 it is convenient to have a finite axiomatization
of arithmetic comprehension.

Lemma 4.4 ACA0 can be axiomatized via a single Π1
2 sentence ∀X C(X).

Proof: [15], Lemma VIII.1.5. ut

Definition 4.5 Let<Q be a well-ordering. LetB(Ui) be the formula ∃Y B0(U0, Y, Ui)
of Lemma 3.2.

A Q-deduction chain is a finite string

Γ0,Γ1, . . . ,Γk

of sequents Γi constructed according to the following rules:
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(i) Γ0 = ¬DQ(0),¬B(U0),¬C(U0).
(ii) Γi is not axiomatic for i < k.
(iii) If i < k and Γi is not reducible then

Γi+1 = Γi,¬DQ(i+ 1),¬B(Ui+1),¬C(Ui+1).

(iv) Every reducible Γi with i < k is of the form

Γ′i, E,Γ
′′
i

where E is not a literal and Γ′i contains only literals.
E is said to be the redex of Γi.

Let i < k and Γi be reducible. Γi+1 is obtained from Γi = Γ′i, E,Γ
′′
i as

follows:
(1) If E ≡ E0 ∨ E1 then

Γi+1 = Γ′i, E0, E1,¬DQ(i+ 1),¬B(Ui+1),¬C(Ui+1).

(2) If E ≡ E0 ∧ E1 then

Γi+1 = Γ′i, Ej,¬DQ(i+ 1),¬B(Ui+1),¬C(Ui+1)

where j = 0 or j = 1.
(3) If E ≡ ∃xF (x) then

Γi+1 = Γ′i, F (m̄),¬DQ(i+ 1),¬B(Ui+1),¬C(Ui+1), E

where m is the first number such that F (m̄) does not occur in Γ0, . . . ,Γi.
(4) If E ≡ ∀xF (x) then

Γi+1 = Γ′i, F (m̄),¬DQ(i+ 1),¬B(Ui+1),¬C(Ui+1)

for some m.
(5) If E ≡ ∃X F (X) then

Γi+1 = Γ′i, F (Um),¬DQ(i+ 1),¬B(Ui+1),¬C(Ui+1), E

where m is the first number such that F (Um) does not occur in Γ0, . . . ,Γi.
(6) If E ≡ ∀X F (X) then

Γi+1 = Γ′i, F (Um),¬DQ(i+ 1),¬B(Ui+1),¬C(Ui+1)

where m is the first number such that m 6= i + 1 and Um does not occur
in Γi.

The set of Q-deduction chains forms a tree DQ labeled with strings of sequents.
We will now consider two cases.
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Case I: DQ is not well-founded. Then DQ contains an infinite path P. Now
define a set M via

(M)i = {t
N | t /∈ Ui occurs in P}.

Set M = (N; {(M)i | i ∈ N},+, ·, 0, 1, <).

For a formula F , let F ∈ P mean that F occurs in P, i.e. F ∈ Γ for some
Γ ∈ P.

Claim: Under the assignment Ui 7→ (M)i we have

F ∈ P ⇒ M |= ¬F. (3)

The Claim will imply that M is an ω-model of ACA. Also note that (M)0 = Q,
thus Q is in M. The proof of (3) follows by induction on F using Lemma 4.6
below. The upshot of the foregoing is that we can prove Theorem 4.1 under
the assumption that DQ is ill-founded for all sets Q ⊆ N.

Lemma 4.6 Let Q be an arbitrary subset of N and DQ be the corresponding
deduction tree. Moreover, suppose DQ is not well-founded. Then DQ has an
infinite path P. P has the following properties:

(1) P does not contain literals which are true in N.
(2) P does not contain formulas s ∈ Ui and t /∈ Ui for constant terms s and

t such that sN = tN.
(3) If P contains E0 ∨ E1 then P contains E0 and E1.
(4) If P contains E0 ∧ E1 then P contains E0 or E1.
(5) If P contains ∃xF (x) then P contains F (n̄) for all n.
(6) If P contains ∀xF (x) then P contains F (n̄) for some n.
(7) If P contains ∃XF (X) then P contains F (Um) for all m.
(8) If P contains ∀XF (X) then P contains F (Um) for some m.
(9) P contains ¬B(Um) for all m.

(10) P contains ¬C(Um) for all m.
(11) P contains ¬DQ(m) for all m.

Proof: Standard. ut

Corollary 4.7 If DQ is ill-founded then there exists a countable coded ω-
model of ACA0 containing Q which satisfies ∀Z∃Y B0(Q, Y, Z).

The remainder of the paper will be devoted to ruling out the possibility that,
whenever Q is a well-ordering, DQ can be a well-founded tree. This is the
place were cut elimination for the infinitary proof system of ramified analysis,
RA∗ (see [13], part C), enters the stage. In a nutshell the idea is that a well-
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founded DQ gives rise to a derivation of the empty sequent (contradiction) in
RA∗ which can be ruled by showing cut elimination for RA∗ using transfinite
induction up to ϕX0, where X is a well ordering not much longer than Q.
However, to simplify the technical treatment we first introduce an intermediate
system ∆1

1-CRQ
∞ based on the ∆1

1-comprehension rule and the ω-rule. This
theory basically coincides with Schütte’s system DA∗ (see [13], part C). It is
not difficult to see that a well-founded DQ can be viewed as a derivation of
the empty sequent in ∆1

1-CRQ
∞. The last step towards reaching a contradiction

consists in embedding ∆1
1-CRQ

∞ into RA∗. Here we can basically follow [13]
Theorem 22.14.

4.2 The infinitary calculus ∆1
1-CRQ

∞

In what follows we fix Q ⊆ N such that <Q is a well-ordering. In the main, the
system ∆1

1-CRQ
∞ is obtained from ACA0 by adding the ∆1

1-comprehension
rule, the ω-rule and the basic diagram of Q. The language of ∆1

1-CRQ
∞ is

the same as that of ACA0 but the notion of formula comes enriched with
set terms. Formulas and set terms are defined simultaneously. Literals are
formulas. Every set variable is a set term. If A(x) is a formula without set
quantifiers (i.e. arithmetical) then {x | A(x)} is a set term. If P is a set term
and t is a numerical term then t ∈ P and t /∈ P are formulas. The other
formation rules pertaining to ∧,∨,∀x,∃x, ∀X, ∃X are as per usual.

We will be working in a Tait-style formalization of the second order arithmetic
with formulas in negation normal form, i.e. negations only in front of atomic
formulas. Due to the ω-rule there is no need for formulas with free numerical
variables. Thus all sequents below are assumed to consist of formulas without
free numerical variables.

Axioms of ∆1
1-CRQ

∞

(i) Γ, L where L is a true literal.

(ii) Γ, s ∈ U, t /∈ U where s
N

= t
N
.

(iii) Γ, s ∈ U0 if s
N ∈ Q.

(iv) Γ, s /∈ U0 if s
N
/∈ Q.

Rules of ∆1
1-CRQ

∞
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(∧) Γ, A Γ, B
Γ, A ∧B

(∨) Γ, Ai
Γ, A0 ∨ A1

where i ∈ {0, 1}

(Cut) Γ, A Γ,¬A
Γ

(ω)
Γ, F (n̄) for all n
Γ, ∀xF (x)

(∃1)
Γ, F (t)

Γ,∃xF (x)

(∀2)
Γ, F (P ) for all set terms P
Γ,∀XF (X)

(∃2)
Γ, F (P )

Γ,∃XF (X)
where P is a set term.

(∆1
1-CR)

∀x[∀Y A0(x, Y )↔ ∃Y A1(x, Y )]
Γ,∃X∀x[x ∈ X ↔ ∀Y A0(x, Y )]

with A0, A1 arithmetical.

(ST1)
Γ, A(t)

Γ, t ∈ P where P is the set term {x | A(x)}.

(ST2)
Γ,¬A(t)
Γ, t /∈ P where P is the set term {x | A(x)}.

∆1
1-CRQ

∞ is a sequent calculus version of the system DA∗ of [13, §20]. The
language of DA∗, though, is based on the connectives ⊥,∀,→ while ∆1

1-CRQ
∞

has the connectives ∧,∨, ∀, ∃,¬ and formulas are in negation normal form,
i.e. the negation sign appears only in front of atomic formulas. The other
main difference is that the deduction system of DA∗ is the Schütte calculus
of positive and negative forms whereas ∆1

1-CRQ
∞’s is the Gentzen sequent

calculus.

Lemma 4.8 We shall use ∆1
1-CRQ

∞ Γ to convey that the sequent Γ is
derivable in ∆1

1-CRQ
∞. Pivotal properties of ∆1

1-CRQ
∞ we shall exploit are the

following:

(a) n ∈ Q⇒ ∆1
1-CRQ

∞ n̄ ∈ U0 .

(b) n /∈ Q⇒ ∆1
1-CRQ

∞ n̄ /∈ U0 .

(c) ∆1
1-CRQ

∞ WO(U0) .

11



(d) ∆1
1-CRQ

∞ ∃Y HA(U0, Y ) for all arithmetical formulas A(u, Y ) having no
other free numerical variables than u.

Proof: (a) and (b) are immediate by the axioms (iii) and (iv) of ∆1
1-CRQ

∞.

(c) follows by (outer) transfinite induction on <Q, crucially using the ω-rule.
This is standard but it seems to be a challenge to find a reference. Via the
axioms (iii) and (iv), the role of Q is played in ∆1

1-CRQ
∞ by the variable U0.

Writing s ∈ Q and s <Q t for s ∈ U0 and 〈s, t〉 ∈ U0, respectively, we would
like to show that ∆1

1-CRQ
∞ ` ∀X(ProgQ(U) → ∀x x ∈ X), where ProgQ(U)

stands for ∀x[∀y(y <Q x→ y ∈ U)→ x ∈ U ]. It suffices to show

∆1
1-CRQ

∞ ` ¬ProgQ(U), n̄ ∈ U (4)

for all n for an arbitrary set variable U . To this end we proceed by induction
on Q. Inductively assume that ∆1

1-CRQ
∞ ` ¬ProgQ(U), m̄ ∈ U holds for all

m <Q n. If m <Q n is false then 〈m,n〉 /∈ Q and hence ∆1
1-CRQ

∞ ` ¬m̄ <Q n̄.
As a result, ∆1

1-CRQ
∞ ` ¬ProgQ(U),¬m̄ <Q n̄, m̄ ∈ U holds for all m. Using

(∨) inferences followed by an application of the ω-rule, we get ∆1
1-CRQ

∞ `
¬ProgQ(U),∀y(y <Q n̄→ u ∈ U). As ∆1

1-CRQ
∞ ` n̄ /∈ Q, n̄ ∈ Q, an inference

(∨) (and weakening) yields

∆1
1-CRQ

∞ ` ¬ProgQ(U),∀y(y <Q n̄→ u ∈ U) ∧ n̄ /∈ Q, n̄ ∈ Q.

Hence via (∃1) we arrive at

∆1
1-CRQ

∞ ` ¬ProgQ(U), ∃x[∀y(y <Q n̄→ u ∈ U) ∧ n̄ /∈ Q], n̄ ∈ Q,

which is the same as ∆1
1-CRQ

∞ ` ¬ProgQ(U), n̄ ∈ Q. Thus, by induction on
<Q, (4) follows.

(d) also follows by transfinite induction on <Q using ∆1
1-CR. A reference will

be provided in Lemma 4.10. ut

We shall need to measure the length of the previous derivations. For (c) and
(d) the lengths of those derivations will be “longer” than Q, though not “much
longer”. Let τ be the ordinal giving the order-type of Q. It is easy to cook up
a new ordering Q∗ in an elementary way from Q corresponding to the ordinal
ω2 +ω · τ +ω in such a way that RCA0 suffices to prove WO(Q)→WO(Q∗)
(see [8]). The rationale for the choice of ω2 +ω ·τ+ω is that it gives us enough
elbow room for calibrating the lengths of the foregoing derivations.

From the standing assumption that Q is a well-ordering we get that Q∗ is a
well-ordering, too.
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Definition 4.9 If α is an element of the field of <Q∗ , we use the notation

∆1
1-CRQ

∞
α

Γ to convey that the sequent Γ is deducible in ∆1
1-CRQ

∞ via a
derivation of length ≤ α. More formally, this relation is defined by recursion
on α as follows: ∆1

1-CRQ
∞

α
Γ holds if if either Γ is an axiom of ∆1

1-CRQ
∞ or

Γ is the conclusion of a ∆1
1-CRQ

∞-inference with premisses (Γi)i∈I such that

for every i ∈ I there exists βi <Q∗ α with ∆1
1-CRQ

∞
βi

Γi .

Lemma 4.10 (1) ∆1
1-CRQ

∞
0
DQ(n) for all n with 0 being the least element

of Q.

(2) ∆1
1-CRQ

∞
α
C(U) for some α ∈ field(Q∗) and all free set variables U .

(3) ∆1
1-CRQ

∞
β

WO(U0) for some β ∈ field(Q∗).

(4) ∆1
1-CRQ

∞
γ ∃Y HA(U0, Y ) for some γ ∈ field(Q∗) for all arithmetical for-

mulas A(u, Y ) having no other free numerical variables than u.

(5) ∆1
1-CRQ

∞
δ
B(U) for some δ ∈ field(Q∗) and all free set variables U .

Proof: (1) is an immediate consequence of Lemma 4.8 (a) and (b). (2) follows
since the rule (∃2) gives arithmetical comprehension. (3) and (4) correspond
to Lemma 4.8 (c) and (d), respectively. A detailed proof of (4) amounts to
basically the same as that of [13, §21 Lemma 14] . (5) is an immediate conse-
quence of (4). ut

Recall that, by Corollary 4.7, there exists a countable coded ω-model of ACA0

containing Q and satisfying ∀Z∃Y B0(Q, Y, Z) providing DQ is ill-founded.
Now let us assume that Q is a well-ordering and that DQ is well-founded.
Then DQ can be viewed as a deduction with hidden cuts involving formulas
of the shape ¬B(Ui+1), ¬C(Ui+1) and ¬DQ(i+ 1). Note that by Lemma 4.10,

∆1
1-CRQ

∞
0
DQ(n) , ∆1

1-CRQ
∞

α
C(U) , and ∆1

1-CRQ
∞

γ
B(U) for some α, γ ∈

field(Q∗). Thus if Γ is the sequent attached to a node τ of DQ and (Γi)i∈I is
an enumeration of the sequents attached to the immediate successor nodes of
τ in DQ then the transition

(Γi)i∈I
Γ

can be viewed as a combination of four inferences in ∆1
1-CRQ

∞, the first one
being a logical inferences and the other three being cuts. By interspersing
DQ with cuts and adding three cuts with cut formulas ¬C(U0), ¬B(U0) and
¬DQ(0) at the bottom we obtain a derivation D̃Q in ∆1

1-CRQ
∞ of the empty

sequent. Since the preceding line of arguments can be done in ACA0 we arrive
at the following:

13



Corollary 4.11 (ACA0) If Q is a well-ordering and DQ is well-founded then
there is a derivation D̃Q in ∆1

1-CRQ
∞ of the empty sequent.

To finish the paper we thus have to show that the latter is impossible. This
we shall do by embedding ∆1

1-CRQ
∞ into a system RA∞ defined below. Note

that an upper bound for the length of D̃Q is provided by (α+ γ+ ρ) · 4, where
ρ corresponds to the Kleene-Brouwer ordering on DQ.

5 Ramified Analysis RA∞

The theories RAρ are designed to capture Gödel’s notion of constructibil-
ity restricted to sets of natural numbers. They use ordinal indexed variables
Xα, Y α, Zα, . . . for α < ρ, with the intended meaning that level 0 variables
range over sets definable by numerical quantification, and level α > 0 vari-
ables range over sets definable by numerical quantification and level < α set
quantification. The proof-theoretic ordinal of RAα is ϕα0. We are interested
in an infinitary version of ramified analysis.

Definition 5.1 RA∞ is basically the same system as RA∗ in [13, §22]. One
difference is that the language of RA∗ is based on the connectives ⊥, ∀,→
while RA∞ has ∧,∨,∀,∃,¬ and formulas are in negation normal form, i.e. the
negation sign appears only in front of atomic formulas. The other difference
is that the deduction system of RA∗ is the Schütte calculus of positive and
negative forms whereas RA∞’s is the Gentzen sequent calculus.

The formulas of RA∞ do not have free numerical variables. Literals are for-
mulas of the form R(t1, . . . , tn) and ¬R(t1, . . . , tn) with R being a symbol for
a primitive recursive relation and t1, . . . , tn being closed numerical terms.

RA∞ uses ordinal indexed free set variables Uα, V α,Wα, . . . and bound set
variables Xβ, Y β, Zβ, . . . with β > 0, where the ordinals are assumed to be
elements of some countable well-ordering R.

The set terms and formulas together with their levels are generated as follows
(cf. [13, §22]):

(1) Every literal is a formula of level 0.
(2) Every free set variable Uα is a set term of level α.
(3) If P is a set term of level α and t is a numerical term, then t ∈ P and

t /∈ P are formulas of level α.
(4) If A and B are formulas of levels α and β, then A ∨ B and A ∧ B are

formulas of level max(α, β).
(5) If F (0) is a formula of level α, then ∀xF (x) and ∃xF (x) are formulas of
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level α and {x | F (x)} is a set term of level α.
(6) If F (Uβ) is a formula of level α and β > 0, then ∀XβF (Xβ) is a formula

of level max(α, β).

Definition 5.2 The calculus RA∞Q

Axioms

Γ, L where L is a true literal.

Γ, s ∈ Uα, t /∈ Uα where s
N

= t
N
.

Γ, s ∈ U0 if s
N ∈ Q.

Γ, s /∈ U0 if s
N
/∈ Q.

Rules

(∧), (∨), (ω), numerical (∃) and (Cut) as per usual

(∃α)
Γ, F (P )

Γ,∃XαF (Xα)
P set term of level < α.

(∀α)
Γ, F (P ) for all set terms P of level < α

Γ, ∀XαF (Xα)

(ST1)
Γ, F (t)

Γ, t ∈ {x | F (x)}

(ST2)
Γ,¬F (t)

Γ, t /∈ {x | F (x)}

Definition 5.3 The cut rank of a formula A in RA∞Q , |A|, is defined as
follows (cf. [13, §22]):

(1) |L| = 0 for arithmetical literals L.

(2) |t ∈ Uα| = |t /∈ Uα| = ω · α

(3) |B0 ∧B1| = |B0 ∨B1| = max(|B0|, |B1|) + 1

(4) |∀xB(x)| = |∃xB(x)| = |t ∈ {x | B(x)}| = |t /∈ {x | B(x)}| = |B(0)|+ 1
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(5) |∀XαA(Xα)| = |∃XαA(Xα)| = max(ω · γ, |A(U0)|+ 1)

where γ is the level of ∀XαA(Xα).

By recursion on α we define the relation RA∞Q
α

ρ Γ as follows: RA∞Q
α

ρ Γ
holds if either Γ is an axiom of RA∞Q or Γ is the conclusion of an RA∞Q -
inference with premisses (Γi)i∈I such that for every i ∈ I there exists βi < α

with RA∞Q
βi
ρ Γi and, moreover, if this inference is a cut with cut formula A

then |A| < ρ.

The following three statements are proved in [13] for the system RA∗. It is
routine to transfer them to RA∞Q since cut elimination in a Schütte calculus
of positive and negative is closely related to cut elimination in sequent cal-
culi. Moreover, the additional axioms pertaining to Q do not impede the cut
elimination process.

Theorem 5.4 (Cut-elimination I)

RA∞Q
α

η+1
Γ ⇒ RA∞Q

ωα

η Γ

Proof: Similar to [13, §22 Lemma 4]. ut

Theorem 5.5 (Cut-elimination II)

RA∞Q
α

ωρ
Γ ⇒ RA∞Q

ϕρα

0
Γ

Proof: Similar to [13, Theorem 22.7]. ut

For a formula F of the language of ∆1
1-CRQ

∞ let F σ be the result of replacing
every bound variable X by Xσ and every free set variable by a set term of a
level < σ. For Γ = {F1, . . . , Fn} let Γσ = {F σ

1 , . . . , F
σ
n }.

Theorem 5.6 (Interpretation Theorem)

∆1
1-CRQ

∞
α

Γ ⇒ RA∞Q
ω·σ+ω+ω·α
ω·σ Γσ

for all σ of the form ωα · β with β 6= 0.

Proof: This is basically the same as [13, Theorem 22.14]. ut

There are different ways of formalizing infinite deductions in theories like PA.
We just mention [14] and [6].
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5.1 Finishing the proof of the main Theorem

Recall that in order to finish the proof of Theorem 4.1 we want to show that
DQ is not well-founded whenever Q is a well-ordering. By Corollary 4.11, if
Q is a well-ordering and DQ is well-founded then there is a derivation D̃Q
in ∆1

1-CRQ
∞ of the empty sequent. By the Interpretation Theorem 5.6 we

would then get a derivation in RA∞Q of the empty sequent. Using the principle
WO(X) →WO(ϕX0) we can then employ the cut elimination Theorem 5.5
to obtain a cut-free derivation of the empty sequent in RA∞Q . But this is
impossible.

From Corollary 4.7 we can thus conclude that for every well-ordering Q̃ there
exists a countable coded ω-model of ACA0 containing Q̃ and satisfying
∀Z∃Y B0(Q̃, Y, Z). From this we would like to infer that for every well-ordering
Q and every set Z0 there exists a set Y such that B0(Q̃, Y, Z0). We can do
this by encoding Q and Z0 in a well-ordering Q̃ from which Q and Z0 can be
retrieved in any ω-model of ACA0 containing Q̃. One way of doing this is to
define the new ordering Q̃ by letting

〈n,m〉 <Q̃ 〈n
′,m′〉 iff [n = n′ = 0 ∧ m <Q̃ m

′] ∨
[n = n′ = 1 ∧ m,m′ ∈ Z0 ∧ m < m′] ∨
[n = 0 ∧ n′ = 1 ∧ m ∈ field(Q) ∧ m′ ∈ Z0].

Obviously Q̃ is a well-ordering, too, and any ω-model M of ACA0 con-
taining Q̃ will contain Z0 as well. Moreover, M |= ∃Y B0(Q̃, Z0) implies
M |= ∃Y B0(Q,Z0). Hence, in view of Lemma 3.2, we get ATR0, thereby
finishing the proof of Theorem 4.1.

6 Finishing the proof of Theorem 1.3

One direction of Theorem 1.3 follows from Theorem 4.1. The other direction
is implicit in the proof of [13] Theorem 21.6.

7 Prospectus

The methodology exemplified in the proof of Theorem 1.3 should have many
more applications. Every cut elimination theorem in ordinal-theoretic proof
theory potentially encapsulates a theorem of type 1.3. The first author has
looked at two more examples and sketched proofs of the pertaining theorems.
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A familiar function from proof theory is the Γ-function where α 7→ Γα enu-
merates the fixed points of the ϕ-function. Since the proof of the next result
has only been sketched we classify it as a conjecture.

Conjecture 7.1 Over RCA0 the following are equivalent:

(i) RCA0 + Every set X is contained in a countable coded ω-model of ATR0.

(ii) ∀X [WO(X)→WO(ΓX)].

The direction (i)⇒(ii) follows from [11, 4.13,4.16].

For an example from impredicative proof theory one would perhaps first turn
to the ordinal representation system used for the ordinal analysis of the theory
ID1 of non-iterated inductive definitions, which can be expressed in terms of
the θ-function (cf. [4]). ID1 has the same strength as the subsystem of second
order arithmetic based on bar induction, BI (cf. [4,5,12]). In Simpson’s book
the acronym used for BI is Π1

∞-TI0 (cf. [15, §VII.2]). In place of the function θ
we prefer to work with simpler ordinal representations based on the ψ-function
introduced in [3] or the ϑ-function of [12]. For definiteness we refer to [12].
Given a well-ordering X, the relativized versions ϑX and ψX of the ϑ-function
and the ψ-function, respectively, are obtained by adding all the ordinals from
X to the sets Cn(α, β) of [12, §1] and Cn(α) of [12, Definition 3.1] as initial
segments, respectively. The resulting well-orderings ϑX(εΩ+1) and ψX(εΩ+1)
are equivalent owing to [12, Corollary 3.2].

Again, as the following statement has not been buttressed by a complete proof
we formulate it as a conjecture.

Conjecture 7.2 Over RCA0 the following are equivalent:

(i) RCA0 + Every set X is contained in a countable coded ω-model of BI.

(ii) ∀X [WO(X)→WO(ψX(εΩ+1))].
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