
A GPU-accelerated real-time NLMeans algorithm
for denoising color video sequences

Bart Goossens, Hiêp Luong, Jan Aelterman, Aleksandra Pižurica, and Wilfried
Philips?

Ghent University, TELIN-IPI-IBBT
St.-Pietersnieuwstraat 41, 9000 Ghent, Belgium

Abstract. The NLMeans filter, originally proposed by Buades et al.,
is a very popular filter for the removal of white Gaussian noise, due to
its simplicity and excellent performance. The strength of this filter lies
in exploiting the repetitive character of structures in images. However,
to fully take advantage of the repetitivity a computationally extensive
search for similar candidate blocks is indispensable. In previous work,
we presented a number of algorithmic acceleration techniques for the
NLMeans filter for still grayscale images. In this paper, we go one step
further and incorporate both temporal information and color information
into the NLMeans algorithm, in order to restore video sequences. Start-
ing from our algorithmic acceleration techniques, we investigate how the
NLMeans algorithm can be easily mapped onto recent parallel comput-
ing architectures. In particular, we consider the graphical processing unit
(GPU), which is available on most recent computers. Our developments
lead to a high-quality denoising filter that can process DVD-resolution
video sequences in real-time on a mid-range GPU.

1 Introduction

Noise in digital video sequences generally originates from the analogue circuitry
(e.g. camera sensors and amplifiers) in video cameras. The noise is mostly visible
in bad lighting conditions and using short camera sensor exposure times. Also,
video sequences transmitted over analogue channels or stored on magnetic tapes,
are often subject to a substantial amount of noise. In the light of the large scale
digitization of analogue video material, noise suppression becomes desirable,
both to enhance video quality and compression performance.

In the past decades, several denoising methods have been proposed for noise
removal, for still images (e.g. [1–6, 11]) or particularly for video sequences (see
[7–14]). Roughly speaking, these video denoising methods can be categorized
into:

1. Spatially and temporally local methods (e.g. [8, 11]): these methods only ex-
ploit image correlations in local spatial and temporal windows of fixed size

? B. Goossens and A. Pižurica are postdoctoral researchers of the Fund for Scientific
Research in Flanders (FWO), Belgium.

(based on sparsity in a multiresolution representation). The temporal filter-
ing can either be causal or non-causal. In the former case, only past frames
are used for filtering. In the latter case, future frames are needed, which can
be achieved by introducing a temporal delay.1

2. Spatially local methods with recursive temporal filtering [9, 10, 14, 15]: these
methods rely on recursive filtering that takes advantage of the temporal
correlations between subsequent frames. Because usually, first order (causal)
infinite impulse response filters are used and no temporal delay is required.

3. Spatially and temporally non-local methods [12, 13]: these methods take ad-
vantage of repetitive structures that occur both spatially and temporally.
Because of computation time and memory restrictions, in practice these
methods make use of a search window (this is a spatio-temporal window
in which similar patches are being searched for). By the practical restric-
tions, the methods actually fall under the first class, however we expect that
by more effcient parallel computing architectures and larger RAM memory
the non-locality of these methods will further be extended in the future.

One popular filter that makes use of the repetitive character of structures in
video sequences and hence belongs to the third class, is the NLMeans filter [16].
Suppose that an unknown video signal X(p) is corrupted by an additive noise
process V (p), resulting in the observed video signal:

Y (p) = X(p) + V (p) (1)

Here, p = [px, py, pt] is the spatio-temporal position within the video sequence.
X(p), Y (p) and V (p) are functions that map values from Z3 onto the RGB
color space R3. The NLMeans video filter estimates the denoised value of X(p)
as the weighted average of all pixel intensities in the video sequence:

X̂(p) =

∑
q∈δ w(p,p + q)Y (p + q)∑

q∈δ w(p,p + q)
, (2)

where q = [qx, qy, qt] and where the weights w(p,p+q) depend on the similarity
of patches centered at positions p and p + q. δ is a three dimensional search
window in which similar patches are searched for. For simplicity of the notation,
we assume that Y (p + q) is everywhere defined in (2). In practice, we make use
of boundary extension techniques (e.g. mirroring) near the image boundaries.
Because of the high computational complexity of the NLMeans algorithm (the
complexity is quadratic in the number of pixels in the video sequence and linear
in the patch size) and because of the fact that the original NLMeans method
performed somewhat inferior compared to other (local) state-of-the-art denoising
method, many improvements have been proposed by different researchers. Some
of these improvements are better similarity measures [17–19], adaptive patch
sizes [20], and algorithmic acceleration techniques [4, 19,21,22].

1 A temporal delay is not desirable for certain applications, such as video communi-
cation.

In our previous work [4], we proposed a number of improvements to the
NLMeans filter, for denoising grayscale still images. Some of these improvements
which are relevant for this paper are:

– An extension of the NLMeans to correlated noise: even though the origi-
nal NLMeans filter relies on a white Gaussian noise assumption, the power
spectral densities of noise in real images and video sequences is rarely flat
(see [23]).

– Acceleration techniques that exploit the symmetry in the weight computa-
tion and that compute the Euclidean distance between patches by a recursive
moving average filter. By these accelerations, the computation time can be
reduced by a factor 121 (for 11×11 patches), without sacrifying image quality
at all!

In spite of efforts by many researchers and also our recent improvements, the
NLMeans algorithm is not well suited for real-time denoising of video sequences
on a CPU. Using our improvements, denoising one 512× 512 color image takes
about 30 sec. for a modestly optimized C++ implementation on a recent 2GHz
CPU (single-threaded implementation). Consequently this technique is not ap-
plicable to e.g. real-time video communication.

Nowadays, there is a trend toward the use of parallel processing architectures
in order to accelerate the processing. One example of such architecture is the
graphical processing unit (GPU). Although the GPU is primarily designed for
the rendering of 3D scenes, advances of the GPU in the late 90’s enabled many
researchers and engineers to use the GPU for more general computations. This
led to the so-called GPGPU (General-Purpose computations on GPUs) [24] and
many approaches (e.g. based on OpenGL, DirectX, CUDA, OpenCL, ...) exist
to achieve GPGPU with existing GPU hardware. Also because the processing
power of modern GPUs has tremendously increased in the last decade (even for
inexpensive GPUs a speed-up of a factor 20× to 100× can be expected) and is
even more improving, it becomes worthwhile to investigate which video denoising
methods can efficiently be implemented on a GPU.

Recently, a number of authors have implemented the NLMeans algorithm
on a GPU: in [25] a locally constant weight assumption is used in the GPU
implementation to speed up the basic algorithm. In [26], a GPU extension of the
NLMeans algorithm is proposed to denoise ultrasound images. In this approach,
the maximum patch size is limited by the amount of shared memory of the GPU.

In this paper, we focus on algorithmic acceleration techniques for the GPU
without sacrificing denoising quality, i.e., the GPU implementation computes
the exact NLMeans formula, and without patch size restrictions imposed by
the hardware. To do so, we first review how NLMeans-based algorithms can be
mapped onto parallel processing architectures. We will find that the core ideas
of our NLMeans algoritmic acceleration techniques are directly applicable, but
the algorithms themselves need to be modified. By these modifications, we will
see that the resulting implementation can process DVD video in real-time on a
mid-range GPU. Next, as a second contribution of this paper, we explain how

the filter can be used to remove correlated noise (both spatially as across color
channels) from video sequences.

The outline of this paper is as follows: on Section 2, we first review some
basic GPGPU programming concepts. Next, we develop an efficient NLMeans
algorithm for a GPU and its extension to deal with noise which is correlated
across color channels. In Section 3 we give experimental results our method.
Finally, Section 4 concludes this paper.

2 An efficient NLMeans algorithm for a GPU

In this Section, we will explain the algorithmic improvements that we made to
the NLMeans filter in order to efficiently run the algorithm on a GPU. As already
mentioned, many approaches and/or programming language extensions exist for
GPGPU programming. Because the GPU technology is quickly evolving, we will
present a description of the algorithm that is quite general and that does not
rely on specific GPU technology choices. This way, the algorithms we present can
still be useful in the future, when newer GPU architectures become available.

2.1 General GPGPU concepts

One core element in GPGPU techniques is the so-called kernel function. A kernel
function is a function that evaluates the output pixel intensities for a specific
position in the output image (or even multiple output images) and that takes
as input both the position (p) in the video sequence, and a number of input
images (which we will denote as U

(i)
1 , ...,U

(i)
K). A GPGPU program can then be

considered to be a cascade of kernel functions f (I) ◦f (I−1) ◦ · · · ◦f (1) applied to
a set of input images. Mathematically, the evaluation of one such kernel function
(which we will call a pass) can be expressed as:[

U (i+1)
1

, ...,U (i+1)
K

]
(p) = f

(i)

U
(i)
1 ,...,U

(i)
K

(p) (3)

where the kernel function takes as input the output images of the previous
pass, U

(i)
1 , ...,U

(i)
K and subsequently computes the inputs for the next pass,

U (i+1)
1

, ...,U (i+1)
K

. More specifically, the kernel function f (i) maps a spatio-
temporal coordinate (p) onto a three-dimensional RGB color vector.

Now, porting an algorithm to the GPU comes down to converting the algo-
rithm into a finite, preferably low number of passes as defined in (3) and with
fairly simple functions f (i):[

U
(2)
1 , ...,U

(2)
K

]
(p) = f

(1)

U
(1)
1 ,...,U

(1)
K

(p) ,[
U

(3)
1 , ...,U

(3)
K

]
(p) = f

(2)

U
(2)
1 ,...,U

(2)
K

(p) ,

...
...[

U
(I+1)
1 , ...,U

(I+1)
K

]
(p) = f

(I)

U
(I)
1 ,...,U

(I)
K

(p) . (4)

We remark that not all passes need to process all input images, i.e. it is com-
pletely legal that U

(i+1)
1 = U

(i)
1 . In this case, we express this formally by saying

that the function f
(i)

U
(i)
1 ,...,U

(i)
K

(p) is constant in U
(i)
1 .

2.2 Straightforward GPU implementation of the NLMeans filter

First, we will show that a straightforward (naive) implementation of the tradi-
tional NLMeans filter from [13,16] leads to a very high number of passes, hence
an algorithm that is inefficient even on the GPU. Next, we will explain how our
own algorithmic accelerations can be converted into a program for the GPU as
in equation (4). We will do this for a broad range of weighting functions that
are a function of the Euclidean distance measure between two patches:

w(p,p + q) = g

 ∑
(∆x,∆y)∈[−B,...,B]2

∥∥∥r(∆x,∆y)
p,q

∥∥∥2

 (5)

with r
(∆x,∆y)
p,q = Y (px +qx +∆x, py +qy +∆y, pt +qt)−Y (px +∆x, py +∆y, pt),

with (2B + 1) × (2B + 1) the patch size and where the function g(r) has the
property that g(0) = 1 (such that the weight w = 1 if the Euclidean distance
between two patches is zero, i.e., for similar patches) and limr→∞ g(r) = 0 (the
weight w = 0 for dissimilar patches). In particular, we consider the Bisquare
robust weighting function, for which g(r) is defined as follows:

g(r) =

(
1− (r/h)2

)2

r ≤ h

0 r > h
,

with h a constant parameter that is fixed in advance (for more details, see [4]).
Substituting (5) into (2) gives:

X̂(p) =

∑
q∈δ g

(∑
(∆x,∆y)∈[−B,...,B]2

∥∥∥r(∆x,∆y)
p,q

∥∥∥2
)

Y (p + q)

∑
q∈δ g

(∑
(∆x,∆y)∈[−B,...,B]2

∥∥∥r(∆x,∆y)
p,q

∥∥∥2
) . (6)

Comparing (6) to (3) immediately leads to the kernel function:

f
(1)

U
(1)
1

(p) =

∑
q∈δ g

(∑
(∆x,∆y)∈[−B,...,B]2

∥∥∥r(∆x,∆y)
p,q

∥∥∥2
)

U
(1)
1 (p + q)

∑
q∈δ g

(∑
(∆x,∆y)∈[−B,...,B]2

∥∥∥r(∆x,∆y)
p,q

∥∥∥2
) , (7)

with U
(1)
1 (p) = Y (p). We see that the number of operations performed by the

kernel function is linear in |δ| (2B + 1)2, with |δ| the cardinality of δ. Although
this approach seems feasible, some GPU hardware (especially less recent GPU

hardware) puts limits on the number of operations (more specifically, processor
instructions) performed by a kernel function. To work around this restriction,
we make use of a weight accumulation buffer (see [19]) and convert every term
of the summations in (7) into a separate pass, in which in each pass, one term
of the summation

∑
q∈δ is added to the accumulation buffer. This is done for

both the numerator and denominator of (7). For i = 1, ..., |δ|, with constants qi

defined for each pass (e.g. using raster scanning), we obtain the kernel function:

f
(i)

U
(i)
1 ,...,U

(i)
3

(p) =
U

(i)
1 (p)

U
(i)
2 + g

(∑
(∆x,∆y)∈[−B,...,B]2

∥∥∥r(∆x,∆y)
p,qi

∥∥∥2
)

U
(i)
1 (p + qi)

U
(i)
3 + g

(∑
(∆x,∆y)∈[−B,...,B]2

∥∥∥r(∆x,∆y)
p,qi

∥∥∥2
)

 (8)

where U
(i)
2 is an accumulation buffer for the denoised image, and where U

(i)
3 is

a weight accumulation buffer (initially, U
(1)
2 (p) = U

(1)
3 (p) = 0). Next, one last

pass is required, to compute the final output image:

f
(I)

U
(I)
1 ,...,U

(I)
3

(p) =

(
U

(I)
2 (p)

U
(I)
3 (p)

0 0

)T

, (9)

with I = |δ| + 1. The number of operations per pass is now multiplied by
a factor 1/ |δ|, but is still very high. To further reduce this number of opera-
tions, we could apply a similar split-up technique and convert the summation∑

(∆x,∆y)∈[−B,...,B]2 into several passes. We note that, even though this way we
would obtain a working algorithm for most available GPUs, the number of passes
I = |δ|

(
(2B + 1)2 + 1

)
+ 1 becomes very high. For example, for a 31 × 31 × 4-

search window and B = 4, we obtain I = 311365 passes. If for each video frame,
a single pass of the algorithm would take 0.1 msec. on a GPU, the complete
algorithm would still require approx. 31 sec. for processing one single frame of
a video sequence, which is similar to the computation time of our CPU version
mentioned in Section 1. Hence, further algorithmic accelerations are required.

2.3 Actual implementation using algorithmic accelerations

In [4], we pointed out that the term
∑

(∆x,∆y)∈[−B,...,B]2

∥∥∥r(∆x,∆y)
p,q

∥∥∥2

can be
interpreted as a convolution operator with a filter kernel with square support.
Consequently the Euclidean distance between two patches can efficiently be com-
puted using a moving average filter, and the algorithmic complexity is reduced
with roughly a factor (2B + 1)2/2. Unfortunately, converting a moving average
filter directly into a GPU program as in (4) is not feasible in a small number of
passes. Instead, we exploit the separability of the filter kernel and we implement
the convolution operator as a cascade of a horizontal and vertical filter. Then by

setting U
(1)
1 (p) = Y (p), U

(1)
2 (p) = U

(1)
3 (p) = U

(1)
4 (p) = 0, the first pass of our

algorithm is as follows:

f
(4i−3)

U
(4i−3)
1 ,...,U

(4i−3)
4

(p) =

U

(4i−3)
1 (p)

U
(4i−3)
2 (p)

U
(4i−3)
3 (p)∥∥∥r(0,0)

p,qi

∥∥∥2

 . (10)

Note that the values U
(4i−3)
1 (p), U

(4i−3)
2 (p), U

(4i−3)
3 (p) are simply passed to the

next step of the algorithm. We only compute the Euclidean distance between
two pixel intensities (in RGB color space). The next passes are given by:

f
(4i−2)

U
(4i−2)
1 ,...,U

(4i−2)
4

(p) =

U

(4i−2)
1 (p)

U
(4i−2)
2 (p)

U
(4i−2)
3 (p)∑

∆x∈[−B,...,B] U
(4i−2)
4 (px + ∆x, py, pt)

 ,

f
(4i−1)

U
(4i−1)
1 ,...,U

(4i−1)
4

(p) =

U

(4i−1)
1 (p)

U
(4i−1)
2 (p)

U
(4i−1)
3 (p)

g
(∑

∆y∈[−B,...,B] U
(4i−1)
4 (px, py + ∆y, pt)

)
 .(11)

The separable filtering reduces the computation complexity by a factor (2B +
1)/2. Fortunately, the steps (11) are computationally simple and only require
a small number regular memory accesses, which can benefit from the internal
memory caches of the GPU. Note that in the last step of (11), we already
computed the similarity weights, by evaluating the function g(·).

A second acceleration technique we presented in [19], is to exploit the sym-
metry property of the weights, i.e. w(p,p + qi) = w(p + qi,p). To do so, when
adding w(p,p + qi)Y (p + qi) to the image accumulation buffer at position p,
we proposed to additionally add w(p,p + qi)Y (p) to the image accumulation
buffer at position p+qi. Consequently, the weight w(p,p+qi) only needs to be
computed once, effectively halving the size of the search window δ. However, this
acceleration technique requires “non-regular” writes to the accumulation buffer,
i.e., at position p + qi instead of p as required by the structure of our GPU
program (4). Fortunately, our specific notation here brings a solution here: by
noting that qi is constant in each pass, we could simply translate the input co-
ordinates and perform a “regular” write to the accumulation buffer. This way,
we need to add w(p− qi,p)Y (p− qi) to the accumulation buffer at position p.
We will call this the translation technique. This gives us the next step of our

GPU algorithm:

f
(4i)

U
(4i)
1 ,...,U

(4i)
4

(p) =
U

(4i)
1 (p)

U
(4i)
2 + U

(4i)
4 (p)U (4i)

1 (p + qi) + U
(4i)
4 (p− qi)U

(4i)
1 (p− qi) [1− δ(qi)]

U
(4i)
3 + U

(4i)
4 (p) + U

(4i)
4 (p− qi) [1− δ(qi)]

U
(4i)
4 (p)

(12)

with δ(·) the Dirac delta function. The Dirac delta function is needed here, to
prevent the weights w(p,p) to be counted twice. In the last pass, again the image
accumulation buffer intensities are divided by the accumulated weights, which
gives:

f
(I)

U
(I)
1 ,...,U

(I)
4

(p) =

(
U

(I)
2 (p)

U
(I)
3 (p)

0 0 0

)T

, (13)

with I = 4 (|δ|+ 1) /2 + 1 = 2 |δ|+ 3. The output of the NLMeans algorithm is
then X̂(p) = U

(I)
2 (p)/U

(I)
3 (p). Consequently, the complete NLMeans algorithm

comprises the passes i = 1, ..., I defined by steps (10)-(13).

2.4 Extension to noise correlated across color channels

In this Section, we briefly explain how our GPU-NLMeans algorithm can be
extended to deal with Gaussian noise that is correlated across color channels.
Our main goal here is to show that our video algorithm is not restricted to white
Gaussian noise. Because of space limitations, visual and quantitative results for
color images and color video will be reported in later publications. As we pointed
out in [4, p. 6], the algorithm can be extended to spatially correlated noise by
using a Mahalanobis distance based on the noise covariance matrix instead of the
Euclidean distance similarity metric. When dealing with noise which is correlated
across color channels, we need to replace (5) by:

w(p,p + q) = g

 ∑
(∆x,∆y)∈[−B,...,B]2

(
r(∆x,∆y)

p,q

)T

C−1
(
r(∆x,∆y)

p,q

)
with C the noise covariance function. In practice, the matrix C can be estimated
from flat regions in the video sequence, or based on an EM-algorithm as in
[27]. Now, by introducing the decorrelating color transform G = C−1/2, and by
defining:

r
′(∆x,∆y)
p,q = GY (px +qx +∆x, py +qy +∆y, py +qy)−GY (px +∆x, py +∆y, pt),

the weighting function can again be expressed in terms of the Euclidean distance∥∥∥r′(∆x,∆y)
p,q

∥∥∥2

. Hence, removing correlated noise from video sequences solely re-
quires a color transform G applied as pre-processing to the video sequence. Fur-
thermore, this technique can be combined with our previous approach from [4, p.

6] in order to remove Gaussian noise which is both spatially correlated and cor-
related across color channels.

2.5 Discussion

To optimize the computational performance of a GPU program, minimizing the
number of passes I and performing more operations in each kernel function is
more beneficial than optimizing the individual kernel functions themselves, es-
pecially when the kernel functions are relatively simple (as in our algorithm in
Subsection 2.3). This is due to GPU memory caching behavior and also be-
cause every pass typically requires interaction with the CPU (for example, the
computation time of an individual pass can be affected by the process CPU
scheduling granularity). To assess the computational performance improvement,
a possible solution would be to use theoretical models to predict the performance.
Unfortunately, these theoretical models are very dependent on the underlying
GPU architecture: the computational performance can not simply be expressed
as a function of the total number of floating point operations, because of the
parallel processing. To obtain a rough idea of the computational performance
we use the actual number of passes required by our algorithm. For example,
when comparing our algorithmic accelerations from Subsection 2.3 to the naive
NLMeans-algorithm from Subsection 2.2, we see that the number of passes is
reduced with a factor:

|δ|
(
(2B + 1)2 + 1

)
+ 1

4 (|δ|+ 1) /2 + 1
≈ (2B + 1)2

2
.

For patches of size 9 × 9, the accelerated NLMeans GPU algorithm requires
approximately 40 times less processing passes.

Another point of interest is the streaming behavior of the algorithm: for real-
time applications, it is required the algorithm processes video frames as soon as
they become available. In our algorithm, this can be completely controlled by
adjusting the size of the search window. Suppose we choose:

δ = [−A, ..., A]× [−A, ..., A]× [−Dpast, ..., Dfuture]

with A,Dpast, Dfuture ≥ 0 positive constants. A determines the size of the spatial
search window; Dpast and Dfuture are respectively the number of past and future
frames that the filter uses for denoising the current frame. For causal implemen-
tation of the filter, a delay of Dfuture frames is required. Of course, Dfuture can
even be zero, if desired. However, the main disadvantage of a zero delay is that
the translation technique from Subsection 2.3 cannot be used in the temporal di-
rection, because the translation technique in fact requires the updating of future
frames in the accumulation buffer. Nevertheless, using a small positive Dfuture,
a trade-off can be made between the filter delay and the algoritmic acceleration
achieved by exploiting the weight symmetry. The number of video frames in
GPU memory is at most 4 (Dpast + Dfuture + 1).

3 Experimental results

To demonstrate the processing time improvement of our GPU algorithm with
the proposed accelerations, we apply our technique to a color video sequence of
resolution 720×480 (a resolution which is common for DVD-video). The video se-
quence is corrupted with artificially added stationary white Gaussian noise with
standard deviation 25/255 (input PSNR 20.17dB). We compare the processing
time of our proposed GPU implementation to the modestly optimized (single-
threaded) C++ CPU implementation from our previous work [4] (including all
acceleration techniques proposed in [4]), for different values of the parameters
A and Dpast. For these results, we use Dfuture = 0 (resulting in a zero-delay
denoising filter, as explained in Subsection 2.5), B = 4 (corresponding to 9 × 9
patches) and we manually select h to optimize the PSNR ratio. In particular, we
use h = 0.13 for A ≤ 3 and h = 0.16 for A > 3 (note that the pixel intensities
are within the range 0− 1).

Both the CPU and GPU version were run on the same computer, which
is equipped with a 2.4GHz Intel Core(2) processor with 2048 MB RAM and a
NVidia GeForce 9600GT GPU. This card has 64 parallel stream processing units
and is considered to be a mid-range GPU.The GPU algorithm is implemented
as a HLSL pixel shader in DirectX 9.1 (Windows XP) and makes use of 16-
bit floating point values. The main program containing the GPU host code, is
written in C# 3.0.

Processing time and output PSNR results (obtained after denoising) are re-
ported in Table 1. We only report PSNR results for the GPU denoising technique,
since both CPU and GPU algorithms essentially compute the same formula (i.e.
equation (2)). It can be seen that the PSNR values increase when using a larger
search window or a larger number of past frames. This is simply because more
similar candidate blocks become available for searching, and consequently bet-
ter estimates can be found for the denoised pixel intensities. Remarkable is also
the huge acceleration of the GPU compared to the CPU of a factor 200 to 400.
The main reason lies in the massive amount of parallellism in the NLMeans
algorithm, which can be fully exploited by the GPU but hardly by the CPU.
Especially this huge acceleration leads to a real-time denoising filter. We can de-
termine the optimal parameters for the algorithm by selecting a minimum frame
rate and by maximizing the output PSNR of the filter for this minimum frame
rate. For our results in Table 1, an optimal combination is a 7×7-search window
and Dpast = 1, in order to attain a frame rate of 25 frames per second (fps).

4 Conclusion

In this paper, we have shown how the traditional NLMeans algorithm can be
efficiently mapped onto a parrallel processing architecture such as the GPU. We
saw that a naive straightforward implementation inevitably leads to an inefficient
algorithm with a huge number of parallel processing passes. We then analyzed
our NLMeans algorithmic acceleration techniques from previous work, and we

Table 1. Experimental results for denoising a color video sequence, consisting of
99 frames of dimensions 720× 480 and corrupted with additive stationary white
Gaussian noise with standard deviation 25/255 (PSNR=20.17dB).

Parameters GPU CPU GPU vs. CPU

A Search window Dpast FPS msec/frame PSNR [dB] msec/frame acceleration

2 5x5 0 100.00 10.00 33.09 4021 402.10×

2 5x5 1 69.57 14.37 34.42 N/A

2 5x5 2 50.79 19.69 34.88 N/A

2 5x5 3 40.34 24.79 35.04 N/A

3 7x7 0 52.46 19.06 35.40 7505 393.70×

3 7x7 1 30.38 32.92 36.19 N/A

3 7x7 2 21.43 46.67 36.26 N/A

3 7x7 3 16.58 60.31 36.33 N/A

5 11x11 0 18.46 54.17 36.34 18230 336.55×

5 11x11 1 10.22 97.81 37.11 N/A

5 11x11 2 7.07 141.35 37.26 N/A

5 11x11 3 5.42 184.48 37.23 N/A

10 21x21 0 4.32 231.56 36.79 50857 219.63×

10 21x21 1 2.36 424.27 37.20 N/A

10 21x21 2 1.62 615.73 37.24 N/A

10 21x21 3 1.24 805.83 37.17 N/A

noted that these techniques can not be applied “as is”. Therefore, we adapted the
core ideas of these acceleration techniques (i.e. the moving averaging filter for
the fast computation of Euclidean distances and the exploitation of the weight
symmetry) to GPGPU programming methodology and we arrived at a GPU-
NLMeans algorithm that is two to three orders of magnitudes faster (depending
on the parameter choices) than the equivalent CPU algorithm. This technique
can process video sequences in real-time on a mid-range GPU.

References

1. L. Rudin and S. Osher, “Total variation based image restoration with free local
constraints,” in IEEE Int. Conf. Image Proc. (ICIP), Nov. 1994, vol. 1, pp. 31–35.

2. J. Portilla, V. Strela, M. Wainwright, and E.P. Simoncelli, “Image denoising using
scale mixtures of gaussians in the wavelet domain,” IEEE Trans. Image Processing,
vol. 12, no. 11, pp. 1338–1351, 2003.

3. K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse
3d transform-domain collaborative filtering,” IEEE Trans. Image Processing, vol.
16, no. 8, pp. 2080–2095, 2007.

4. B. Goossens, H. Luong, A. Pižurica, and W. Philips, “An improved Non-Local
Means Algorithm for Image Denoising,” in 2008 Int. Workshop on Local and Non-
Local Approx. in Image Processing, 2008, (invited paper).

5. B. Goossens, A. Pižurica, and W. Philips, “Removal of correlated noise by modeling
the signal of interest in the wavelet domain,” IEEE Trans. Image Processing, vol.
18, no. 6, pp. 1153–1165, jun 2009.

6. B. Goossens, A. Pižurica, and W. Philips, “Image Denoising Using Mixtures of
Projected Gaussian Scale Mixtures,” IEEE Trans. Image Processing, vol. 18, no.
8, pp. 1689–1702, aug 2009.

7. J.C. Brailean, R. P. Kleihorst, S. Efstraditis, K. A. Katsaggeleos, and R. L. La-
gendijk, “Noise reduction filters for dynamic image sequences: a review,” Proc.
IEEE, vol. 83, no. 9, pp. 1272–1292, 1995.

8. Ivan W. Selesnick and Ke Yong Li, “Video denoising using 2D and 3D dual-
tree complex wavelet transforms,” Proc. SPIE Wavelet Applications in Signal and
Image Processing, pp. 607–618, August 2003.

9. A. Pižurica, V. Zlokolica, and W. Philips, “Combined wavelet domain and temporal
video denoising,” Proc. IEEE Int. Conf. on Advanced Video and Signal based
Surveillance (AVSS), pp. 334–341, 2003.

10. V. Zlokolica, A. Pižurica, and W. Philips, “Recursive temporal denoising and
motion estimation of video,” in IEEE Int. Conf. Image Proc. (ICIP), 2004, pp.
1465–1468.

11. B. Goossens, A. Pižurica, and W. Philips, “Video denoising using motion-
compensated lifting wavelet transform,” in Proceedings of Wavelets and Appli-
cations Semester and Conference (WavE2006), Lausanne, Switzerland, 2006.

12. K. Dabov, A. Foi, and K. Egiazarian, “Video denoising by sparse 3D transform-
domain collaborative filtering,” in European Signal Processing Conference
(EUSIPCO-2007), Poznan, Poland, 2007.

13. A. Buades, B. Coll, and J.-M. Morel, “Nonlocal Image and Movie Denoising,” Int
J. Comput. Vis., vol. 76, pp. 123–139, 2008.

14. S. Yu, M. O Ahmad, and M.N.S. Swamy, “Video Denoising using Motion Com-
pensated 3D Wavelet Transform with Integrated Recursive Temporal Filtering,”
IEEE Trans. Cir. and Sys. for Video Technol., 2010, In press.

15. T. Mélange, M. Nachtegael, E. E. Kerre, V. Zlokolica, S. Schulte, V. De Witte,
A. Pizurica, and W. Philips, “Video denoising by fuzzy motion and detail adaptive
averaging,” Journal of Elec. Imaging, vol. 17, no. 4, pp. 43005–01 – 43005–19,
2008.

16. A. Buades, B. Coll., and J.M Morel, “A non local algorithm for image denoising,”
in Proc. Int. Conf. Comp. Vision and Pat. Recog. (CVPR), 2005, vol. 2, pp. 60–65.

17. N. Azzabou, N. Paragias, and Guichard F., “Image Denoising Based on Adapted
Dictionary Computation,” in Proc. of IEEE International Conference on Image
Processing (ICIP), San Antonio, Texas, USA, Sept. 2007, pp. 109–112.

18. C. Kervrann, J. Boulanger, and P. Coupé, “Bayesian Non-Local Means Filter,
Image Redundancy and Adaptive Dictionaries for Noise Removal,” in Proc. Int.
Conf. on Scale Space and Variational Methods in Computer Visions (SSVM’07),
Ischia, Italy, 2007, pp. 520–532.

19. A. Dauwe, B. Goossens, H.Q. Luong, and W. Philips, “A Fast Non-Local Image
Denoising Algorithm,” in Proc. SPIE Electronic Imaging, San José, USA, Jan 2008,
vol. 6812.

20. C. Kervrann and J. Boulanger, “Optimal spatial adaptation for patch-based image
denoising,” IEEE Trans. Image Processing, vol. 15, no. 10, pp. 2866–2878, 2006.

21. J. Wang, Y. Guo, Y. Ying, Y. Liu, and Q. Peng, “Fast non-local algorithm for
image denoising,” in IEEE Int. Conf. Image Proc. (ICIP), 2006, pp. 1429–1432.

22. R. C. Bilcu and M. Vehvilainen, “Fast nonlocal means for image denoising,” in
Proc. SPIE Digital Photography III, Russel A. Martin, Jeffrey M. DiCarlo, and
Nitin Sampat, Eds. 2007, vol. 6502, SPIE.

23. J. Aelterman, B. Goossens, A. Pižurica, and W. Philips, Recent Advances in Signal
Processing, chapter Suppression of Correlated Noise, IN-TECH, 2010.

24. “General-Purpose Computation on Graphics Hardware,” http://www.gpgpu.org.
25. A. Kharlamov and V. Podlozhnyuk, “Image denoising,” 2007, CUDA 1.1 SDK.
26. F. P. X. De Fontes, G. A. Barroso, and P. Hellier, “Real time ultrasound image

denoising,” Journal of Real-Time Image Processing, 04 2010.
27. B. Goossens, A. Pižurica, and W. Philips, “EM-Based Estimation of Spatially

Variant Correlated Image Noise,” in IEEE Int. Conf. Image Proc. (ICIP), San
Diego, CA, USA, 2008, pp. 1744–1747.

