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Abstract 20 

Droughts are among the most important natural disasters, particularly in the arid and 21 

semiarid regions of the world.  Proper management of droughts requires knowledge of the 22 

expected frequency of specific low magnitude precipitation totals for a variety of durations. 23 

Probabilistic approaches have often been used to estimate the average recurrence period of 24 

a given drought event. However, probabilistic model fitting by conventional methods, such 25 

as product moment or maximum likelihood in areas with low availability of long records 26 
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often produces highly unreliable estimates. Recognizing the need for adequate estimates of 27 

return periods of severe droughts in the arid and semiarid region of Chile, a regional 28 

frequency analysis method based on L-moments (RFA-LM) was used for estimating and 29 

mapping drought frequency. Some adaptations to the existing procedures for forming 30 

homogeneous regions were found necessary. In addition, a new 3-parameter distribution, 31 

the Gaucho, which is a special case of the 4-parameter Kappa distribution, was introduced, 32 

and the analysis procedure was improved by the developments of two new software tools 33 

named L-RAP, to perform the RFA-LM analysis, and L-MAP, to map the resulting drought 34 

maps.  Eight homogeneous sub-regions were delineated using the Gaucho distribution and 35 

used to construct return period maps for drought events with 80% and 40% precipitation of 36 

the normal. The study confirms the importance of a sub-regional homogeneity test, and the 37 

usefulness of the Gaucho distribution. The RFA-LM showed that droughts with a 40% 38 

precipitation of the normal have return periods that range from four years at the northern 39 

arid boundary of the study area to 22 years at the southern sub-humid boundary. The results 40 

demonstrate the need for different thresholds for declaring a drought than those currently in 41 

use for drought characterization in north-central Chile.  42 
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 46 

1. Introduction 47 

Meteorological droughts, the result of a precipitation deficit with respect to what is 48 

considered "normal" (Seth, 2003; Wilhite and Buchanan-Smith, 2005) are natural disasters 49 

which historically have affected large populations (and make up to 35% of those affected 50 

by natural disasters), often resulting in significant fatalities (50% of the mortality due to 51 

natural disasters), whereas 7% of world economic losses have been attributed to their 52 

occurrence (Below et al., 2007). These economic losses are likely to be higher because it is 53 

assumed that the indirect impacts are generally much more complex to evaluate than the 54 

direct consequences (Ponvert-Delisle et al., 2007). 55 



Droughts can be characterized by their frequency, intensity and duration (Wilhite and 56 

Buchanan-Smith, 2005), as well as by the vulnerability of communities to drought impacts 57 

(Luers  et al., 2003; Luers, 2005). Droughts can also be defined in agricultural terms based 58 

on a deficit in plant-available water, and in hydrological terms based on a deficit in 59 

streamflow. Drought frequency, both meteorological and hydrological, has been analyzed 60 

using a variety of probabilistic models, all of which allow probabilistic information present 61 

in the sample to be summarized (Chow et al., 1994; Demuth and Külls, 1997; Fernández 62 

and Vergara, 1998; Hisdal and Tallaksen, 2003; Loukas and Vasiliades, 2004; Serinaldi et 63 

al., 2009; Türk and Tatl, 2009). From the different probability approaches commonly used 64 

in hydrologic frequency assessment, the Index Flood Regional Frequency Analysis based 65 

on an L-moments procedure (RFA-LM), appears to provide the most robust estimates of 66 

meteorological drought frequencies (Hosking et al., 1985a). The advantages of regional 67 

frequency analysis, as well as L-moments have been recognized by several authors 68 

(Ciumara, 2007; Delicado and Goria, 2007; Hosking and Wallis, 1997; Kysely et al., 2010; 69 

Liou  et al., 2008; Loucks and Van Beek, 2005; Mishra  et al., 2007; Norbiato et al., 2007; 70 

Sankarasubramanian and Srinivasan, 1999; Stedinger et al., 1993). 71 

In recent years, the RFA-LM methodology has been applied in preparing the U.S. Drought 72 

Atlas (Werick, 1995), meteorological drought analysis in northwestern Mexico (Hallack-73 

Alegria and Watkins, 2007) and Turkey (Yurekli and Anli, 2008), hydrological drought 74 

analysis in southern Germany (Demuth and Kulls, 1997) and New Zealand (Pearson, 1995), 75 

and compared with other regionalization alternatives in European drought studies 76 

(Tallaksen and Hisdal, 1997; Tallaksen and Hisdal, 1999). 77 

However, little work has been done on the application of RFA-LM for regional drought 78 

probability studies for arid and semiarid areas. These areas are the most vulnerable to 79 

drought because of the naturally limited precipitation supply. This is further exacerbated by 80 

their extreme spatial and temporal variability of precipitation (Kalma and Franks, 2003). 81 

Modarres (2009), for example, applied RFA-LM in the study of dry spells in the semiarid 82 

region of Iran. However, the author used at-site statistics in cluster and principal 83 

components analysis to check the presence of smaller homogeneous regions inside a 84 

previously well defined homogeneous region. This approach is inconsistent with the basic 85 

assumption of the index flood procedure where all sites within a homogeneous region have 86 



identical probability distribution (Reed et al., 1999; Stedinger et al., 1993) and the fact that 87 

at-sites statistics are not recommended to be used in homogeneous regions formation 88 

(Hosking and Wallis, 1997). 89 

In another study, Vicente-Serrano (2006) applied RFA-LM to determine the best-fit 90 

distribution in the calculation of the Standardized Precipitation Index (SPI) for different 91 

time scales in the Iberian Peninsula. However, the author did not include confirmation of 92 

regional homogeneity in his analysis. He also based the choice of the best-fit distribution 93 

solely on the appearance of the L-moment ratio diagram. Hosking and Wallis (1997) and 94 

Peel et al. (2001) consider this approach insufficient for a proper choice of the best-fit 95 

distribution. 96 

 97 

In the RFA-LM application to drought and other hydrological events, various criteria have 98 

been used to help form homogeneous regions. Some authors have included the use of 99 

cluster analysis (Burn and Goel, 2000), the region of influence (Gaál et al., 2007; Gaál and 100 

Kyselý, 2009), fuzzy logic (Chavochi and Soleiman, 2009), self-organizing maps (Lin and 101 

Chen, 2006) and the seasonality index (Kohnová et al., 2009) amongst the various schemes 102 

described by other authors (Burn and Goel, 2000; Reed et al., 1999). However, most of 103 

these methods are based on multivariate procedures, like cluster analysis, which do not 104 

reveal the physical reasons why these regions should be considered homogeneous (Clarke, 105 

2010).  106 

Although the RFA-LM methodology allows the incorporation of new general and flexible 107 

distribution models, homogeneity issues have not been previously explored in 108 

meteorological drought probability analysis of arid and semiarid regions. 109 

Similarly, few studies have spatially mapped drought quantiles or return periods derived 110 

from the application of RFA-LM. Spatial mapping of drought characteristics using 111 

Geographic Information Systems (GIS) in combination with RFA-LM can be a powerful 112 

tool for drought risk management programs. Some studies have considered this aspect in 113 

the analysis of hydrological events, such as mapping the expected maximum short period  114 

rainfall for a given frequency in the U.S. (Schaefer  et al., 2008; Wallis  et al., 2007) and 115 

the mapping of the return period of dry spells in northeast Spain (Lana  et al., 2008). 116 



In this context, this paper proposes some modifications to the application of RFA-LM in 117 

the evaluation and mapping of meteorological drought frequency in north-central Chile. 118 

The robustness of extreme droughts estimation becomes critical in arid and semiarid 119 

regions, where the only available data source are short monthly precipitation records 120 

provided by a regionally scattered meteorological stations network. This study proposes a 121 

simplified procedure for homogeneous region formation, the adaptation of a specific case 122 

of the 4-parameter Kappa distribution, i.e. the 3-parameter Gaucho distribution, to obtain a 123 

best-fit regional probability distribution for drylands and tools to produce meteorological 124 

drought return period maps. 125 

 126 

2.  Methodology 127 

2.1. Characteristics of the study area 128 

2.1.1. Geographic characteristics 129 

The study area is located in north-central Chile (Fig.1) and covers an area of 88,766 km
2
. 130 

According to di Castri and Hajeck (1976) and Verbist et al. (2006), this area includes the arid 131 

regions at its northern boundary, with 9-10 dry months per year, and the semi-arid to sub 132 

humid regions on the southern boundary, with 5-6 dry months per year. Geographically, the 133 

region is located between latitudes 29º 01' and 34º 54' South and between longitudes 69º 50' 134 

and 72º 04' West. Elevation ranges from sea level to 6206 m at the highest part of the Andes.  135 

 136 

2.1.2.  Mean Annual Precipitation 137 

Mean annual precipitation (MAP) (Fig.1) shows both a North-South and an East-West 138 

gradient, with a minimum of 50.6 mm in the far North and a maximum of 1055.6 mm at the 139 

southern edge of the study area. The extra-tropical frontal disturbances associated with the 140 

winter rains and the windward orographic rainfall formation due to the Andes explain the 141 

increase in the MAP from north to south and from the sea to the Andes (Rutllant, 2004). 142 

This spatial pattern and temporal dynamics are linked with the general circulation of the 143 

atmosphere in this area, and may be adversely affected by conditions of negative anomaly 144 

in sea surface temperatures associated with La Niña-ENSO phenomenon events, causing 145 



reductions of more than 60% of annual precipitation (Escobar and Aceituno, 1998; 146 

Quintana, 2000; Rutllant, 2004;  Squeo  et al., 2006;  Verbist et al., 2010).  147 

 148 

2.1.3.  Data sources 149 

For this study, 54 stations with daily precipitation records and 126 stations with monthly 150 

precipitation records were available. This provided a total of 180 meteorological stations 151 

distributed throughout the study area, with data provided by the Water General Directorate 152 

(DGA) and the Meteorological Directorate of Chile (DMC).  153 

Precipitation records at daily stations were aggregated to produce monthly values, but only 154 

for months where there were complete daily records. If daily data were missing from a 155 

month, that month was not included in the analysis. The 180 stations had an average record 156 

length of 28.1 years, with a minimum of two years and a maximum of 75 years. 50% of the 157 

stations had 25 or fewer years-of-record.  158 

In order to establish the final database for the RFA-LM procedure, we selected those 159 

stations that had a minimum record length of 15 years. This criterion was obtained using 160 

record curves, similar to those used by Bonnin et al. (2006). Selecting an appropriate 161 

minimum record length is important as it influences the number of stations for analysis as 162 

well as the total years of record, both affecting the reliability of the quantile estimates 163 

(Hosking and Wallis, 1997;  Mishra  et al., 2007). On this basis, 172 stations were selected 164 

for analysis. 165 

 166 

2.2. Adapted RFA-LM procedure 167 

The RFA-LM procedure used in this study was based on the methods proposed by Hosking 168 

and Wallis (1997) and the idea that the L-moments ratios L-Cv and L-skewness, defined as 169 

L-coefficient of variation and L-coefficient of skewness, respectively, are mapable 170 

quantities in their own right (Wallis et al., 2007). The five steps in the analysis procedure 171 

were:  172 

1. data assembly, data screening and quality checking, 173 

2. identification of homogeneous regions,  174 



3. selection of the regional frequency distribution, 175 

4. estimation of distribution parameters and the quantile function, and  176 

5. spatial mapping of L-moment and drought characteristics.  177 

These five steps are presented below. 178 

 179 

2.2.1. Stage 1:  Data screening and quality checking 180 

Considerable efforts were made in the screening and quality checking of precipitation data, 181 

which aimed at eliminating false values associated with a wide variety of data 182 

measurement, recording and transcription errors. Special emphasis was given to the 183 

confirmation of the basic assumptions of homogeneity, using double mass curve analysis 184 

(WMO, 1994); stationarity, using linear regression analysis; and autocorrelation, using the 185 

Lag-1 test for serial independence (Wallis et al., 2007).  186 

As a quality control tool, the discordancy measure (Di) from Hosking and Wallis (1997) 187 

was used to identify those stations for which sample L-moments were significantly 188 

different from the observed pattern of the other sites within the region.  189 

 190 

2.2.2. Stage 2: Formation and acceptance of homogeneous sub-regions 191 

2.2.2.1. Formation of candidate homogeneous sub-regions  192 

A homogeneous sub-region is herein defined as a group of sites (stations) whose data, after 193 

rescaling by the at-site mean, can be described by a common probability distribution 194 

(Hosking and Wallis, 1997; Stedinger et al., 1993; Brath et al., 2001). This is often termed as 195 

the Index Flood (Stedinger et al., 1993) approach to regional frequency analysis. In addition, 196 

the site data must satisfy the homogeneity criterion H1 originally defined by Hosking and 197 

Wallis (1997).   198 

A heterogeneous super-region is herein defined as a geographic area composed of 199 

homogeneous sub-regions whose data can be described by the same probability 200 

distribution. Depending on the complexity of the phenomenon being analyzed, the study 201 

area may be comprised of one or more heterogeneous super-regions. 202 



In this paper we propose using a seasonality index and the magnitude of MAP as criteria for 203 

forming homogeneous sub-regions. A similar approach was suggested by Kohnová et al. 204 

(2009), but using measures of seasonality in regional stream flow frequency analysis.  205 

The procedure we used was thus as follows: 206 

a) For each station, a Seasonality Index (SI), the Julian Mean Day (JMD) and MAP 207 

were calculated. The SI and JMD calculations are described by Dingman (2001) and 208 

Schaefer et al.  (2008) and are based on circular statistics which yield the average day 209 

of occurrence, analogous to the arithmetic mean for dates, and SI, similar to a 210 

standardized measure of variation. The SI takes values between 0 and 1. Values near 0 211 

indicate a wide variation in the time-of-year of occurrence, while values close to 1 212 

indicate small variation in the time-of-year of occurrence and therefore a high seasonal 213 

concentration of data (Schaefer et al., 2008).   214 

b) Based on SI values and their corresponding precipitation histograms for a large set of 215 

precipitation stations, a criterion for pooling stations into homogeneous sub-regions was 216 

defined: Group 1, stations with SI from 0 to 0.2;  Group 2, with SI between 0.2 and 0.6; 217 

and Group 3 with SI greater than 0.6. This grouping ensures that stations that have 218 

different rainfall forming processes are separated, since no distribution can fit to station 219 

data belonging to two or more of these different groups simultaneously. 220 

c) In the event that stations are all within the same SI range, they can be further 221 

partitioned according to their JMD values. This is appropriate because there may be 222 

stations with similar SI values but whose rainfall concentration occurs at different times 223 

of the year (areas with rainfall concentrated in summer and others with rainfall 224 

concentrated in winter which can have different moisture sources, storm intensities and 225 

durations). 226 

d) Finally, stations with similar SI and JMD values can be further partitioned into 227 

candidate homogeneous sub-regions according to the magnitude of MAP. This 228 

approach is based on the finding that the shape of the regional probability distribution is 229 

often related to the magnitude of MAP.  Specifically, it is expected that data from semi-230 

arid regions show greater variability, higher skewness and different probability 231 

distribution shapes than data from more humid regions, as has been indicated by several 232 



authors (Eriyagama et al., 2009; Fuentes et al., 1988; Gastó, 1966; Kalma and Franks,  233 

2003; Le Houérou, 1988; Schaefer et al., 2008). To accommodate this behavior, stations 234 

were ordered from lowest to highest magnitude of MAP and grouped to form a suitable 235 

number of sub-regions with similar sample size.  236 

e) Homogeneous sub-regions need not be geographically continuous (Hosking and 237 

Wallis, 1997), so that no stations were forced to belong to a particular sub-region 238 

because of geographical proximity.   239 

 240 

 2.2.2.2. Acceptance of candidate homogenous sub-regions   241 

The homogeneity of each sub-region was confirmed using the H1 heterogeneity measure of 242 

Hosking and Wallis (1997). The H2 heterogeneity measure was not used because it has 243 

proven to lack statistical power (Viglione et al., 2007).  244 

A sub-region was accepted as homogeneous where H1<2, possibly heterogeneous with 245 

2<H1<3 and as a heterogeneous, if H1>3. The selection of these thresholds was based on 246 

recommendations from Wallis et al. (2007) which account for site-to-site variability 247 

resulting from data measurement and recording errors in addition to statistical variability.   248 

 249 

 2.2.3. Stage 3: Selection of regional probability distribution  250 

The selection of the best-fit regional probability distribution function was based on 251 

screening L-moment ratio diagrams. The final decision was based on the Z
|DIST|

 goodness-252 

of-fit test described by Hosking and Wallis (1997) as applied to all of the homogeneous 253 

sub-regions within a heterogeneous super-region. 254 

The distributions that were examined included the Generalized Pareto, Generalized 255 

Extreme Value, Generalized Normal, Pearson Type III, Generalized Logistic, and the 4-256 

parameter Kappa distribution (4-p-Kappa) as well as the 3-parameter Gaucho distribution 257 

described in detail below. The application of L-moments to estimate the parameters of these 258 

and other distributions has been described by several authors (Abdul-Moniem and Selim, 259 

2009; Delicado and Goria, 2007; Kundu, 2001; Hosking and Wallis, 1997; Shawky and 260 

Abu-Zinadah, 2009). 261 



In this study, we also proposed a new distribution based on a modification to the 4-p-Kappa 262 

distribution described by Hosking (1994), in which the second shape parameter, h, was set 263 

to a value of 0.50. This special case of the 4-p-Kappa distribution is called the “Gaucho 264 

distribution”, whose inverse function is as follows: 265 

 266 

50.0

1
1)(

50.0F
Fq                                        )1.(Eq  267 

                                        268 

where )(Fq  is the Gaucho quantile function, F  is the non-exceedance probability for the 269 

desired quantile,  and  are the location and scale parameters,  is the first shape 270 

parameter, and the second shape parameter h for the 4-p-Kappa distribution is set to a value 271 

of 0.50. 272 

Thus, the Gaucho distribution constitutes a three-parameter distribution which can be 273 

represented in an L-moments ratio diagram as bisecting the space between the Generalized 274 

Pareto and Generalized Extreme Value distributions. 275 

Although several probability distributions might be statistically acceptable for each 276 

homogeneous sub-region based on the Z
|DIST|

 goodness-of-fit measure, the adopted regional 277 

probability distribution was selected as the distribution most frequently accepted by the 278 

collection of homogeneous sub-regions within the heterogeneous super-region. 279 

 280 

 2.2.4. Stage 4: Estimation of distribution parameters and quantiles  281 

After the regional probability distribution was selected, the distribution parameters for each 282 

homogeneous sub-region were determined by the method of L-moments as described by 283 

Hosking and Wallis (1997). The inverse function could then be expressed in dimensionless 284 

form (Eq. 2), which is termed a regional growth curve (Hosking and Wallis, 1997; 285 

Stedinger et al., 1993): 286 

)(ˆˆ)(ˆ FqµFQ ii       2.Eq  287 



 
288 

where  )(ˆ FQ i is the quantile function for station i,  iµ̂ is the at-site mean for station i, )(ˆ Fq is 289 

the regional growth curve.   290 

 291 

Site-specific quantile estimates for annual precipitation were obtained by multiplying the 292 

regional growth curve by the at-site value of mean annual precipitation (MAP). For the case 293 

of sites with station data, the MAP value obtained from the station data was used to scale 294 

the regional growth curve. For ungauged sites, the at-site MAP value was estimated using a 295 

topoclimatics interpolation method as described by Morales et al. (2006). 296 

 297 

 2.2.5. Stage 5: Mapping 298 

Spatial mapping of various proportions of annual precipitation is helpful in depicting the 299 

frequency of precipitation deficits throughout the study area. Color-shaded maps were 300 

generated depicting the return periods for values of 80% and 60% of mean annual 301 

precipitation (20% and 40% precipitation deficits). This is consistent with the concept of 302 

defining drought thresholds as some percentage of the most recent 30-year climatic normal 303 

for mean annual precipitation (Quiring, 2009a).    304 

To construct the maps, we first developed relationships between L-moment ratios and MAP 305 

for the homogeneous sub-regions. This is an approach used in several studies that have 306 

shown that MAP is often a good explanatory variable for describing the spatial variability 307 

of the L-moment ratios (Baldassarre et al., 2006; Schaefer et al., 2008; Wallis et al., 2007).  308 

The procedures for spatial mapping of quantile estimates and return periods using 309 

relationships between L-moment ratios and MAP are described in Wallis et al. (2007).   310 

These spatial mapping procedures consisted of:  311 

a) Determining predictive relationships between sub-regional values of L-Cv and 312 

MAP, and L-skewness and MAP such as described by Eq. 3. We also created two 313 

additional “extreme sub-regions” to facilitate predictions and mapping near the extreme 314 

ends of the available data. These “extreme sub-regions” were obtained by combining 315 

the eight stations with least MAP, and the eight stations with the highest MAP to form 316 



two additional sub-regions. Regional values of the L-moment ratios were computed for 317 

these two sub-regions as described previously. The function selected for describing the 318 

relationship between L-moment ratios and MAP was as follows : 319 

 )(ratioMoment-L MAPe                                   )3.(Eq  320 

where α, β and δ are fitting parameters. Their values were determined by least-squares 321 

optimization using Excel‟s Solver tool. As a measure of goodness-of-fit, the RMSE and 322 

Standardised RMSE (RMSES) were used (Schaefer et al., 2008). 323 

b) A raster grid map of MAP for the study area was constructed by multiple regression 324 

analysis using a topoclimatics information procedure as described by Morales et al. 325 

(2006). 326 

c) From the gridded map of mean annual precipitation, and using the prediction 327 

function (Eq. 3), L-Cv and L-skewness values were generated for each cell of the raster 328 

map of MAP. 329 

d) Maps of drought return periods were generated by first solving for the distribution 330 

parameters for each grid-cell based on grid-cell values of L-Cv and L-skewness, and 331 

then solving for the non-exceedance probability (F) using the cumulative distribution 332 

function for the selected regional probability distribution.  333 

 334 

2.3.   Analysis tools 335 

To facilitate application of the RFA-LM methodology, the L-RAP software package was 336 

utilized (Schaefer, 2008). L-RAP has a Windows user-interface and executes the 337 

FORTRAN routines of Hosking (2005) which provides a number of advantages over other 338 

RFA-LM computational tools developed by other authors (Asquith, 2009; Hosking, 2009a; 339 

Hosking, 2009b; Karvanen, 2009; Viglione, 2009). These advantages include: 340 

a) It has a friendly graphical user interface, which facilitates use by analysts not familiar 341 

with the use of FORTRAN or other routines. 342 

b) L-RAP proceeds step-by-step through each of the stages associated with RFA-LM.  343 

This begins with an EXCEL template for data import, data quality control, checking of 344 



the assumptions of stationarity and independence, computation of the SI, JMD, Di and 345 

heterogeneity indices, computation of goodness-of-fit measures for selection of the 346 

regional probability distribution, computation of distribution parameters and quantiles. 347 

c) It generates L-moment diagrams, quantiles, graphs, and summary data from each 348 

station presented graphically, as histograms and probability-plots. 349 

d) It permits direct editing of the database which is stored in the internal binary format 350 

of L-RAP, which is essential for iteratively adding and eliminating stations to proposed 351 

homogeneous subregions. 352 

For the preparation of the return period maps, we developed a software tool called L-MAP 353 

(Verbist, 2010). It is based on the L-RAP algorithms, and it can import an IDRISI binary 354 

type format base map and use it for spatial mapping of L-moment ratios, return periods and 355 

precipitation quantiles. 356 

 357 

3. Results 358 

3.1. Stage 1: Data screening, preparation and assumptions checking 359 

Table 1 lists summary statistics for annual precipitation data from the 172 stations. These 360 

stations have an average record length of 29.2 years and totaled 5015 station-years of 361 

record. This dataset yielded an average MAP of 359.4 mm, with a minimum of 50.6 mm 362 

and a maximum of 1055.6 mm. Tests for stationarity and serial independence were 363 

conducted on the collection of 172 stations, and showed that most stations (94%) passed the 364 

test for stationarity and serial independence (99%). As such, the time-series of annual 365 

precipitation data were deemed to be stationary and serial independent.     366 

 367 

3.2. Stage 2: Formation and acceptance of homogeneous sub-regions 368 

3.2.1. Analysis of seasonality and MAP for forming homogeneous sub-regions 369 

A SI and JMD were computed for the time-series data of annual precipitation at each of the 370 

172 stations. Frequency histograms of SI and JMD as well as scatterplots and linear 371 

regression analysis between these variables and MAP are shown in Fig. 2. The purpose of 372 



this analysis was to detect any changes in SI and JMD along a precipitation gradient which 373 

increases from the driest (in the North) to the wettest portions of the study area in the 374 

South. The SI showed an average of 0.87, with a minimum of 0.72 and a maximum of 375 

0.94. This implies a high concentration of rainfall in a few months. In fact, Aceituno (1992) 376 

showed that in Chile, between latitudes 30º and 35º S, rainfall occurs mainly in the winter 377 

months of June to August.  378 

Huanta, Ramadilla, San Gabriel and Farellones Ski stations exhibit the four lowest SI 379 

values. These four stations are located in mid-mountain areas of the Andes. It is possible 380 

that these stations receive summer rainfall of convective origin, affecting their seasonality, 381 

although Garreaud and Rutllant (1997) indicated that summer rainfall does not represent 382 

more than 5% of the annual precipitation total. 383 

The JMD showed an average of day 180 with a minimum and a maximum of day 157 and 384 

day 191 respectively, and a small coefficient of variation of 2.6%. That is, the rainy season 385 

in Chile is concentrated around the 30
th

 of June (day 180). The lower values of JMD of two 386 

stations, one of which is also the Ramadilla station, could suggest different behavior in 387 

their seasonality of precipitation or problems with data quality. The discordancy measure 388 

Di will be used in a later step to assist in determining if these two stations should be 389 

included or excluded from the analysis of the study area. 390 

Verbist et al. (2006) have shown that the number of months with precipitation increases 391 

from north-to-south in the study area as does the precipitation amount in the wettest month.  392 

However, Figs. 2b and 2d show that the SI and JMD do not vary with mean annual 393 

precipitation from north-to-south across the study area. This finding is consistent with the 394 

effect of the atmospheric general circulation in Chile where rainfall is concentrated in the 395 

winter season and interannual variability is exclusively associated to a gradient of annual 396 

precipitation, mainly in the north-south direction (Fuentes et al., 1988). Thus, the entire 397 

study area can be considered to have the same seasonality of precipitation.   398 

These findings indicate that the study area is comprised of one heterogeneous super-region 399 

containing several homogeneous sub-regions. The homogeneous sub-regions were formed 400 

based on grouping of stations within a similar range of MAP.   401 

 402 



3.2.2. Choice of the number of homogeneous sub-regions 403 

The determination of the number of candidate sub-regions was based on finding a balance 404 

between providing a sufficient number of sub-regions to develop a reliable predictor 405 

equation for L-Cv and L-Skewness relationships for spatial mapping (Eq. 3), and having 406 

sufficient stations within a sub-region to reliably estimate regional values of L-Cv and L-407 

skewness. 408 

Using this criteria, and considering that for a homogeneous sub-region there is little 409 

advantage in having more than 20 stations (Hosking and Wallis, 1997), eight homogeneous 410 

sub-regions were defined. This number of subregions allows for a sufficient optimization of 411 

Eq. 3 using the least square difference technique. Within the eight sub-regions, the stations 412 

were assigned according to the magnitude of MAP arranged in ascending order. Each sub-413 

region had an average of 21 stations and 638 station-years of record. 414 

As suggested by Schaefer et al. (2008) and Wallis et al. (2007), forming homogeneous 415 

regions is an iterative process. Table 2 presents the eight homogeneous sub-regions, 416 

obtained after three iterations. These iterations resulted in the elimination of four stations 417 

that were discordant and moving three stations from one sub-region to another due to high 418 

discordancy. Table 2 also lists sub-regions 9 and 10 that were formed at the extreme ends 419 

of the range of MAP to assist in describing the predictor equation for L-Cv and L-skewness 420 

(Eq. 3). 421 

Computation of the heterogeneity measure H1 showed the final eight sub-regions to be 422 

acceptably homogeneous. Of the 168 stations included in the eight homogeneous sub-423 

regions, only three stations (each in different sub-regions) had a discordancy value above 424 

the Di critical value of 3 (Station Alicahue: Di = 3.9, Station Ramadilla: Di = 3.7 and 425 

Station San Antonio: Di = 3.4). All stations are mildly discordant and it was decided to 426 

keep them as part of the collection of stations for the sub-regions. 427 

 428 

 3.3. Stage 3: Selection of regional probability distribution 429 

As a first step in selecting the best-fit regional probability distribution by using graphical 430 

methods, including the L-moment ratio diagram (Peel et al., 2001; Vogel and Fennessey, 431 



1993), Fig. 3 shows the L-Skewness vs L-Kurtosis ratio diagrams generated by L-RAP for 432 

the eight homogeneous sub-regions. It is seen that the center of the cloud of L-skewness 433 

and L-kurtosis pairs for all sub-regions, is located near the Gaucho distribution curve. 434 

However, a given sub-region may also plot close to the GEV distribution or Pearson Type 435 

III. Less proximity was found to the Generalized Pareto distribution and even less to the 436 

Generalized Logistic. This suggests that the Gaucho distribution is a good fit to the 437 

observed data for the collection of sub-regions. 438 

However, as Hosking and Wallis (1997) and Peel et al. (2001) suggest, visual examination 439 

of the L-moment ratio diagram should not be the sole criterion when choosing the best-fit 440 

distribution, but should include a goodness-of-fit measure for identification of acceptable 441 

distributions. Accordingly, Table 2 presents the best-fit distributions for the eight proposed 442 

homogeneous sub-regions based on the Z
|DIST| 

<1.64 goodness-of-fit test. The distributions, 443 

in order of highest to lowest goodness-of-fit were Gaucho, Pearson Type III, Generalized 444 

Normal, Generalized Extreme Value and Generalized Pareto. The only common 445 

distribution to the eight homogeneous sub-regions was the Gaucho distribution. This 446 

confirms the point made by Hosking and Wallis (1997) that the 4-p-Kappa distribution, 447 

source of the Gaucho distribution, has a high degree of flexibility to adapt to a variety of 448 

distribution models. The 4-p-Kappa distribution is a generalization of a number of other 449 

commonly used distributions in hydrology, like the generalized logistic, the generalized 450 

extreme-value or the generalized Pareto (Finney, 2004; Hosking, 1994). 451 

 452 

 3.2.4. Stage 4:  Parameter and quantiles estimation 453 

Table 3 presents the values of the parameters of location , scale , and the shapes  and 454 

h (set to 0.50), of the Gaucho distribution. It also includes the values of the same four 455 

parameters obtained by fitting the 4-p-Kappa distribution. Between the northern arid 456 

boundary and the southern subhumid boundary of the study area, the location parameter  457 

increased from 0.43 to 0.67,  decreased from 0.69 to 0.59 and  increased from -0.03 to 458 

0.36. Thus, the Gaucho distribution has enough flexibility to adapt to the behavior of the 459 

annual precipitation data across the study area. For the 4-p-Kappa distribution,  increased 460 



from 0.25 to 0.75,  decreased from 0.87 to 0.47,  increased from 0.07 to 0.25 and h 461 

decreased from 0.82 to 0.28. 462 

The results in Table 3 indicate a minor change in the shape of the regional probability 463 

distribution, closer to the Generalized Pareto on the northern boundary to a GEV or 464 

Generalized Normal near the southern boundary. The average 4-p-Kappa h value for the 465 

eight homogeneous sub-regions was 0.45, which is very close to the value h = 0.50 set for 466 

the Gaucho distribution.  467 

In addition, the  parameter values of the eight sub-regions,  the value h = 0.50 in the case 468 

of the Gaucho distribution, and the h parameter values of the eight sub-regions in the case 469 

of the 4-p-Kappa distribution fit, are all located near the center of the parameter space that 470 

ensures the existence of the L-moments (Hosking, 1994; Winchester,  2000). They are also 471 

located in a region of the parameter space in which the bias and RMSE in quantile 472 

estimation using L-moments is significantly less than that obtained with the maximum 473 

likelihood estimation method (Dupuis and Winchester, 2001). This suggests that the RFA-474 

LM produces more robust estimates in the study area than those obtained by conventional 475 

methods based on at-site and/or using maximum likelihood or product-moment estimation 476 

methods. 477 

Table 4 lists the regional quantiles for each of the eight homogeneous sub-regions, obtained 478 

from the Gaucho distribution. It can be seen that from sub-region 1 to sub-region 8, there is 479 

a reduction in the variability in quantile estimates. This is related to the reduction of the 480 

Gaucho distribution scale parameter  from 0.69 to 0.59 in the North-South direction, and 481 

is associated with a decreasing trend from North to South of L-Cv, L-kurtosis and L-482 

skewness, as shown in Table 2. In this way, more frequent extremes can be expected in the 483 

drier areas than in the wetter climates of the study area. This behavior is similar to that 484 

described by Schaefer et al. (2008) and Wallis et al. (2007).  It also coincides with the fact 485 

that there is a high interannual rainfall variability within arid and semiarid regions (Kalma 486 

and Franks, 2003) and is fully consistent with the analysis of dry year frequency for the 487 

Chilean territory made by Gastó (1966). The latter, categorizing the years from very dry to 488 

very wet, found a higher frequency of dry or very dry years (42% of all years) in the 489 

northern arid zone near the study area and a lower frequency (27%) in the southern, 490 



subhumid regions. These results indicate the importance of selecting the appropriate 491 

probability distribution in the analysis of annual meteorological drought, at least in semi-492 

arid regions with high gradients of interannual variability from dry to more humid zones.   493 

Some authors, although implementing the RFA-LM for distribution fitting of annual 494 

precipitation in their study areas with similar or higher precipitation gradients than this 495 

study (Yue and Hashin, 2010), or placed in other semiarid regions (Vicente-Serrano, 2006), 496 

did not confirm the homogeneity assumption in their analysis. This can result in a mis-497 

specification of the regional distribution as well as an increase in the bias of the estimates 498 

solely due to using a heterogeneous region, which is inconsistent with the basic assumption 499 

of the index flood regional frequency analysis (Stedinger et al., 1993; Reed et al., 1999).   500 

 501 

3.2.5. Stage 5:  Drought return period mapping 502 

3.2.5.1. Predictor equations for spatial mapping of L-Cv and L-skewness 503 

Plots of the predictor equations for L-moment ratios as a function of MAP, together with 504 

the parameters and goodness-of-fit measures are shown in Fig. 4. The general goodness-of-505 

fit for L-Cv and L-skewness is visually evident. Greater variability is seen for the regional 506 

L-kurtosis values, which is a characteristic inherent to the higher moments. The solutions 507 

for L-Cv and L-skewness are particularly important because the quality of those 508 

relationships largely determines the reliability of quantile estimates for 3-parameter 509 

probability distributions such as the Gaucho distribution.  510 

 511 

 3.2.5.2. Annual meteorological drought return period map 512 

The L-Cv and L-skewness maps of the study area are shown in Fig. 5. The L-kurtosis map 513 

is not included, because the Gaucho distribution has only three parameters and can be 514 

calculated only from L-moment 1 (MAP), L-Cv and L-skewness. There is a decreasing 515 

trend of L-Cv and L-skewness (derived from the best-fit curves previously obtained in Fig. 516 

4) from the northern edge to the southern edge of the study area. The decrease in L-Cv and 517 

L-skewness along the North-South axis is also associated with a decrease, in the same 518 

direction, of the variability in the regional growth curve in the left tail and especially the 519 



right tail as was seen in Table 2. Therefore, if the comparison is made with respect to the 520 

average value of precipitation, as the Index Flood scaling factor, the probability of very dry 521 

or wet years is greater at the northern edge and is lower on the southern edge of the study 522 

area.  For example, a 0.4 quantile of the regional growth curve (equivalent to 40% of 523 

normal) had a probability of exceedance of 0.23 in sub-region 1, equivalent to a return 524 

period of approximately four years. In contrast, the same quantile in sub-region 8, had a 525 

probability of exceedance of 0.05, equivalent to a return period of about 18 years. In the 526 

upper tail of the regional growth curve the difference is even larger: a quantile of 2, 527 

equivalent to twice the MAP, in sub-region 8 is seen on average once every 100 years, 528 

whereas in sub-region 1, it happens on average once every 10 years. 529 

Drought return period maps for 80% and 40% of the normal are presented in Figs. 6a and 530 

6b respectively. The results indicate that, on average, the 80%-of-the-normal drought has 531 

similar return periods along the study area, with a minimum of two years around the 532 

northern edge and about three years at the southern edge. These similarities are due to the 533 

small differences between the quantiles of the regional growth curves around the central 534 

values of the distribution.  535 

In contrast, a 40%-of the–normal drought occurs between three and four years on average 536 

at the northern edge and every 22 years at the southern one. That is, higher aridity implies 537 

more recurrence of extreme annual drought events. The spatial distribution of drought 538 

frequency agrees with previous studies that analyzed the frequency of dry years in Chile 539 

(Gastó, 1966). 540 

The map also allows us to appreciate a decreasing frequency component from coast to 541 

mountains, associated with increased precipitation in that direction. This means that coastal 542 

drylands have a greater frequency of droughts than foothill drylands. Between parallels 33º 543 

and 35º S a distinct pattern in the frequency can also be seen, compared with the area north 544 

of latitude 33º S. This is because the terrain topography changes from the type known as 545 

transverse valleys, between parallels 29º and 33º S, to the type referred to as longitudinal 546 

valleys, southwards of 33° S. The orographic effect that influences the distribution of 547 

annual precipitation in that location, which increases to the West in the coastal mountain 548 

range, is reduced again in the longitudinal valleys, and increases again towards the East, 549 



towards the mountains of the Andes (Falvey and Garreaud, 2007). This pattern is reflected 550 

in the spatial distribution of the drought return period, where higher frequencies enter into 551 

the center of the valley around the parallel 33.4º S. The map also allows us to determine 552 

locations with greater frequency of droughts, which can be used in the preparation of 553 

drought vulnerability maps (Luers, 2005) or risk maps (Wilhite and Buchanan-Smith, 554 

2005), useful for decision making support and climate risk management. For example, 555 

while the years with annual precipitation deficits are more common toward the north, 556 

economically important rain-fed farming presents a diametrically opposite distribution. The 557 

North is predominantly associated with livestock raising goats on farmers communal land 558 

(MINAGRI-INDAP-PRODECOP, 2001), while rainfed agriculture is much more 559 

developed towards the southern boundary. There are more options for cropping, and greater 560 

land area is used for agricultural crops, including wheat, and for improved natural 561 

grasslands and sown pastures for raising sheep and cattle. Under these conditions, a drought 562 

of 40%--of-the-normal does not cause the same impact as in the North. Therefore, it is 563 

important to define different drought thresholds throughout the study area. This contrasts 564 

with the drought definition established nowadays by Chilean legislation, which uses for a 565 

significant proportion of the study area a single Percent to Normal and a single accumulated 566 

precipitation return period value to define extreme water scarcity events (DGA, 1984).  In 567 

this regard, as indicated by Steineman et al. (2005), the drought definition used in this study 568 

does not consider the different impact that the same precipitation deficit level has in 569 

different regions, but it has the advantage of obtaining return periods for a given quantile, 570 

and it is the end user who can turn that quantile to the drought indicator of choice. In 571 

addition, the percentage with respect to the normal is a widely adopted drought indicator 572 

that can be related to quantiles and percentiles, and is considered one of the best available 573 

drought indicators, as a complement to the commonly used Standardized Precipitation 574 

Index (Keyantash and Dracup,  2002; Quiring, 2009a,b). 575 

The results of this study also enable us to determining the frequency of the most important 576 

droughts, i.e. those reported to have had the greatest economic impacts in north-central 577 

Chile, such as e.g., the 1968 and 1997 droughts (Espinoza and Hajeck, 1988; Fernández  et 578 

al., 1997). In those years, annual precipitation in north-central Chile was between 20-30% 579 

of a normal year. Based on the regional growth curves presented in Table 4, a quantile of 580 



0.3 is equivalent to a 30% drought, and has a return period of approximately six years at the 581 

northern edge, 24 years in the central study area and 68 years in the far South. Therefore, it 582 

is important that legislation considers the enormous variability in the definition of drought 583 

being used throughout this study area.  584 

Finally, if one includes also the concept of sensitivity, adaptive capacity and vulnerability 585 

(Luers et al., 2003), along with the frequency of occurrence of drought as a stressful event, 586 

then the risk or vulnerability of the area should have a high spatial variability along the 587 

gradient of mean annual rainfall. 588 

  589 

4. Conclusions 590 

In this study, a methodology was developed to use a RFA-LM procedure for estimating the 591 

spatial distribution of drought frequency in northern-central Chile, in a transition between 592 

arid and sub-humid areas of the country. Based solely on the use of monthly precipitation 593 

records, it was possible to identify homogeneous sub-regions along the study area, which 594 

were fitted by different probability distribution models. The model that best fit the entire 595 

area was the Gaucho distribution, which was defined in this study as a special case of the 4-596 

p-Kappa distribution. The use of this model allows identifying a gradient of drought 597 

frequency along the study area which depends on the considered drought level. Thus, while 598 

the frequencies of 80%-of-the-normal droughts are relatively similar throughout the area, 599 

those of 40%-of-the-normal result in differences in about four orders of magnitude. A 600 

drought defined as 30%-of-the-normal can have differences of up to 10 orders of magnitude 601 

between the northern arid region and the southern subhumid area. Given the high frequency 602 

of these extreme droughts at the northern edge of the study area, which is nearly six years, 603 

they might better be considered as a structural condition of the region rather than extreme 604 

events. As such, it requires a change of management strategy to deal with low precipitation 605 

events in this area on a permanent basis.  606 

The results also indicate the importance of a homogeneity check, for proper probability 607 

distribution selection, especially in drylands along annual precipitation gradients. For 608 

example, a proper selection of the distribution model used in drought indices based on 609 

frequency analysis, such as the widely used Standardized Precipitation Index, could be 610 



critical for extreme drought events detection, especially for annual values in arid zones 611 

based on this drought index. The proposed methodology allows more robust estimation of 612 

quantiles compared with conventional methods. Its representation in terms of practical 613 

drought frequency maps can be used by water resource managers for decision making. The 614 

maps obtained indicate the need to consider the use of different thresholds of drought 615 

throughout the study area, which, together with drought vulnerability maps, could generate 616 

drought risk maps to guide differentiated strategies in drought management along the 617 

North-South axis of central Chile.  618 

On the other hand, when drought frequency has to be determined for some specific drought 619 

events in ungauged sites, the procedure presented in this study will yield better estimates 620 

than any other available method. With this procedure, there is no need to have long time 621 

series of station data to develop a drought monitoring network, as in an at-site approach, 622 

because the RFA-LM analysis allows pooling stations to construct a stronger basis for 623 

selecting correct distributions and their quantiles. Therefore, this methodology should be of 624 

practical value for these regions that lack abundant climate data sets, but suffer from high 625 

drought frequency, as is common in arid and semi-arid regions throughout the world. 626 
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 635 

Appendix – Brief overview of the RFA-LM methodology development  636 

Many practical problems require the fitting of a probability distribution to a data sample. In 637 

many fields of application the available data do not consist of a single sample, but a set of 638 

samples drawn from similar sites that can be expected to have similar probability 639 

distributions. The distribution for one sample can be more accurately estimated by using 640 



information, not only from that sample, but also from the other related samples. In 641 

environmental sciences, data samples are typically measurements of the same kind of data 642 

made at different sites, and the process of using data from several sites to estimate the 643 

frequency distribution is known as regional frequency analysis. 644 

 645 

In the early 1970s, there was a growing awareness among hydrologists that annual 646 

maximum stream flow data, although commonly modeled by the Gumbel distribution, often 647 

had higher skewness than was consistent with that distribution. Moment statistics were 648 

widely used as the basis for identifying and fitting frequency distributions, but to use them 649 

effectively required knowledge of their sampling properties in small samples. A massive 650 

(for the time) computational effort using simulated data was performed by Wallis et al. 651 

(1974). It revealed some unpleasant properties of moment statistics: high bias and algebraic 652 

boundedness. 653 

 654 

In hydrology and meteorology, having a sequence of values observed at a site that is 655 

normally distributed is rare, while skewed distributions are quite commonly observed. 656 

Unfortunately the estimate of the skew coefficient, G, is mathematically constrained, a fact 657 

which has been known since 1944, but frequently forgotten or ignored by practitioners. For 658 

instance, consider samples of length 30 taken from a Type I Extreme Value Distribution 659 

with mean 2600, standard deviation 800 and skewness 10; the constraint on the estimate of 660 

the skew coefficient is solely a function of the sample size, n: 661 

1

2

n

n
G       )4.(Eq  662 

The maximum value G is therefore 5.2 for a sample of 30 when the true skewness 663 

coefficient was 10.  664 

 665 

Attempting to try and select the true parent distribution from single samples by using a 666 

conventional goodness-of-fit measure can be perilous to say the least. In Table 5 the results 667 

are given of an experiment where samples from an Extreme Value type I (EV I) distribution 668 

were generated and with the best fit being chosen based upon minimum mean squared 669 



deviation for three distribution: EV I, Log Normal, and the Normal  distribution. Note that 670 

even with a sample size of 90 the correct distribution was chosen only 40% of the time.  671 

 672 

In contrast, the higher L–-moments are not constrained by sample size and their estimates 673 

have small bias and small range of -1 to +1. This is a strong argument for regionalization, 674 

and if the region is homogeneous we can expect that the extreme quantile estimates 675 

obtained will be better than those made with any at-site estimator. Matalas et al. (1975) 676 

went on to establish the phenomenon of „separation of skewness‟, which is that for annual 677 

maximum stream flow data the relationship between the mean and the standard deviation of 678 

regional estimates of skewness for historical flood sequences is not compatible with the 679 

relations derived from several well known distributions. Separation can be explained by 680 

„mixed distributions‟ (Wallis et al., 1977) – regional heterogeneity in our present 681 

terminology – or if the frequency distribution of stream flow has a longer tail than those of 682 

the distributions commonly used in the 1970s. In particular, the Wakeby distribution, which 683 

was devised by H.A. Thomas Jr. (personal communication to J.R. Wallis, 1976), does not 684 

exhibit the phenomenon of separation (Landwehr et al., 1978). It is hard to estimate by 685 

conventional methods such as maximum likelihood or the method of moments, and the 686 

desirability of obtaining closed-form estimates of Wakeby parameters led Greenwood et al., 687 

(1979) to devise Probability Weighted Moments, PWMs. They were found to perform well 688 

for other distributions (Landwehr et al., 1979; Hosking et al., 1985b; Hosking and Wallis, 689 

1987), but were hard to interpret. Later, Hosking (1990) found that certain linear 690 

combinations of PWMs, which he called „L-moments‟, could be interpreted as measures of 691 

the location, scale, and shape of probability distributions and formed the basis for a 692 

comprehensive theory of the description, identification, and estimation of distributions. 693 

 694 

The modern use of the index-flood procedure stems from Wallis (1981, 1982), who used it 695 

in conjunction with PWMs and the Wakeby distribution as a method of estimating quantiles 696 

in the extreme upper tail of the frequency distribution. Comparative studies showed that 697 

this „WAK/PWM‟ algorithm and analogs in which other distributions were fitted, 698 

outperformed the quantile estimation procedures recommended in the U.K. Flood Studies 699 

Report (Hosking et al., 1985a) and the U.S. „Bulletin 17‟ (Wallis and Wood, 1985). Later 700 



work investigated the performance of this index flood procedure in the presence of 701 

archeological and historical data (Hosking and Wallis, 1986a,b), regional heterogeneity 702 

(Lettenmaier et al., 1987), and intersite dependence (Hosking and Wallis, 1988). The 703 

practical utility of regional frequency analysis using this index-flood procedure, however, 704 

still required subjective  judgment at the stages of formation of the regions and choice of an 705 

appropriate frequency distribution for each region; statistics to assist with these judgments 706 

were developed by Hosking and Wallis (1993). 707 

The first of these statistics, called Di for Discordancy, measured the dispersion of the 708 

sample l-moment ratios (L-Cv, L-Skewness, and L-Kurtosis) of a site in three-dimensional 709 

space. A group of sites will yield a cloud of such points and any point that is far from the 710 

center of the cloud will be flagged as discordant. The formal definition can be found on 711 

page 46 of Hosking and Wallis (1997). 712 

 713 

The second statistic, H1, estimates the degree of heterogeneity in a group of sites to assess 714 

whether the sites might reasonably be treated as a homogeneous region. Specifically, the 715 

heterogeneity measure compares the between-site variations in sample L-moments for the 716 

group of sites with what would be expected for a homogeneous region. The formal 717 

definition can be found on page 63 of Hosking and Wallis (1997). Once a homogeneous 718 

region has been verified one can proceed to the next step, identifying the most likely 719 

regional distribution. 720 

 721 

The third statistic, Z
|DIST|

, is used to test whether any given distribution fits the regional data 722 

acceptably closely. The formal definition can be found on page 81 of Hosking and Wallis 723 

(1997). Several distributions may fit the regional data quite adequately. Luckily, when this 724 

has been observed, the distributions chosen have great similarity in their CDF‟s and 725 

departure is often only of importance at very extreme quantiles. 726 

 727 

728 
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Figure Captions 1001 

Figure 1 Map of the study area (north-central Chile) indicating mean annual precipitation 1002 

and the spatial distribution of the 180 raingauge stations. 1003 

Figure 2 Histogram and descriptive statistics of (a) Seasonality Index and (c) Julian Mean 1004 

Day and scatterplots and linear regression equations between (b) Seasonality Index and 1005 

Mean Annual Precipitation and (d) between Julian Mean Day and Mean Annual 1006 

Precipitation.   1007 

Figure 3 L-moment ratio diagrams for L-skewness vs. L-kurtosis for homogeneous sub-1008 

regions 1 to 8.   1009 

Figure 4 Best fit curves for (a) L-Cv versus Mean Annual Precipitation, (b) L-skewness vs.  1010 

Mean Annual Precipitation and (c) L-kurtosis vs. Mean Annual Precipitation. 1011 

Figure 5 Map of spatial distribution over the study area (north-central Chile) of (a) L-Cv 1012 

and (b) L-skewness.. 1013 

Figure 6 Map of the drought return period for (a) 80% of average precipitation and (b) 40% 1014 

of average precipitation. 1015 


