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Ghent, Belgium, the 14.09.2009 

 

Dear Editor 

 

A former version of the manuscript ‘Species boundaries and phylogenetic relationships between Atlanto-

Mediterranean shallow-water and deep-sea coral associated Hexadella species (Porifera, Ianthellidae)’ has been 

submitted for publication in Molecular Phylogenetics and Evolution in February 2007 (referenced Ms. No.: 

MPE-09-104; edited by Pr.Dr. Bernd Schierwater). Although one reviewer was almost completely positive, the 

relevant criticism raised by the second reviewer impeded you to accept this manuscript as a research paper in 

MPE. In your final decision mail from 30/06/2009 you were however willing to receive a revised manuscript if 

an effort could be done to address the sampling size problem.  
 

As MPE seems the most relevant journal according to its aim and scope to publish these data, a significant effort 

was made by me and the other authors in order to improve the sampling scheme, the laboratory protocols and the 

manuscript content, as suggested by reviewer II. 

A total of 14 additional shallow and deep-sea samples, including a better Atlanto-Mediterranean coverage for the 

shallow-water species H. racovitzai clearly improved the dataset, with a current sampling size of 46 (instead of 

32), and a doubling of the number of populations (14 instead of 7).  

The design of a new 28S primer and of robust amplification protocols allowed us to fill the gaps in the 28S and 

the ATPS database (Table 1). As suggested by reviewer II, all the phylogenetic analyses were done using only 

different sequences. 

The use of ATPS to check the value of this gene for taxonomic and phylogenetic purposes and to validate the 

mitochondrial phylogeny is now explicitly stated in the Ms in the introduction and the ATPS "section" in M & M 

which has been extended and clarified.  It is there explained that putative problems with different nuclear intron 

copies within individuals are treated cautiously. Length variation and the number of double peaks in the 

chromatogram of both forward and reverse sequences were checked for each sample. At most 3 positions (out of 

235 bp) were observed to show double peaks, which were subsequently encoded using the IUPAC ambiguity 

code. No length variation of individual sequences was observed. 

All the other remarks raised by reviewer II were carefully checked and revised, such as providing the combined 

tree figure, providing detailed explanations about the BLAST searches, the use of the term haplotype if alleles 

are not analyzed, the removal of misspelled species names, the use of unique name along the MS for commercial 

brand and markers, a thorough revision of the whole reference section, etc… 

We hope that with these major revisions of the manuscript, it will now be positively received by the reviewers 

and that you will be able to accept this work as a research paper in MPE. 

 

Yours sincerely, 

Julie Reveillaud 
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Abstract 61 

Coral reefs constitute the most diverse ecosystem of the marine realm and an increasing number of 62 
studies are focusing on coral species boundaries, distribution and on processes that control species 63 
ranges. However, less attention has been paid to coral associated species. Deep-sea sponges dominate 64 
cold-water coral ecosystems, but virtually nothing is known about their molecular diversity. Moreover, 65 
species boundaries based on morphology may sometimes be inadequate, since sponges have few 66 
diagnostic characters. Within the present study, we investigated the molecular diversity within the 67 
genus Hexadella (Porifera, Demospongiae, Verongida, Ianthellidae) from the European shallow-water 68 
environment to the deep-sea coral ecosystems. Three molecular markers were used: one mitochondrial 69 
(COI) and two nuclear gene fragments (28S rDNA and the ATPS intron). Phylogenetic analyses 70 
revealed deeply divergent deep-sea clades congruent across the mitochondrial and nuclear markers. 71 
One clade contained specimens from the Irish, the Scottish and the Norwegian margins and the 72 
Greenland Sea (Hexadella dedritifera) while another clade contained specimens from the Ionian Sea, 73 
the Bay of Biscay and the Irish margin (Hexadella cf. dedritifera). Moreover, these deeply divergent 74 
deep-sea clades showed a wide distribution suggesting a connection between the reefs. The results also 75 
point to the existence of a new deep-sea species (Hexadella sp.) in the Mediterranean Sea and of a 76 
cryptic shallow-water species (Hexadella cf. pruvoti) in the Gorringe Bank. In contrast, low genetic 77 
differentiation between H. cf. dedritifera and Hexadella pruvoti from the Mediterranean Sea was 78 
observed. All Hexadella racovitzai specimens from the Mediterranean Sea (shallow and deep) to the 79 
Atlantic were monophyletic.  80 

 81 

Keywords: Porifera; cold-water coral; COI; Nuclear intron; Partial 28S rDNA; phylogenetic 82 

resolution; Atlanto-Mediterranean. 83 

 84 

Introduction 85 

Coral reefs constitute one of the most diverse but also one of the most vulnerable 86 

ecosystems of the marine realm (Hughes et al., 2003; Pandolfi et al., 2003). Recent evidence 87 

suggests that deep-sea coral ecosystems may compare in species richness and abundance to 88 

their shallow-water counterparts (Freiwald et al., 2004; Roberts et al., 2006; Cairns, 2007), 89 

and act as speciation centers (Roberts et al., 2006; Lindner et al., 2008).  Understanding the 90 

origin and evolution of this marine biodiversity is essential for its conservation and 91 

sustainable management (Palumbi, 2004). Species boundaries and processes that control the 92 

distribution of coral species are hence receiving increasing interest, from the shallow-water 93 
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environment to the deep-sea (France and Hoover, 2002; Le Goff-Vitry et al., 2004; Reveillaud 94 

et al., 2008; Lindner et al., 2008). However, less attention has been paid to the associated 95 

species, despite the fact that they represent the highest biodiversity in deep-sea reefs (Roberts 96 

et al., 2006). Sponges constitute an important and dominant invertebrate group in hard-bottom 97 

benthic communities and play key roles on ecosystem functioning (Bell, 2008). Although ca 98 

200 Porifera species dominate the deep-water coral reef ecosystems, deep-water sponge 99 

species remain until today a reservoir of diversity barely explored (e.g. Vacelet, 1969; Jensen 100 

and Frederiksen, 1992; Rogers, 1999; Longo et al., 2005; Van Soest et al., 2007).  101 

Sponges are a group with numerous but considerably plastic morphological features. 102 

Characters such as texture, form and coloration are not reliable as they are frequently 103 

influenced by environmental factors (Palumbi, 1984; Jones, 1984; Barthel, 1991; Schönberg 104 

and Barthel, 1997; Carballo et al., 2006). Spicule morphology and skeletal arrangement 105 

traditionally are the diagnostic characters to identify sponge species (Bergquist, 1978). 106 

Unfortunately, spicule size and micromorphology can also be influenced by the environment 107 

(Palumbi, 1986; Maldonado et al., 1999; Bell et al., 2002). Consequently, taxonomic and 108 

systematic uncertainty may prevail, especially in species with a low number of informative 109 

characters (Klautau et al., 1999; Knowlton, 2000). Molecular analyses repeatedly revealed 110 

cryptic species and proved valuable in delineating species boundaries in Porifera (Solé-Cava 111 

et al., 1992; Boury-Esnault et al., 1992, 1999; Klautau et al., 1994, 1999; Lazoski et al., 2001; 112 

Wulff, 2006; Blanquer and Uriz, 2007; Cárdenas et al., 2007). However, the number of 113 

sponge genetic studies from remote environments, such as the deep-sea, remains scarce. 114 

Knowledge on speciation within sponges from cold-water coral ecosystems has potentially 115 

great consequences for the efficient conservation and economic use of this group (Van Soest 116 

and Lavaleye, 2005). Moreover, peculiar life-history traits of sponges, such as a restricted 117 

larval dispersal (Maldonado, 2006) which induces high genetic structure (Duran et al., 2004; 118 
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Calderón et al., 2007; Blanquer et al., 2009) make sponges a particularly interesting model 119 

group to determine the degree of connectivity vs. isolation between deep-sea reef populations 120 

and may prove very useful for establishing baselines of deep-water coral reefs biodiversity 121 

along the European margins.      122 

In the present study we examine the species boundaries and phylogenetic relationships 123 

between members of the genus Hexadella Tospent, 1896 (Order Verongida, Family 124 

Ianthellidae) collected along the European margins in both shallow-water and deep-sea 125 

habitats. Verongid sponges are know so far, as single taxonomic group to produce 126 

dibromotyrosine secondary metabolites (Wu et al., 1986; Bergquist and Cook, 2002; Erwin 127 

and Thacker, 2007), potential antithyroidic and antibiotic agents, and are therefore of 128 

particular interest for biotechnological applications (see also Erpenbeck and Van Soest, 2007). 129 

Chemical analyses of Hexadella species sampled in shallow-water and deep-sea suggested the 130 

production of different secondary metabolites at different depths (Morris and Andersen, 131 

1989). However, due to their lack of mineral skeleton, verongid identifications are particularly 132 

challenging at the intra-ordinal and especially species level. Taxa are distinguished almost 133 

exclusively by the structure and arrangement of their spongin fibers (Bergquist and Cook, 134 

2002), and in the case of fiberless species such as Hexadella spp. by the type and size of the 135 

choanocyte chambers. Taxonomists are left with very few morphological diagnostic 136 

characters difficult to observe (Topsent, 1913). Consequently, these and similar species have 137 

been widely reported simply as ‘crustose sponges’ (Mortensen et al., 1995). Especially, H. 138 

dedritifera Topsent, 1913 is a common species with the thin/soft habitus in deep-water coral 139 

ecosystems along the European margins. Fine crusts of H. dedritifera are found in the deep-140 

sea on top of rocks, large sponges (e.g. astrophorids) or coral rubble in the Mediterranean Sea 141 

(Longo et al., 2005), the Gulf of Cadiz, the Bay of Biscay, the Porcupine Seabight (Van Soest 142 

et al., 2007), the Rockall Bank (Van Soest and Lavaleye, 2005), along the Norwegian margin 143 
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and in the Greenland Sea. However, such wide geographical distribution, over a distance of 144 

more than 8,700 km (from the Mediterranean Sea to the Greenland Sea) raises the question 145 

whether H. dedritifera actually represents a distinct taxonomic unit or a complex of (cryptic) 146 

species. The two other Atlanto-Mediterranean species of the genus, Hexadella pruvoti 147 

Topsent, 1896 and Hexadella racovitzai Topsent, 1896 occur in shallow-water or in caves, 148 

although H. pruvoti has also been observed in deeper water (J. Vacelet, pers. communication). 149 

A subtle pink color distinguishes H. racovitzai from H. dedritifera and H. pruvoti, both bright 150 

yellow when alive and turning deep purple when taken out of the water (aerophobic reaction). 151 

Furthermore, the deep-sea H. dedritifera has larger choanocyte chambers than both H. 152 

racovitzai and H. pruvoti (Topsent, 1913). With such subtle differences, it remains unclear 153 

whether H. dedritifera and H. pruvoti, are two separated species or not.  154 

We used in the present study phylogenetic concordance criteria between the Folmer 155 

partition of the mitochondrial cytochrome c oxidase subunit I (COI) gene, the D3-D5 region 156 

of the nuclear large ribosomal subunit (28S rDNA) and the second intron of the nuclear ATP-157 

synthetase beta subunit gene (ATPS) to delineate the three European Hexadella species and to 158 

investigate the presence of cryptic species within this genus. The ATPS marker was tested for 159 

the first time for its applicability in sponge species delimitation.  160 

 161 

Material and methods 162 

Sampling 163 

Species of the genus Hexadella were collected at various locations throughout their 164 

distribution range (Table 1 and Fig. 1). Samples of H. dedritifera were collected with 165 

boxcores or Remote Operated Vehicle (ROV) during 7 deep-sea cruises (see Table 1). The 166 

deep-sea Mediterranean sample (180 m) collected in a canyon close to la Gabinière, Port-167 

Cros, France (CRO) could not be unambiguously identified because it formed some 168 
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degenerating crusts alive. Subsequent phylogenetic analyses (see below) revealed 169 

relationships to H. racovitzai. Three deep-sea specimens collected at (ION) location could not 170 

be unequivocally assigned to H. dedritifera due to a slight color variation when fixed in 171 

ethanol (dark green instead of dark violet). Hereafter, these three specimens will be referred to 172 

as Hexadella sp.. Samples were preserved in 100% ethanol and stored at room temperature 173 

until further processing. 174 

DNA extraction  175 

Total genomic DNA was extracted from sponge tissue using the DNeasy Blood and 176 

Tissue Kit (Qiagen) following the instructions of the manufacturer. The standard protocol was 177 

optimized by starting with a 25-minute centrifugation step in the Savant Speed Vacuum 178 

System to eliminate ethanol prior to lysis and increase final DNA yield. Amplifications by 179 

polymerase chain reaction (PCR) were performed in a total volume of 45 µl, with 5 µl 10 x 180 

PCR buffer (Qiagen), 1 µl MgCl2 (25mM), 1 µl dNTP (10mM), 0.5 µl of BSA (10µg/µl), 1 181 

µl of forward and reverse primer (25µM), 0.25 µl TopTaq DNA polymerase (Qiagen) and 1 182 

µl of template DNA and 34.25 µl of distilled water. 183 

Amplification of COI fragment 184 

PCR amplification of the 5’ partition (Folmer et al., 1994) of the cytochrome c oxidase 185 

subunit I (COI) mtDNA was performed using the degenerated primers from Meyer et al. 186 

(2005) dgLCO 5’-GGT CAA CAA ATC ATA AAGAYA TYG G -3’, and dgHCO 5’-TAA 187 

ACT TCA GGGTGA CCA AAR AAY CA-3’ with PCR cycling parameters: 94°C for 2 min, 188 

followed by  35 cycles of  (94°C for 40s, 42°C for 40s, 72°C for 60s) and a final extension at 189 

72°C for 10 min. The nuclear markers were investigated for phylogenetic congruence with the 190 

mitochondrial tree topology. Therefore, representatives of each COI haplotype were 191 

sequenced for both the nuclear ATPS and 28S rDNA. A variable number of individuals 192 
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(between 33% and 75%) were sequenced for each haplotype, depending on the haplotype 193 

frequency. 194 

Amplification of 28S rDNA fragment 195 

PCR primers RD3A 5’-GAC CCG TCT TGA AAC ACG A-3’ and RD5B2 5’- ACA 196 

CAC TCC TTA GCG GA-3’ (McCormack and Kelly, 2002) were used for amplification of 197 

the D3-D5 fragment of the 28S rDNA gene under a temperature regime of 3 min at 94 °C, 198 

followed by 35 cycles of 30 s at 94 °C, 20 s at 45 °C, 1 min at 72 °C and a final elongation of 199 

10 min at 72 °C. Because PCR-amplification of some individuals was problematic, we 200 

designed more specific forward and reverse primers Hex28F (5’-CCG AAC AGG GTG AAG 201 

CCA GG-3’) and Hex28R (5’-TTACA CAC TCC TTA GCG G-3’) and used the same PCR 202 

cycle conditions as described above.  203 

Amplification of ATPS fragment 204 

A fragment of 235 bp of the nuclear ATPS was amplified using the sponge specific 205 

primers ATPSb_Ph_Fwd 5’-TGT CTT GGA AAA GGA AGG ATC AAA GG-3’ and 206 

ATPSb_Ph_Rev: 5’-CGT TCA TTT GAC CAT ACA CCA GCG-3’ (Bentlage and Wörheide, 207 

2007) and the following cycling parameters: 3 min at 94°C, then 35 cycles of (94°C for 45s, 208 

50°C for 45s, and 72°C for 45s) and a final elongation of 10 min at 72°C. To obtain the 209 

largest possible fragment of the flanking exons of the ATPS gene (Bentlage and Wörheide, 210 

2007) and to facilitate verification by BLAST search (Altschul et al., 1990), the degenerated 211 

exon primed intron crossing (EPIC) primers ATPSBF1/ ATPSBR1 (Jarman et al., 2002) were 212 

used on eight random specimens. They yielded a bigger fragment of 295 bp containing 123 bp 213 

(73 bp at the 5’ extremity and 50 bp at the 3’ extremity) of the exon sequence, flanking the 214 

phase 0-intron that follows the GT-AT rule. PCR cycling conditions included 2 min at 94°C, 215 

35 cycles of 94°C for 20 s, 55°C for 60 s, and 72°C for 50 s, and a final extension step at 216 
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72°C for 10 min. These eight EPIC PCR products were checked for identity with the shorter 217 

fragments amplified with the sponge specific primers and their homology with sponge 218 

sequences was investigated using a BLAST similarity search (Altschul et al., 1990) with the 219 

sequences published by Wörheide and colleagues (2008). 220 

Putative different nuclear intron copies within individuals require the ATPS marker to 221 

be treated cautiously, and to resolve the two alleles for analyses at the population-level. In the 222 

present study, where the nuclear gene ATPS is used for taxonomic and phylogenetic purposes, 223 

chromatograms of both forward and reverse sequences were checked for length and sequence 224 

variants. No length variation was observed within individuals and at most three positions out 225 

of 235 bp (representing a maximum ambiguity of 1.3%) showed double peaks in the 226 

chromatogram. These ambiguous positions were encoded using the IUPAC ambiguity code 227 

(Cornish-Bowden, 1985) and were insignificant for the outcome, as there were too many other 228 

variable sites, which were unambiguous. 229 

PCR product processing and sequencing 230 

PCR products were loaded onto a 1% agarose gel to check the size of the amplified 231 

product. The PCR products were then sequenced directly in both directions through a Perkin-232 

Elmer ABI 3130 capillary DNA sequencer. PCR products were purified using exonuclease I, 233 

E. Coli (20 U μl
-1

; Fermentas) and Calf Intestine Akaline Phosphate (CIAP) (1 U μl
-1

; 234 

Fermentas). Sequence files were read and assembled using the SeqMan software (Lasergene). 235 

Because of the enhanced chance of amplifying symbionts or ingested DNA templates in 236 

encrusting sponges, sequences were verified for their poriferan origin by BLAST searches 237 

against the GenBank database (http://blast.ncbi.nlm.nih.gov/BLAST/) and with a cladistic 238 

tree-reconstruction as described in Erpenbeck et al. (2002).  239 

http://blast.ncbi.nlm.nih.gov/BLAST/
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All sequences are deposited in the GenBank nucleotide sequence database under 240 

accession numbers XXXX to XXXX. (Accession numbers will be provided upon manuscript 241 

acceptance). 242 

Sequence alignment and phylogenetic analyses  243 

Nucleotide data of COI, 28S and ATPS fragments were used for phylogenetic 244 

analyses. Alignments were performed using the multiple alignment software MAFFT (Katoh 245 

et al., 2002) at http://www.ebi.ac.uk/Tools/mafft/index.html. As outgroups, we included 246 

sequences from Aplysina fistularis (AY561987 and AY561864) and Porphyria flintae 247 

(Erpenbeck et al, unpublished), from the closely related family Aplysinidae and 248 

Aplysinellidae respectively. Due to high evolutionary rates, ATPS intron sequences obtained 249 

from closely related Verongida species used as outgroup were unalignable. Therefore 250 

midpoint rooting was used in the phylogenetic reconstruction of the ATPS fragment.  251 

Phylogenetic reconstructions were performed under Maximum Likelihood (ML) and 252 

Bayesian inference (BI) criteria on each of the 28S, COI and ATPS nucleotide datasets. BI 253 

analyses were performed with MrBayes 3.1.2 (Ronquist and Huelsenbeck, 2003) under the 254 

best-fit evolutionary model estimated for each independent gene under the Akaike 255 

Information Criterion (AIC) with MrModeltest 1.1 (Nylander, 2002). The models selected by 256 

AIC were TVM+I+G for the COI partition, HKY+G for the ATPS partition and K80+I for the 257 

28S rDNA partition. Four Markov chains were run for 1 million generations and sampled 258 

every 1,000 generations. The remaining trees after a burnin of 25% of sampled trees were 259 

used to generate a 50% majority rule consensus tree. Only posterior probabilities >95% were 260 

considered to significantly support clades. Phylogenetic relationships using the ML criterion 261 

were estimated with PAUP* 4.0b10 (Swofford, 2002) under the best-fitting evolutionary 262 

model estimated for each independent gene using the Akaike Information Criterion (AIC) 263 

with Modeltest 3.06 (Posada and Crandall, 1998). ML trees were computed using heuristic 264 

http://www.ebi.ac.uk/Tools/mafft/index.html


11 

 

searches with 100 replicates of random taxon addition sequence and tree bisection and 265 

reconnection (TBR) branch swapping. Nodal support was estimated with a bootstrap 266 

procedure computed after 10,000 replicates of heuristic search. Bootstrap values >80% were 267 

considered high enough to support clades in ML reconstructions. 268 

A partition homogeneity test was conducted using PAUP (Swofford, 2002) to 269 

statistically compare the congruence between all gene trees. When data were found to be 270 

congruent, gene partitions were combined for specimens from which the three sequences were 271 

available. The combined dataset was analyzed using both Bayesian (BI) and Maximum 272 

likelihood (ML) inference criteria. Separate substitution models corresponding to data 273 

partitions were used for the concatenated data set in BI whereas a new evolutionary model 274 

was estimated in ML.  275 

Uncorrected p-distances between clades for the COI, ATPS and 28S gene fragments 276 

were calculated using MEGA 4.0 (Tamura et al., 2007).  277 

 278 

Results 279 

mtDNA COI dataset  280 

The resulting dataset comprised 46 sequences and 11 different haplotypes, with 657 281 

nucleotides (81 variable, 45 of which parsimony informative). We observed 7 non-silent 282 

mutations in the COI amino-acid dataset which all resulted from a change in the first codon-283 

position. Hexadella species formed a well supported monophyletic group, with high Bayesian 284 

posterior probabilities and ML bootstrap support (100/100) (Fig. 2). Hexadella sp. was clearly 285 

divergent from the other Hexadella specimens (Seq1). Three highly supported clades 286 

indicated that only H. racovitzai was monophyletic (clade H2). Clade H2 contained all H. 287 

racovitzai specimens, with representatives from the Mediterranean Sea (mam, ban), and the 288 
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Atlantic (gor, ire, eng) sharing a common haplotype. Two specimens from the Mediterranean 289 

Sea (mam and the deep-sea sample CRO) differed in 16 bp from the previous haplotype. 290 

Hereafter, the CRO specimen will be referred to as H. racovitzai. Clade H1 comprised 291 

specimens identified as H. pruvoti from Monaco and Marseille (mam) and H. dedritifera from 292 

the Ionian Sea (ION), the Bay of Biscay (BIS), and from the Irish margin (D23ROC). The two 293 

haplotypes differed by only a single base mutation. The third well supported clade (H3) 294 

corresponded to the deep-sea species H. dedritifera from the North East Atlantic (NEA), 295 

including samples from the Irish (ROC), the Scottish (MIN), and the Norwegian margin 296 

(BER, ROS) as well as from the Greenland Sea (GRE). Within clade H3 some substructuring 297 

was observed, with a highly supported Irish-Scottish-Norwegian subclade. Clearly, H. 298 

dedritifera from clade H3 is highly divergent from H. dedritifera from clade H1. Similarly, H. 299 

pruvoti specimens from the Gorringe Bank (P67gor, P73gor) located off the southwest coast 300 

of Portugal (hereafter Seq2) were clearly divergent from the H. pruvoti specimens occurring 301 

in the Mediterranean Sea (H1).  302 

Genetic divergence values between the three supported COI clades (H1-3) and the two 303 

divergent sequences (Seq1, 2) ranged from 3.5 % to 6.6 % (uncorrected p-distance). 304 

Surprisingly, genetic variation within H1 containing specimens from the shallow-water H. 305 

pruvoti and the deep-sea H. dedritifera was very low (0.5 %) while genetic divergence 306 

between specimens morphologically identified as H. dedritifera (H1 and H3) were much 307 

higher (4.3 %). In addition, genetic divergence between specimens identified as H. pruvoti 308 

(H1 vs. Seq2) was as high as 3.5 % (Table 2).  309 

ATPS dataset  310 

The resulting dataset comprised 33 sequences with 235 nucleotides (82 variable, 42 of 311 

which parsimony informative), collapsed into 11 different haplotypes unambiguously 312 
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alignable. The three clades (H1-3), previously detected with COI, were also recovered with 313 

high Bayesian posterior probabilities and ML bootstrap support in the analysis of the ATPS 314 

intron (Fig. 3). The deep-sea H. dedritifera specimens from Clade H1 now formed a well 315 

supported subclade (99/96), while the H. pruvoti specimens from the Marseille and Monaco 316 

regions (mam) differed by 15 to 19 bp from this subclade.  H2 was shown as a subclade of a 317 

larger clade now including the Ionian Hexadella sp. sequences (Seq 1). This subclade (H2) 318 

contained again all H. racovitzai specimens, with the deep-sea H. racovitzai specimen from 319 

Port-Cros (CRO) differing from the remaining specimens by 9 bp. Clade H3 contained the 320 

deep-sea H. dedritifera specimens from the Irish (ROC), the Scottish (MIN) and the 321 

Norwegian margins (BER, ROS), represented by a single haplotype and the samples from 322 

Norway (ROS), and the Greenland Sea (GRE), represented by another haplotype differing 3 323 

bp from the previous. The H. pruvoti specimens from the Gorringe Bank (Seq2) were again 324 

highly divergent from the H. pruvoti samples from the Mediterranean Sea (H1). 325 

The genetic divergence between the three supported ATPS clades (H1-3) and the two 326 

divergent sequences (Seq1, 2) were about twofold the values found with COI, and ranged 327 

from 9.6 % to 21.3 %.  Intra-clade variation within H1 was low (3.3 %) supporting the lack of 328 

genetic divergence between the shallow-water H. pruvoti specimens (P1mam, P2mam, 329 

P3mam) and the deep-sea H. dedritifera specimens in the Ionian Sea, the Bay of Biscay (BIS) 330 

and the Rockall Bank (ROC). Similarly, the low variation observed within H3 (1.3%) 331 

suggests a lack of genetic divergence between the Irish, the Scottish and the Norwegian 332 

margins. The high genetic divergence values between H1 and H3 (9.6 %) and between H1 and 333 

Seq 2 (16.2%) confirmed the occurrence of sharp genetic breaks within H. dedritifera and 334 

within H. pruvoti, respectively. 335 

 336 
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28S rDNA dataset  337 

The resulting dataset comprised 33 sequences with 411 characters (9 variable, 3 of 338 

which parsimony informative), collapsing into 10 different haplotypes. Phylogenetic 339 

resolution in the nuclear ribosomal 28S gene was clearly lower than in the two other markers, 340 

but species of the genus Hexadella were nevertheless confirmed as a monophyletic group 341 

(Fig. 4), with high Bayesian posterior probabilities and high ML bootstrap support (100/99). 342 

This marker was, however, unable to discriminate the different Hexadella species. For 343 

instance, H. pruvoti (mam) and H. dedritifera specimens from the Bay of Biscay (BIS), 344 

Scotland (MIN) and Norway (ROS, BER) were shown as a single haplotype. Values of 345 

sequence divergence (uncorrected p-distance) were about 10-fold smaller for 28S rDNA than 346 

for the COI and 25-fold smaller than for ATPS (data not shown).  347 

Concatenated COI-ATPS-28S dataset 348 

A partition homogeneity test conducted on COI and ATPS sequences (p=0.11), on 349 

COI and 28S sequences (p=0.25) and on ATPS and 28S sequences (p=0.68) indicated that 350 

data partitions were significantly congruent and therefore sequences of the three markers were 351 

concatenated for further analyses. 352 

The resulting dataset comprised 25 sequences, with 1303 nucleotides. Hexadella spp. 353 

were confirmed as a monophyletic group, with high Bayesian posterior probabilities and high 354 

ML bootstrap support (100/100). The three clades (H1-3) and the two divergent sequences 355 

(Seq1, 2) were recovered in both analytical methods with higher support from the combined 356 

dataset than from the individual marker’s datasets. H. dedritifera from clade H3 is confirmed 357 

in the concatenated dataset as highly divergent from H. dedritifera from clade H1. Similarly, 358 

Seq 2 is confirmed in the combined dataset as clearly divergent from the H. pruvoti specimens 359 

occurring in the Mediterranean Sea (H1) (Fig. 5).  360 

 361 
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Discussion 362 

Our results demonstrate for the first time the presence of deeply divergent lineages in a 363 

major group of benthic marine invertebrates associated with deep-water coral ecosystems 364 

along the European margin. The deep-sea species H. dedritifera is polyphyletic, as shown by 365 

phylogenetic reconstructions of COI, ATPS, and concatenated data which revealed two highly 366 

divergent clades H1 vs H3 (uncorrected p-distances of 4.3% in COI and 9.6% in ATPS). No 367 

COI threshold was defined to separate Evolutionary Significant Units because great 368 

differences in rates of evolution between sponges groups were reported (Solé-Cava and 369 

Boury-Esnault, 1999; Cárdenas et al., 2007). Nevertheless, the genetic divergence values 370 

observed between H1 and H3 for ATPS are in the range of the maximum p-distance values 371 

reported in previous molecular analyzes between sponge species (Wörheide et al., 2008). The 372 

material from the Irish, the Scottish, the Scandinavian margins and the Greenland Sea in the 373 

NEA (Clade H3) probably represents H. dedritifera sensu Topsent, 1913 because of its origin 374 

close to Bear Island (Norway), the type locality. Following this, H. dedritifera specimens 375 

from clade H1 should be called Hexadella cf. dedritifera until proper redescription.  376 

At the same time, H. pruvoti and H. cf. dedritifera, both bright-yellow colored, form a 377 

strongly supported monophyletic clade (H1). The low intra-clade variation within H1 in CO1 378 

and in ATPS (maximum uncorrected p-distance 0.5% and 3.3% respectively) stresses the lack 379 

of genetic divergence between the shallow-water H. pruvoti specimens and the deep-sea H. cf. 380 

dedritifera specimens in the Mediterranean Sea. We may consider that one single species, 381 

H.pruvoti, occupies a wide bathymetric range in the Mediterranean Sea. However, 382 

morphological discriminating criteria such as choanocyte chamber size or incorporation of 383 

foreign material need to be reassessed, in our opinion, before synonymizing both species.  384 

Besides, the results highlight the occurrence of significantly divergent lineages of H. 385 

dedritifera: H3 vs. D23ROC (H1) within the Irish cold-water coral reefs (ROC), indicating 386 
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independent evolutionary history of deep-sea sponges in the same cold-water coral ecosystem. 387 

Similarly, a putatively new Hexadella species (Seq 1) associated with the deep-sea reefs in the 388 

Ionian Sea was found to diverge from the Hexadella cf. dedritifera with genetic variation 389 

values of about 3.6 % in the COI fragment and 13.1 % in the ATPS fragment. This suggests 390 

that the deep-sea coral ecosystems are not only a source of diversity, but that these habitats 391 

have accumulated species and lineages over time.  392 

Despite their morphological similarity, the shallow-water individuals from the Atlantic 393 

Gorringe Bank (Seq 2) were well differentiated in both the COI and the ATPS (maximum 394 

uncorrected p-distance around 3.5 % and 16.2% respectively) from the Mediterranean Sea H. 395 

pruvoti (Clade H1). The type locality of this species is Banyuls (France, Mediterranean Sea, 396 

Topsent, 1896), and therefore specimens from the Gorringe Bank most likely represent a new 397 

species, hereafter called Hexadella cf. pruvoti, that will require proper taxonomic description.  398 

In contrast to H. dedritifera and H. pruvoti, the specimens of H. racovitzai from the 399 

Mediterranean Sea (mam, ban, CRO), the Atlantic Gorringe Bank (gor) and the United 400 

Kingdom area (ire, eng) were found to be genetically closely related (monophyletic). The 401 

deep-sea specimen (CRO) was the first H. racovitzai reported from the deep-sea and was 402 

shown as a divergent sequence in both the ATPS and the combined dataset. Nevertheless, 403 

more individuals per populations would be necessary to unravel the intra-specific diversity of 404 

this species, and to elucidate possible cryptic speciation patterns within the species. 405 

The mitochondrial cytochrome c oxidase subunit I (COI) gene and the D3-D5 region 406 

of the nuclear large ribosomal subunit (28S rDNA) have been repeatedly used in sponge 407 

systematics (Erpenbeck et al., 2002; Duran and Rützler, 2006; Erpenbeck et al., 2006; Wulff, 408 

2006; Blanquer and Uriz, 2007). The second intron of the nuclear ATP-synthetase beta 409 

subunit gene (ATPS) has only recently been shown to provide a high resolution at the intra-410 

specific level in sponge evolutionary studies (Bentlage and Wörheide, 2007; Wörheide et al., 411 
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2008). Although mitochondrial genes are maternally inherited and follow different 412 

evolutionary pathways than their nuclear counterparts (Ballard and Whitlock, 2004) we found 413 

a topological congruency between the trees obtained with COI and the ATPS. Besides, the 414 

ATPS marker showed more than two-fold higher substitution rates than the mitochondrial 415 

one. This analysis of ATPS sequences proved the intron marker very useful for taxonomic 416 

purposes within the genus Hexadella and suggested the use of ATPS of great interest to 417 

complement mitochondrial markers in sponge taxonomic studies. Nevertheless, two ATPS 418 

haplotypes instead of five in the COI dataset were shown in clade H3, possibly because a 419 

highly variable position of the ATPS partition showed some double peaks in the 420 

chromatogram and could not be resolved. It suggests that the ATPS marker is of great 421 

potential for future phylogeographic studies within Hexadella species and for deeper insights 422 

into gene flow patterns, provided that the two alleles of the intron are retrieved. As expected, 423 

the 28S (D3-D5) gene fragment showed the lowest resolution (max. 1.8% pairwise genetic 424 

distance). Our results show that this gene partition alone is inappropriate to address the 425 

phylogenetic relationships among the studied material. Our 28S partition being only 411 bp 426 

long, the use of a longer fragment might increase the resolution of the marker. Or one could 427 

use the 28S (D1-D2) partition instead, shown to evolve at a slightly higher rate than COI in 428 

Geodiidae sponges (Cárdenas et al., 2009). Despite high distances, COI exhibited a low 429 

resolution at the deeper phylogenetic nodes among the different Hexadella spp.. The observed 430 

polytomy might be the result of either insufficient sampling of taxa and/or data (i.e. soft 431 

polytomy). Given the vastness of ocean margins and the wide distribution of sponge habitats, 432 

the existence of other undiscovered species remains very likely. 433 

Interestingly, no single polymorphic site was observed in the COI sequences between 434 

the H1 specimens from the Ionian Sea (ION), the Bay of Biscay (BIS) and the D23ROC 435 

specimen (ROC), and only 3% genetic divergence was observed in the ATPS dataset for those 436 
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H. cf. dedritifera. This very low genetic divergence values across more than 5200 km (Ionian 437 

Sea-Rockall Bank) may represent the first genetic evidence suggesting the connection of 438 

deep-water coral associates from the Mediterranean Sea up to the Irish margin. This 439 

connection could be the result from a restricted gene flow between intermediate (unsampled) 440 

localities. Reveillaud et al. (2008) suggested the Biscay canyons and slope to presumably act 441 

as a semi-continuous habitat for larval dispersal of stony corals, while low gene flow has 442 

already been reported in sponges (e.g., Duran et al. 2004). Furthermore, it has been recently 443 

shown in laboratory conditions (Maldonado, 2009) that larvae in the order Verongida 444 

(Aplysina aerophoba) can swim for seven days before settling, indicating potential great 445 

dispersal phase in at least some aspiculate demosponges. This is also in accordance with the 446 

sporadic gene flow described for the coral species Lophelia pertusa between reefs along the 447 

similar NEA continental margin (Le Goff-Vitry et al., 2004; Le Goff-Vitry and Rogers, 2005). 448 

A presumably post-glacial deep-sea colonization event from the Mediterranean to the high-449 

latitude reefs may possibly be explained by the process of species emigration in association 450 

with the warm saline Mediterranean Outflow Water (MOW) mass (Huvenne et al., 2005; De 451 

Mol et al., 2005), which can be identified throughout a large part of the North Atlantic as far 452 

as the Porcupine Seabight, south-west of Ireland (Millot et al., 2006), at depths of 800 to 1200 453 

m. Paleoecological analyses also suggest that recent glaciations have forced some fauna 454 

towards more southern refugia such as the Mediterranean Sea, the region off NW Africa, and 455 

the mid-Atlantic ridge beyond the southern limit of the ice sheets, where the oldest coral U/th 456 

datings are observed (Schröder-Ritzrau et al., 2005). From these putative speciation centers, 457 

post-glacial currents may have driven cold-water corals and associated fauna towards northern 458 

latitudes (Roberts et al., 2006). Given these two oceanographical and paleoecological 459 

hypothesis, it is likely that the colonization pattern for the deep-sea H. cf. dedritifera results 460 

from a post-glacial expansion from the Mediterranean Sea into the North East Atlantic. The 461 
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co-occurrence in the Mediterranean Sea of two highly divergent deep-sea species H. cf. 462 

dedritifera (H1) and Hexadella sp. (Seq 1) further reinforces the putative role of this region as 463 

an important glacial refugium and speciation center. 464 

Similarly, the well-supported clade H3 including specimens from the Irish, the 465 

Scottish, the Norwegian margins and the Greenland Sea suggests the connection of the 466 

northern latitudes specimens. A single COI haplotype shared between the Irish, the Scottish 467 

and the Norwegian margin can raise some discussion about its significance. However a single 468 

ATPS haplotype shared between these geographically distant regions, taking into account that 469 

one critical mutational step could not be resolved due to the absence of allele resolution in this 470 

study, is suggesting a putative gene-flow between these reefs. Further sampling of H. 471 

dedritifera from northern populations and exploration of each ATPS allele will be needed to 472 

fully understand the putative ongoing gene-flow within this species. 473 

 474 

Conclusion 475 

This phylogenetic study illustrates the evolutionary distinctiveness of different 476 

lineages within the genus Hexadella in both shallow-water environments and deep-water coral 477 

systems. Before this study, three species of Hexadella were described from the Northeast 478 

Atlantic and Mediterranean Sea: H. dedritifera, H. pruvoti and H. racovitzai. Our 479 

phylogenetic analyses, based on the congruence of three independent nuclear and 480 

mitochondrial markers have revealed three new cryptic species: Hexadella cf. dedritifera 481 

(maybe a junior synonym of H. pruvoti), H. cf. pruvoti (from the Gorringe Bank) and 482 

Hexadella sp. (at the moment only known from a deep-sea coral bank in the Ionian Sea). Now 483 

that they were revealed by molecular markers, an ‘a posteriori’ search of diagnostic 484 

phenotypic characters and description of these new cryptic species is the next step for 485 
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taxonomists (Blanquer and Uriz, 2008). Sharp genetic breaks as well as connections in the 486 

deep-sea species H. dedritifera and Hexadella cf. dedritifera confirm that speciation centers 487 

provide opportunities for the evolution and diversification of taxa that subsequently colonize 488 

other regions. These results stress the need to protect multiple lineages of cold-water coral 489 

reefs. This important aspect in the conservation of deep-sea resources will ensure the 490 

maintenance of various sources of biodiversity.  491 
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Figures and tables 785 

Table 1. Hexadella specimens analyzed in the present study. Information regarding the 786 
sampling (region, localities, sampling method, coordinates, depth), number of individuals 787 

studied for each marker, and number of different haplotypes (No. h) is provided. Sampling 788 
location abbreviations are given in uppercase letters for deep-sea samples (>100m) and in 789 
lowercase letters for shallow-water samples.   790 
 791 

Table 2. Genetic divergence (uncorrected p-distance) between terminal clades (below 792 
diagonal) and between individuals within terminal clades (on diagonal) for mtDNA (COI) and 793 

nuclear (ATPS intron) markers. The different clades are presented in Figs. 2-5.  794 
 795 
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Fig 1. Map showing sampling localitions of H. dedritifera (star shape), H. pruvoti (round 796 
shape) and H. racovitzai (square shape). For abbreviations of sampling localities see Table1. 797 
Map was provided by the project Hotspot Ecosystem Research and Man's Impact on 798 
European Seas (HERMIONE). 799 

 800 

Fig 2. Strict consensus tree of the mtDNA COI fragment. Bayesian posterior probabilities 801 
(when > 95%) and the ML bootstrap values (when >80%) are indicated above and below 802 
branches, respectively. For information on the specimens see Table 1.  803 

 804 
Fig 3. Strict consensus tree of the nuclear ATPS intron. Bayesian posterior probabilities 805 

(when > 95%) and the ML bootstrap values (when >80%) are indicated above and below 806 
branches, respectively. The tree is midpoint rooted. For information on the specimens see 807 
Table 1. 808 
 809 
Fig 4. Strict consensus tree of the rDNA 28S fragment. Bayesian posterior probabilities (when 810 

> 95%) and the ML bootstrap values (when >80%) are indicated above and below branches, 811 
respectively. For information on the specimens see Table 1. 812 
 813 
Fig 5. Strict consensus tree of the concatenated dataset (COI-ATPS-28S). Bayesian posterior 814 

probabilities (when > 95%) and the ML bootstrap values (when >80%) are indicated above 815 
and below branches, respectively. For information on the specimens see Table 1. 816 
 817 
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Species Region Localities Deep-sea cruise, shallow water sampling (collector) or Museum Lat.[N] Lon. Depth[m] COI No.h ATPS No.h 28S No.h

H. dedritifera  (D) North East Atlantic Ireland, Rockall Bank  (ROC) Moundforce 2004 (R/V Pelagia ), BIOSYS/HERMES 2005 (R/V Pelagia ) 55,45/55,50 -15,78/-16,11 575-773 7 3 7 2 4 4

H. dedritifera  (D) North East Atlantic Norway, Røst reef  (ROS) ARK-XXII/1a 2007 (R/V Polarstern ) 66,96/67,50 9,42/11,13 319-345 7 4 6 3 4 2

H. dedritifera  (D) Mediterranean Sea Italy, Ionian Sea (ION) Medeco 2007 (R/V Pourquoi Pas?) 39,56/39,61 18,43/18,50 561-649 7 1 2 1 3 1

H. dedritifera  (D) North East Atlantic France, Bay of Biscay (BIS) Biscosystem 2008 (R/V Belgica  ) 48,90/48,91 -5,32/-5,33 676 3 1 2 1 3 1

H. dedritifera  (D) North East Atlantic Norway, Bergen (BER) ZMA (Zoological Museum of Amsterdam) 60,30 5,10 100 2 1 1 1 2 1

H. dedritifera  (D) North East Atlantic Scotland, Mingulay (MIN) BIOSYS/HERMES 2006 (R/V Pelagia ) 56,82 -7,37/7,39 128-137 2 1 2 1 2 1

H. dedritifera  (D) North East Atlantic Greenland Sea, Schultz  Seamount (GRE) H2DEEP 2008 (R/V G.O.Sars ) 73,95 7,71 688 2 1 1 1 2 1

H. pruvoti  (P) North East Atlantic  South Portugal, Gorringe Bank (gor) Scuba diving (Joana Xavier) 36,51/36,71 -11,16/-11,56 39-42 2 1 2 1 1 1

H. pruvoti  (P) Mediterranean Sea France, 3PP coral caveMarseille-Monaco (mam) Scuba diving ( Thierry Perez ) 43,21/43,73 5,33/7,42 15-20 3 1 3 1 2 1

H. racovitzai  (R) Mediterranean Sea France, 3PP coral cave Marseille-Monaco (mam) Scuba diving ( Thierry Perez ) 43,21/43,73 5,33/7,42 15-20 3 2 1 1 2 1

H. racovitzai  (R) Mediterranean Sea France, Banyuls (ban) ZMA (Zoological Museum of Amsterdam) 42,50 3,13 35 1 1 1 1 1 1

H. racovitzai  (R) Mediterranean Sea France, Port Cros (CRO) MedSeaCan (R/V Minibex ) 43,00 6,39 180 1 1 1 1 1 1

H. racovitzai  (R) North East Atlantic  South Portugal, Gorringe Bank (gor) Scuba diving ( Joana Xavier ) 36,51 -11,56 32 1 1 1 1 1 1

H. racovitzai  (R) North East Atlantic England, Plymouth, Outer Heybrook Bay  (eng) Scuba diving (Bernard Picton and Claire Goodwin) 50,31 -4,12 30 1 1 1 1 1 1

H. racovitzai  (R) North East Atlantic Northern Ireland , Rathlin Island (ire) Scuba diving (Bernard Picton and Claire Goodwin) 55,29 -6,25 30 1 1 1 1 1 1

Hexadella  sp. Mediterranean Sea Italy, Ionian Sea (ION) Medeco 2007 (R/V Pourquoi Pas?) 39,61 18,50 648 3 1 1 1 3 1

Table1



COI H3 H1 Seq2 Seq1 H2

H3 0.012

H1 0.043 0.005

Seq2 0.057 0.035 0.000

Seq1 0.060 0.036 0.054 0.000

H2 0.061 0.049 0.052 0.066 0.029

ATPS H3 H1 Seq2 Seq1 H2

H3 0.013

H1 0.096 0.033

Seq2 0.154 0.162 0.000

Seq1 0.13 0.131 0.192 X

H2 0.147 0.151 0.213 0.137 0.025

Table2


