
Memoizing a Monadic Mixin DSL

Pieter Wuille1, Tom Schrijvers2, Horst Samulowitz3, Guido Tack1, and Peter
Stuckey4

1 Department of Computer Science, K.U.Leuven, Belgium
2 Department of Applied Mathematics and Computer Science, UGent, Belgium

3 IBM Research, USA
4 National ICT Australia (NICTA) and University of Melbourne, Victoria, Australia

Abstract. Modular extensibility is a highly desirable property of a
domain-specific language (DSL): the ability to add new features without
affecting the implementation of existing features. Functional mixins (also
known as open recursion) are very suitable for this purpose.
We study the use of mixins in Haskell for a modular DSL for search
heuristics used in systematic solvers for combinatorial problems, that
generate optimized C++ code from a high-level specification. We show
how to apply memoization techniques to tackle performance issues and
code explosion due to the high recursion inherent to the semantics of
combinatorial search.
As such heuristics are conventionally implemented as highly entangled
imperative algorithms, our Haskell mixins are monadic. Memoization of
monadic components causes further complications for us to deal with.

1 Application domain

Search heuristics often make all the difference between effectively solving a com-
binatorial problem and utter failure. Heuristics enable a search algorithm to
become efficient for a variety of reasons, e.g., incorporation of domain knowl-
edge, or randomization to avoid heavy tailed runtimes. Hence, the ability to
swiftly design search heuristics that are tailored towards a problem domain is
essential to performance improvement. In other words, this calls for a high-level
domain-specific language (DSL).

The tough technical challenge we face when designing a DSL for search heuris-
tics, does not lie in designing a high-level syntax; several proposals have already
been made (e.g., [10]). What is really problematic is to bridge the gap between
a conceptually simple specification language (high-level and naturally compo-
sitional) and an efficient implementation (typically low-level, imperative and
highly non-modular). This is indeed where existing approaches fail; they restrict
the expressiveness of their DSL to face up to implementation limitations, or they
raise errors when the user strays out of the implemented subset.

We overcome this challenge with a systematic approach that disentangles
different primitive concepts into separate modular mixin components, each of
which corresponds to a feature in the high-level DSL. The great advantage of

s ::= prune
prunes the node

| base search(. . .)
label

| let(v, e, s)
introduce new global variable v with initial
value e, then perform s

| assign(v, e)
assign e to variable v and succeed

| and([s1, s2, . . . , sn])
perform s1, on success start s2 otherwise fail, . . .

| or([s1, s2, . . . , sn])
perform s1, on termination start s2, . . .

| post(c, s)
perform s and post a constraint c at every node

Fig. 1. Syntax of Search Heuristics DSL

mixin components to provide a semantics for our DSL is its modular extensibility.
We can add new features to the language by adding more mixin components.
The cost of adding such a new component is small, because it does not require
changes to the existing ones.

The application under consideration is heuristics for systematic tree search
in the area of Constraint Programming (CP), but the same issues apply to other
search-driven areas in the field of Artificial Intelligence (AI) and related areas
such as Operations Research (OR). The goal is generating tight C++ code for
doing search from our high-level DSL. The focus however lies in the combination
of using Haskell combinators for expressing strategies, open recursion to allow
modular extension and monads for allowing stateful behaviour to implement
a code-generation system. Further on, we explain how to combine this with
memoization to improve generation time as well as size of the generated code.

2 Brief DSL Overview

We provide the user with a high-level domain-specific language (DSL) for ex-
pressing search heuristics. For this DSL we use a concrete syntax, in the form of
nested terms, that is compatible with the annotation language of MiniZinc [9],
a popular language for modeling combinatorial problems.

The search specification implicitly defines a search tree whose leaves are so-
lutions to the given problem. Our implementation parses a MiniZinc model,
extracts the search specification expressed in our DSL and generates the corre-
sponding low-level C++ code for navigating the search tree. The remainder of
the MiniZinc model (expressing the actual combinatorial problem) is shipped
to the Gecode library [7], a state-of-the-art finite domain constraint solver. The

2

search code interacts with the solver at every node of the search tree to deter-
mine whether a solution or dead end has been reached, or whether to generate
new child nodes for further exploration.

2.1 DSL Syntax

The DSL’s expression language comprises the typical arithmetic and comparison
operators and literals that require no further explanation. Notable though is the
fact that it allows referring to the constraint variables and parameters of the
constraint model.

The DSL’s search heuristics language features a number of primitives, listed
in the catalog of Fig. 1, in terms of which more complex heuristics can be defined.
The catalog consists of both basic heuristics and combinators. The former define
complete (albeit very basic) heuristics by themselves, while the latter alter the
behavior of one or more other heuristics.

There are two basic heuristics: prune, which cuts the search tree below the
current node, and the base search strategies, which implement the labeling (also
known as enumeration) strategies. We do not elaborate on the base search here,
because this has been studied extensively in the literature. While only a few
basic heuristics exist, the DSL derives great expressive power from the infinite
number of ways in which these basic heuristics can be composed by means of
combinators.

The combinator let(v, e, s) introduces a new variable v, initialized to the value
of expression e, in the sub-search s, while assign(v, e) assigns the value of e to
v and succeeds. The and-sequential composition and([s1, . . . , sn]) runs s1 and at
every success leaf runs and([s2, . . . , sn]). In contrast, or([s1, . . . , sn]) first runs s1
in full before restarting with or([s2, . . . , sn]).

Finally, the post(c, s) primitive provides access to the underlying constraint
solver, posting a constraint c at every node during s. If s is omitted, it posts the
constraint and immediately succeeds.

As an example, this is how branch-and-bound — a typical optimization
heuristic — can be expressed in the DSL:

let(best,maxint, post(obj < best, and([base search(. . .), assign(best, obj)])))

let introduces the variable best, post makes sure the constraint obj < best is
enforced at each node of the search tree spawned by base search. Combining
it with assign using and causes the best variable to be updated after finding
solutions. Note that we refer to obj, the program variable being minimized.

3 Implementation

Starting from base searches and functions for combining them — as called by the
parser — a C++ AST is generated. After a simplification step, a pretty printer is
invoked to generate the actual source code. Both the initial parsing phase and
pretty printer are trivial and not discussed here.

3

3.1 C++ Abstract Syntax Tree

Before we discuss the code generator, we need to define the target language, a
C++ AST, which is partly given here:

data Stmt = Nop | Expr := Expr
| IfThenElse Expr Stmt Stmt | Stmt ; Stmt
| Call String [Expr] |While Expr Stmt
| ...

A number of convenient abbreviations facilitate building this AST, e.g.,

(#) = liftM ◦ (;)
if ′ = liftM2 ◦ IfThenElse

3.2 The Combinator stack

Based on the output of the parser, a data structure is built that represents the
search heuristic. The details of how this is represented will follow later, but in
general, a value of type Search will be used. Basic heuristics result immediately
in a Search, while combinators are modeled as functions that take one or more
Search values, and compute a derived one from that. Although conceptually this
is best modeled as a tree structure, with each subtree evaluating to a Search,
processing happens top-down, and only a single path through the combinator
tree is active at a given time. The list of combinators along this path will be
called the combinator stack. Figure 2 shows the combinator stack for the earlier
branch-and-bound example.

Fig. 2. Branch-and-bound combinator stack

4

3.3 The Code Generator

Inside Search structures, values of type Gen m will be built up. They contain a
number of hooks that produce the corresponding AST fragments.5.

As will be explained later, some combinators need to keep an own modifiable
state during code generation, so hooks must support side effects; hence Gen is
parametrized in a monad m.

data Gen m = Gen {initG :: m Stmt , bodyG :: m Stmt
, addG :: m Stmt , tryG :: m Stmt
, resultG :: m Stmt , failG :: m Stmt
, height :: Int }

The separate hooks correspond to several stages for the processing of nodes
in a search tree. Nodes are initialized with initG and processed using consecu-
tively bodyG, addG, and tryG. resultG is used for reporting solutions, and failG
for aborting after failure. The height field indicates how high the stack of com-
binators is.

The fragments of the different hooks are combined according to the following
template.

gen :: Monad m ⇒ Gen m → m Stmt
gen g = do init ← initG g

try ← tryG g
body ← bodyG g
return $ declarations

; init
; try
; While queueNotEmpty body

After emitting a number of variable declarations which we omit due to space
constraints, the template creates the root node in the search tree through initG,
and tryG initializes a queue with child nodes of the root. Then, in the main part
of the algorithm, nodes in the queue are processed one at a time with the bodyG

hook.

3.4 Code Generation Mixins

Instead of writing a monolithic code generator for every different search heuristic,
we modularly compose new heuristics from one or more components, each of
which corresponds to a constructor in the high-level DSL. Our code generator
components are implemented as (functional) mixins [2], where the result is a
function from Eval m to Eval m, which gets called with its own resulting strategy
as argument. The function argument in these mixins is comparable to the this
object in object-oriented paradigms.

5 See Section 3.4 for why we partition the code generation into these hooks

5

type Mixin a = a → a
type MGen m = Mixin (Gen m)

There are two kinds of mixin components: base components that are self-
contained, and advice components that extend or modify another component [6].
An alternative analogy for mixins, that includes multi-argument combinators,
is that of inheritance, where we distinguish self-contained “base classes” and
“class deltas“. The application of a class delta ∆ to a number of classes C̄ yields
a subclass ∆(C̄); this subclass is said to inherit from C̄. When C̄ consists of
more than one class, we speak of multiple inheritance.

Base Component Base searches are implemented as Gen m → Gen m functions
(shortened using a type alias to MGen m here), with fixpoint semantics. Through
lazy evaluation, we can pass the fully combined search as an argument back to
itself. Through this mechanism, we can make the base search’s hooks call other
hooks back at the top of the chain, as shown in the protocol overview shown in
Figure 3.

Fig. 3. Node processing protocol

The main example of a base component is the enumeration strategy baseM :

baseM :: Monad m ⇒ MGen m
baseM this =

6

Gen {initG = return Nop
, bodyG = addG this
, addG = constrain # tryG this
, tryG = let ret = resultG this

succ = if ′ isSolved ret doBranch
in if ′ isFailed (failG this) succ

, resultG = return Nop
, failG = return Nop
, height = 0}

The above code omits details related to posting constraints (constrain), checking
the solver status (isSolved or isFailed) and branching (doBranch). The details of
these operations depend on the particular constraint solver involved (e.g. finite
domain, linear programming, . . .); here we focus only on the search heuristics,
which are orthogonal to those details.

As we can see the base component is parametrized by this, the overall search
heuristic. This way, the baseM search can make the final call to bodyG redirect
to an addG on the top of the combinator-stack again, restarting the processing
top-down, but this time using addG instead of bodyG. A similar construct is used
for called tryG and resultG.

The simplest form of a search heuristic is obtained by applying the fix-point
combinator to a base component:

fix :: Mixin a → a
fix m = m (fix m)

search1 :: Gen Identity
search1 = fix baseM

Advice Component The mixin mechanism allows us to plug in additional advice
components before applying the fix-point combinator. This way we can modify
the base component’s behavior.

Consider a simple example of an advice combinator that prints solutions:

printM :: Monad m ⇒ MGen m
printM super = super {resultG = printSolution # resultG super

, height = 1 + height super }

where printSolution consists of the necessary solver-specific code to access and
print the solution. A code generator is obtained through mixin composition,
simply using (◦):

search2 :: Gen Identity
search2 = fix (printM ◦ baseM)

7

3.5 Monadic Components

In the components we have seen so far, the monad type parameter m has not
been used. It does become essential when we turn to more complex components
such as the binary conjunction and([g1, g2]).

The code presented at the end of this section shows a simplified and combina-
tor, for two Gen m structures with the same type m. It does require m to be an
instance of MonadReader Side, to store the current branch at code-generation
runtime. While some hooks simply dispatch to the corresponding hook of the
currently active branch, bodyG and resultG are more elaborate.

First of all, we also need to store the branch number at program runtime.
This is known at the time when the node is created, but needs to be restored
into the monadic state when activating it. We assume the functions store and
retrieve give access to a runtime state for each node, indexed with a field name
and the height of the combinator involved.

When the resultG hook is called — implying a solution for a sub-branch was
found — there are two options. Either the g1 was active, in which case both the
runtime state and the monadic state are updated to In2, and initG and tryG for
g2 are executed, which will possibly cause the node to be added to the queue,
if branching is required. When this new node is activated itself, its bodyG hook
will be called, retrieving the branch information from the runtime state, and
dispatching dynamically to g2. When a solution is reached after switching to g2,
resultG will finally call g2’s resultG to report the full solution.

data Branch = In1 | In2

type Mixin2 a = a → a → a
andM :: MonadReader Branch m ⇒ Mixin2 (Gen m)
andM g1 g2 = Gen {initG = store myHeight "pos" In1 # initG g1

, addG = dispatch addG

, tryG = dispatch tryG

, failG = dispatch failG
, bodyG = myBody
, resultG = myResult
, height = myHeight }

where parent = ask >>= λx → case x of
In1 → return g1
In2 → return g2

dispatch f = parent >>= f
myHeight = 1 + max (height g1) (height g2)
myBody = let pos = retrieve myHeight "pos"

br1 = local (const In1) (bodyG g1)
br2 = local (const In2) (bodyG g2)
in if ′ (pos =:= In1) br1 br2

myResult = do num ← ask
case num of

In1 → local (const In2) $

8

store myHeight "pos" In2

liftM2 (;) (initG g2) (tryG g2)
In2 → resultG g2

3.6 Effect Encapsulation

So far we have parametrized MGen with m, a monad type parameter. This pa-
rameter will have to be assembled appropriately from monad transformers to
satisfy the need of every mixin component in the code generator. Doing this
manually can be quite cumbersome. Especially for a large number of mixin com-
ponents with multiple instances of, e.g., StateT this becomes impractical. To sim-
plify the process, we turn to a technique proposed by Schrijvers and Oliveira [11]
to encapsulate the monad transformers inside the components.

data Search = ∀t2.MonadTrans t2 ⇒
Search {mgen :: ∀m t1.(Monad m,MonadTrans t1)⇒ MGen ((t1 B t2) m)

, run :: ∀m x .Monad m ⇒ t2 m x → m x }

To that end we now represent components by the Search type that was an-
nounced earlier, which packages the components behavior MGen with its side
effect t2. The monad transformer t2 is existentially quantified to remain hidden;
we can eliminate it from a monad stack with the run field. The hooks of the
component are available through the mgen field, which specifies them for an
arbitrary monad stack in which t2 is surrounded by more effects t1 above and
m below. Here t1 B t2 indicates that the focus rests on t2 (away from t1) for
resolving overloaded monadic primitives such as get and put , for which multiple
implementations may be available in the monad stack. We refer to [12,11] for
details of this focusing mechanism, known as the monad zipper.

An auxiliary function promotes a non-effectful MGen m to MSearch:

type MSearch = Mixin Search
mkSearch :: (∀m.Monad m ⇒ MGen m)→ MSearch
mkSearch f super =

case super of
Search {mgen = mgen, run = run } → Search {mgen = f ◦mgen

, run = run }

which we can apply for instance to baseM and printM .

baseS , printS :: MSearch
baseS = mkSearch baseM

printS = mkSearch printM

Similarly, we define mkSearch2 for lifting binary combinators like andM . It takes
a combinator for two Gen m’s, as well as a run function for additional monad
transformers the combinator may require, and lifts it to MSearch2 (implemen-
tation omitted).

9

type MSearch2 = Mixin2 Search

andS :: MSearch2

andS = mkSearch2 andM (flip runReaderT In1)

mkSearch2 :: MonadTrans t2
⇒ (∀m t1.(Monad m,MonadTrans t1)⇒ Mixin2 (Gen ((t1 B t2) m)))
→ (∀m x .Monad m ⇒ t2 m x → m x)
→ MSearch2

Finally we produce C++ code from a Search component with generate:

generate :: Search → Stmt
generate s = case s of

Search {mgen = mgen, run = run } →
runIdentity $ run $ runIdentityT $ runZ $ gen $ fix $ mgen

This code first applies the fix-point computation, passing the result back into
itself, as explained earlier. After that, gen is called to get the real code-generating
monad action. It extracts the knot-tied bodyG hook, runZ eliminates B from (t1B
t2) m, yielding t1 (t2 m). Then runIdentityT eliminates t1 (instantiating it to be
IdentityT), run eliminates t2, and runIdentity finally eliminates m (instantiating
it to be Identity) to yield a Stmt .

4 Memoization and Inlining

Experimental evaluation indicates that several component hooks in a complex
search heuristic are called frequently, as for example the failG hook can be called
from many different places. This is a problem 1) for the code generation — which
needs to generate the corresponding code over and over again — and 2) for
the generated program which contains much redundant code. Both significantly
impact the compilation time (in Haskell and in C++); in addition, an overly large
binary executable may aversely affect the cache and ultimately the running time.

4.1 Basic Memoization

A well-known approach that avoids the first problem, repeatedly computing the
same result, is memoization. Fortunately, Brown and Cook [4] have shown that
memoization can be added as a monadic mixin component without any major
complications.

Memoization is a side effect for which we define a custom monad transformer:

newtype MT m a = MT {runMT :: StateT Table m a }
deriving (MonadTrans)

runMemoT :: Monad m ⇒MT m a → m (a,Table)
runMemoT m = runStateT (runMT m) initMemoState

10

which is essentially a state transformer that maintains a table from Keys to
Stmts. For now we use Strings as Keys.

newtype Key = String
newtype Table = Map Key Stmt
initMemoState = empty

We capture the two essential operations of MT in a type class, which allows us
to lift the operations through other monad transformers.6

class Monad m ⇒MM m where
getM :: String → m (Maybe Stmt)
putM :: String → Stmt → m ()

instance Monad m ⇒MM (MT m) where ...

instance (MM m,MonadTrans t)⇒MM (t m) where ...

These operations are used in an auxiliary mixin function:

memo :: MM m ⇒ String → Mixin (m Stmt)
memo s m = do stm ← getM s

case stm of
Nothing → do code ← m

putM s code
return code

Just code → return code

which is used by the advice component:

memoM :: MM m ⇒ MGen m
memoM super = super {initG = memo "init" (initG super)

, bodyG = memo "body" (bodyG super)
, addG = memo "add" (addG super)
, tryG = memo "try" (tryG super)
, resultG = memo "result" (resultG super)
, failG = memo "fail" (failG super)}

which allows us to define, e.g., a memoized variant of printS .

printS = mkSearch (memoM ◦ printM)

Note that in order to lift memoM to a Search structure, Search must be up-
dated with a MM m constraint, and generate must be updated to incorporate
runMemoT in its evaluation chain.

data Search = ∀t2.MonadTrans t2 ⇒
Search {mgen :: ∀m t1.(MM m,MonadTrans t1)⇒ MGen ((t1 B t2) m)

6 For lack of space we omit the straightforward instance implementations.

11

, run :: ∀m x .MM m ⇒ t2 m x → m x }
generate s =

case s of
Search {mgen = mgen, run = run } →

runIdentity $ runMemoT $ run $ runIdentityT $ runZ $ gen $ fix mgen

4.2 Monadic Memoization

Unfortunately, it is not quite this simple. The behavior of combinator hooks may
depend on internal updateable state, like andM from section 3.5 kept a Branch
value as state. The above memoization does not take this state dependency into
account.

In order to solve this issue, we must expose the components’ state to the
memoizer. This is done in two steps. First, MT keeps a context in addition to
the memoization table, and provides access to it through the MM type class.
Second — for the specific case of a ReaderT s with s an instance of Showable
— an alternative implementation (MemoReaderT) which updates the context
in the MT layer below it, is provided. Typically, the used states are simple in
structure.

To implement this, the Table type is extended:

type MemoContext = Map Int String
type Key = (MemoContext ,String)

data Table = Table {context :: MemoContext
, memoMap :: Map Key Stmt }

initMemoState = Table {context = empty
, memoMap = empty }

MemoContext is represented as a map from integers to strings. The integers are
identifiers assigned to the monad transformer layers that have context, and the
strings are serialized versions of the contextual data inside those layers (using
show).

The MM type class is extended to support modifying the context information,
using setCtx and clearCtx .

class Monad m ⇒MM m where
...
setCtx :: Int → String → m ()
clearCtx :: Int → m ()

Finally, MRT is introduced. It will contain a wrapped double ReaderT -
transformed monad. The state will be stored in the first, while the second is
used to give access to the identifier of the layer.

newtype MRT s m a = MRT {runMRT :: ReaderT Int (ReaderT s m) a }

12

For convenience, MRT is made an instance of MonadReader , so switching
from ReaderT to MRT does not require any changes to the code interacting
with it.

When running a MRT transformer, the enclosing Gen’s height parameter is
passed to rReaderT , using that as identifier for the layer. The runtime state it-
self is stored inside the wrapped ReaderT layer, while a serialized representation
(using show) is stored in the context of the underlying MT . Note that show im-
plementations are supposed to turn a value into equivalent Haskell source code
for reconstructing the value — this is far from the most efficient solution, but it
does produce canonical descriptions for all values, and default implementations
are provided by the system for almost all useful data types. There are alterna-
tives, such as using an Ord -providing Dynamic-like type, but those are harder
to implement and there is little to be gained, as will be shown in the evaluation
(Section 5).

instance (Show s,MM m)⇒ MonadReader s (MRT s m) where
ask = MRT $ lift ask
local s m = MRT $ do n ← ask

old ← lift ask
let new = s old
putCtx n $ show new
let im = runMRT m
r ← mapReaderT (local $ const new) im
putCtx n $ show old
return r

rMRT :: (MM m,Show s)⇒ s → Int →MRT s m a → m a
rMRT s height m =

do let action = runReaderT (runMRT m) height
putCtx height (show s)
result ← runReaderT action s
clearCtx height
return result

4.3 Backend Sharing

So far we have only solved the first performance problem, repeated generation
of code. Memoization avoids the repeated execution of hooks by storing and
reusing the same C++ code fragment. However, the second performance problem,
repeated output of the same C++ code, remains.

We preserve the sharing obtained through memoization in the backend, by
depositing the memoized code fragment in a C++ function that is called from
multiple sites. Conceptually, this means that a memoized hook returns a func-

13

tion call (rather than a potentially big code fragment), and produces a function
definition as a side effect.7

memo2 :: MM m ⇒ String → Mixin (m Stmt)
memo2 s m = do code ← memo s m

let name = getFnName code
return (Call name [])

getFnName :: Stmt → String

The following generate function produces both the main search code and the
auxiliary functions for the memoized hooks. By introducing runMemoT in the
chain of evaluation functions, the types change, and the result will be of type
(Stmt ,Table), since that is returned by runMemoT .

data FunDef = FunDef String Stmt

toFunDef :: Stmt → FunDef
toFunDef stm = FunDef (getFnName stm) stm

generate :: Search → (Stmt , [FunDef])
generate s =

case s of
Search {mgen = mgen, run = run } →

let eval = fix mgen
codeM = gen eval
memoM = run ◦ runIdentityT ◦ runZ $ codeM
(code, state) = runIdentity $ runMemoT memoM
in (code,map toFunDef ◦ elems $ memoMap state)

The result of extracting common pieces of code into separate functions, is
shown schematically in figure 4.

Fig. 4. Memoization with auxiliary functions

7 The function getFnName — given without implementation — derives a unique func-
tion name for a given code fragment.

14

Note that only code generated by the same hook of the same component is
shared in a function, not code of distinct hooks or distinct components. Separate
from the mechanism described above, it is also possible to detect unrelated clones
by doing memoization with only the generated code itself as key (instead of
function names, present variables and active states). This causes a slowdown, as
the code needs to be generated for each instance before it can be recognized as
identical to earlier emitted code. To a limited extent, this second memoization
scheme is also used in the implementation to reduce the size of generated code
— without any measurable overhead.

Finally, applying the above technique systematically results in one generated
C++ function per component hook. This is not entirely satisfactory, as many
memoized functions are only called once, or only contain a single line of code.
One can either rely on the C++ compiler to determine when inlining is lucrative,
or perform inlining on the C++ AST in an additional processing step.

5 Evaluation

We have omitted a number of complicating factors in our account, so as not
to distract from the main issues. Without going into detail, we list the main
differences with the actual implementation:

– There are more hooks, including ones called during branching, adding to
the queue, deletion of nodes and switching between nodes belonging to
separate strategies. Furthermore, additional hooks exist for the creation of
combinator-specific data structures, both globally for the whole combinator,
or locally for each node, instead of the dynamic height-based mechanism.

– The code generation hooks are functions that take an additional argument,
the path info. It contains which variable names point to the local and global
data structures, which variables need to be passed to generated memoized
functions, and pieces of code that need to be executed when the current node
needs to be stored, aborted or copied. The values in the path info are also
taken into account when memoizing, complicating matters further.

– We have built into the code generators a number of optimizations. For ex-
ample, if it is known that a combinator never branches, certain generated
code and data structures may be omitted.

– Searches keep track of whether they complete exhaustively, or are pruned.
Repeat-like combinators use exhaustiveness as an additional stop criterion.

To evaluate the usefulness of our system, benchmarks8 were performed (see
Table 1)9. A first set includes the known problems golfers10, golomb11, open

8 Available at http://users.ugent.be/~tschrijv/SearchCombinators
9 A 2.13GHz Intel(R) Core(TM)2 Duo 6400 system, with 2GiB of RAM was used.

The system was running Ubuntu 10.10 64-bit, with GCC 4.4.4, Gecode 3.3.1 and
Minizinc 1.3.1.

10 Social golfer problem, CSPlib problem 10
11 Golomb rulers, CSPlib problem 6

15

name size memo? lines hooks
trans. time
eff. total generate build run

golomb 10 no 216 70 4 14 0.00017 2.0 4.9
yes 187 95 5 17 0.0073 2.0 4.9

11 no 110
yes 110

12 no 1200
yes 1200

open-stacks 30 no 216 70 4 14 0.00016 2.1 0.12
yes 187 95 5 17 0.0074 2.0 0.12

golfers no 119 29 3 8 0.00017 2.0 1.3
yes 114 46 4 11 0.00017 2.0 1.3

radiation 15 no 11455 4153 4 76 0.57 16 210
yes 2193 1155 5 79 0.19 4.0 230

5 no 2530 898 4 36 0.073 4.3 0.10
yes 933 485 5 39 0.055 2.7 0.10

bab-real no 216 70 4 14 0.00019 2.0 17
yes 187 95 5 17 0.0074 2.0 17

bab-restart no 1499 1166 5 20 0.045 2.8 17
yes 433 262 6 23 0.026 2.2 17

for+copy no 1164 414 5 14 0.016 2.4 8.9
yes 494 180 6 17 0.0066 2.1 8.9

once-sequence no 2530 898 4 36 0.073 4.2 2.7
yes 933 485 5 39 0.054 2.7 2.6

ortest 10 no 1597 849 13 48 0.11 3.2 17
yes 1222 655 14 51 0.11 2.6 17

20 no 4232 1869 23 88 0.82 9.7 17
yes 3352 1465 24 91 0.79 6.7 17

Table 1. Benchmark results

stacks and radiation[1]; a second set contains artificial stress tests. The dif-
ferent problem sizes for golomb use the same search code, while in ortest and
radiation, separate code is used.

The first three columns give the name, problem size and whether or not the
memoizing version was used. Further columns show the number of generated
C++ lines (col. 4), the number of invoked hooks (col. 5), the number of monad
transformers active (both the effective ones (col. 6), and including IdentityT and
B (col. 7)). Finally, the average generation (Haskell, col. 8), build (gcc, col. 9)
and run time (col. 10) are listed. All these numbers are averages over many runs
(of up to an hour of runtime).

For the larger problem instances, memoization reduces both generation time
and build time, by reducing the number of generated lines. No reduced cache
effects resulting from memoizing large generated code are observed in these ex-
amples, but performance is not affected either by the increased number of func-
tion calls. In particular for the radiation example, the effect of memoization is

16

drastic. On the other hand, for small problems, memoization does not help, but
the overhead is very small.

6 Related Work

We were inspired by the monadic mixin approach to memoization of Brown and
Cook [4]. The problem of memoization of stateful monad components is not yet
solved in general, but typically requires some way for exposing the implicit state,
as shown in [3] for parser combinators. In our system, this is accomplished by
also memoizing the implicit state.

A different approach that results in smaller code generated from a DSL is
observable sharing [5,8]. Yet, the main intent of observable sharing is quite dif-
ferent. Its aim is to preserve sharing at the level of Haskell in the resulting
generated code, typically using unsafePerformIO . It does not detect distinct
calls that result in the same code, and is hard to integrate with code-generating
monadic computations as appear in our setting.

Our work is directly inspired by earlier work on the Monadic Constraint
Programming DSL [13,15]. In particular, we have studied how to compile high-
level problem specifications in Haskell to C++ code for the Gecode library [14].
The present complements this with high-level search specifications.

7 Conclusions

We have shown how to implement a code generator for declarative specification
of a search heuristic using monadic mixins. Using this mixin-based approach,
search combinators can be implemented in a modular way, and still indepen-
dently modify the behavior of the generated code. Through existential types and
the monad zipper, all combinators can introduce their own monad transformers
to keep their own state throughout the code generation, without affecting any
other transformers.

Since the naive approach leads to certain hooks being invoked many times
over, we turn to memoization to avoid code duplication. Memoization is im-
plemented as another monadic mixin which is added transparently to existing
combinators.

The system is implemented as a Haskell program that generates search code
in C++ from a search specification in MiniZinc which is then further integrated
in a CP solver (Gecode). Our benchmarks demonstrate the impact of memoizing
the monadic mixins.

References

1. Davaatseren Baatar, Natashia Boland, Sebastian Brand, and Peter Stuckey. CP
and IP approaches to cancer radiotherapy delivery optimization. Constraints, 2011.

17

2. Gilad Bracha and William R. Cook. Mixin-based inheritance. In Proc. of ACM
Conf. on Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA), pages 303–311, 1990.

3. Daniel Brown and William R. Cook. Function inheritance: Monadic memoization
mixins. Report, Department of Computer Sciences, University of Texas at Austin,
June 2006.

4. Daniel Brown and William R. Cook. Function inheritance: Monadic memoization
mixins. In Brazilian Symposium on Programming Languages (SBLP), 2009.

5. Koen Claessen and David Sands. Observable sharing for functional circuit descrip-
tion. In Proceedings of the 5th Asian Computing Science Conference on Advances in
Computing Science, ASIAN ’99, pages 62–73, London, UK, 1999. Springer-Verlag.

6. Bruno C. d. S. Oliveira, Tom Schrijvers, and William R. Cook. Effectiveadvice:
disciplined advice with explicit effects. In Jean-Marc Jézéquel and Mario Südholt,
editors, AOSD, pages 109–120. ACM, 2010.

7. Gecode Team. Gecode: Generic constraint development environment, 2006. Avail-
able from http://www.gecode.org.

8. Andy Gill. Type-safe observable sharing in haskell. In Proceedings of the 2nd
ACM SIGPLAN symposium on Haskell, Haskell ’09, pages 117–128, New York,
NY, USA, 2009. ACM.

9. Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J.
Duck, and Guido Tack. Minizinc: Towards a standard CP modelling language.
In Christian Bessire, editor, CP, volume 4741 of LNCS, pages 529–543. Springer,
2007.

10. Horst Samulowitz, Guido Tack, Julien Fischer, Mark Wallace, and Peter Stuckey.
Towards a lightweight standard search language. In Justin Pearson and Toni
Mancini, editors, Constraint Modeling and Reformulation (ModRef’10), 2010.

11. Tom Schrijvers and Bruno Oliveira. Modular components with monadic effects.
In Preproceedings of the 22nd Symposium on Implementation and Application of
Functional Languages (IFL 2010), number UU-CS-2010-020, pages 264–277, 2010.

12. Tom Schrijvers and Bruno Oliveira. The monad zipper. Report CW 595, Dept. of
Computer Science, K.U.Leuven, 2010.

13. Tom Schrijvers, Peter J. Stuckey, and Philip Wadler. Monadic constraint program-
ming. Journal of Functional Programming, 19(6):663–697, 2009.

14. Pieter Wuille and Tom Schrijvers. Monadic Constraint Programming with Gecode.
In Proceedings of the 8th International Workshop on Constraint Modelling and
Reformulation, pages 171–185, 2009.

15. Pieter Wuille and Tom Schrijvers. Parametrized models for on-line and off-line
use. In J. Marino, editor, WFLP 2010 Post-Proceedings, LNCS. Springer, 2011.

18

