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The term “personnel decisions” refers to all situations that require deciding

about how to make the best use of available talent, with selection and classification

decisions as typical instances. Compared to selection, classification decisions have

received much less interest in the research literature during the past decades. For

example, the prevailing attention for the quality-diversity dilemma in the personnel

selection literature has not yet extended to classification decisions. However,

classification situations arise in practice, and implementing a selection instead of a

classification perspective in these situations leads to erroneous expectations

concerning the efficiency of the personnel decision. Moreover, practitioners are

presently without guidance in designing classification decisions that aim to balance

the efficiency and the adverse impact of intended classification decisions as applied to

applicant groups that are a mixture of different subpopulations.

Consequently, this paper aims at extending the current analytic method to

estimate the classification efficiency (De Corte, 2000) to the case where applicants

come from several subpopulations. Additionally, following the example of De Corte,

Lievens, and Sackett (2007), who combined predictors to achieve optimal trade-offs

between selection quality and adverse impact, the extended method will be

integrated in a multi-objective optimization framework so as to achieve optimal trade

offs between efficiency and diversity in a classification context.

The following section recapitulates the basic concepts as well as the relevance of

the classification perspective. Next, the available analytic methods for estimating the

classification efficiency are resumed. Then the extension of the currently most general

method is presented and it is shown how the method can be integrated in a decision

making framework to obtain a summary of the Pareto-optimal efficiency/adverse
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impact trade-offs that can be achieved for general classification decisions. Finally, we

present an application that illustrates the potential of the new method.

The Classification Perspective

Classification decisions select from one applicant pool for different jobs/

positions simultaneously, thus evaluating in which trajectory a certain individual

would be expected to achieve more than in another. Classification therefore

represents an extension of selection in that it considers multiple positions at the same

time, and does not necessarily reject a precentage of the applicants (Alley, 1994).

Personnel and educational decisions that favour adopting a classification perspective

arise in settings that require assessing a group of individuals in the light of several

different open positions. Possible applications can be found in large industrial or

governmental organizations, the armed forces as well as educational settings.

Adopting a classification instead of a selection perspective when appropriate,

can substantially increase the efficiency of high stakes personnel decisions. Brogden

(1951) illustrated this fact already, by comparing the outcomes of assignment to

different positions using a single predictor versus seperate differential predictors. The

increased efficiency of classification compared to selection is to be ascribed to a more

favourable selection ratio per criterion, as explained by Brogden (1951).

Classification requires constructing different predictor composite scores from an

available test battery, one for each of the C different jobs, for all applicants. This

implies that differential validity of the predictors is a prerequisite to perform

classification. The main arguments against the viability of differential prediction

relate to the controversy between the general mental ability and the specific aptitude
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theory for predicting and/ or explaining educational or job performance (Zeidner &

Johnson, 1994). Yet, despite the evidence that specific aptitudes/ composites show

little if any incremental validity over the general mental ability factor (Viswesvaran

& Ones, 2002), it does not follow that differential prediction and classification should

be abandoned. As pointed out by Zeidner & Jonhson (1994), the main issue is not

whether composites exhibit incremental validity over and above general mental

ability, but rather whether composites show differential validity across different jobs.

Hunter and Hunter (1984) already found evidence that the validity of GMA as a

predictor decreases from .56 to .23, for the highest and lowest complexity jobs. And

not only cognitive performance predictors give rise to differential validity; validity

levels of personality measures are susceptible to moderation too (e.g., Barrick &

Mount, 1991). Thus, we follow Zeidner & Johnson (1994) and Bobko (1994) in their

conclusion that the differential validity hypothesis is sustained and as a consequence,

a classification approach remains a viable option.

The primordial goal of a classification decision (and other personnel decisions) is

to maximize the classification efficiency which corresponds to the expected actual

criterion score of the accepted and classified individuals. To achieve this purpose,

candidates are optimally assigned on the basis of their estimated criterion scores

which typically correspond to regression based predictor composite scores, one for

each criterion. In general, optimal assignment encompasses the optimization of two

decisions: an accept/reject decision for each individual, and for each accepted

applicant, a decision on the job she/ he will be assigned to.

Analytic estimation of classification efficiency

An important notion concerning the determination of the classification efficiency
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is the allocation average, also known as the mean predicted performance, or MPP

(Scholarios, Johnson, & Zeidner, 1994). This concept was first defined by Brogden

(1955) as the expected estimated criterion score of the assigned applicants. However,

Brogden (1955) proved that the allocation average equals the average actual

performance score when the assignment is based on regression weighted composite

scores. Together with the obvious fact that regression weighted composites are the

best possible predictors of future criterion performance, this explains why all analytic

methods for estimating the classification efficiency focus on situations where

regression weighted predictor composites govern the assignment process.

All presently available methods to estimate the classification efficiency also

depend on the optimal assignment procedure as described by Brogden (1954).

Brogden (1954) proved that optimal assignment can be obtained by first finding a set

of appropriate constants, k = (k1, . . . , kC)′, which are added to the criterion

estimates, E = (E1, . . . , EC)′, of all applicants, in order to obtain so-called augmented

criterion estimates, V = E + k = (V1, . . . , VC)′ and fill the required quota per

criterion. Optimal assignment is then achieved by assigning individuals to the

position for which they have the highest augmented criterion estimate.

De Corte (2000) developed the thusfar most general analytic method for

calculating the classification efficiency. Assuming that the available predictors follow

a joint multivariate distribution, he derives the density function of the highest

augmented criterion estimate, f(v(h)) with v(h) the value of the highest augmented

criterion estimate V (h) (i.e., V (h) = max(V1, . . . , VC) ) and the corresponding,

criterion-specific relative densities, fc(v
(h)) . Subsequently, these relative density

functions are used to solve a system of nonlinear equations, so as to determine the
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augmentation constants. Finally, based on Brogden’s (1955) equality, he derives the

expected criterion score of assigned individuals as the expectation over the

appropriate relative density of the highest augmented estimated criterion value,

minus the product of the quota and the constants summed over all criteria.

Efficiency and Adverse Impact of General Classification Decisions

The quality-diversity dilemma has thusfar only been considered in the context of

selection decisions, but it is obvious that, given applicants coming from different

subgroups with different mean values on the predictor variables, classification

decisions will suffer from adverse impact as well. Therefore, it is important to not

only focus on the expected efficiency, but take into account the work force diversity

outcome too. Additionally, studies on selection decisions demonstrated that other

than regression based composites can lead to a better balance between quality and

diversity than the balance achieved by regression weighted composites (De Corte et

al., 2007; De Corte, Lievens, & Sackett, 2008). As a consequence, it seems essential

to develop a method for estimating the double outcome of classification efficiency and

adverse impact when assignment is based on general, compared to regression

weighted, predictor composites. This development depends on certain additional

assumptions and requires addressing three issues: conceiving general estimated

criteria, deriving the density function of the highest augmented estimated criterion

score in a mixture population context and computing the conditional expected

criterion given the value of the highest augmented (non-regression based) estimated

criterion score. These assumptions and issues are briefly discussed next.

For the present mixture population context it is assumed that in the G different

subpopulations, criteria Y have the same variance and predictors X have the same
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validities, variances and covariances, but differ in their mean values. As in De Corte

(2000) the unit variance predictors have a multivariate normal distribution in each

subpopulation g, X ∼ N(µXg,RX). Also, all criterion variances are equated to one,

and µYg = (µY1g, . . . , µYCg)
′ denotes the group-specifc mean criterion vector. For

each criterion c, we make the slightly more general assumption that (Yc,X
′) have a

multinormal distribution.

Corresponding to what is the case for regression based criterion estimates, we

propose using general criterion estimates with variance equal to the squared validity

of the predictor composite. In particular, we consider criterion estimates Ec equal to

Ec =
ρZcYcZc

σZc
, with Zc = w′

cX the corresponding predictor composite and wc the

arbitrary non-negative weights of the predictors in the composite.

In the mixture context the applicant pool consists of several different subgroups,

with different mean values on predictors and criteria. As a consequence, the density

function of the highest augmented criterion estimate also becomes a mixture of

different density functions, one for each subgroup, with mixture proportions,

τ = (τ1, . . . , τG)′, equal to the proportional representation of the respective subgroups

in the total applicant pool. The equations in the system of non-linear equations that

solves for the classification constants are adapted accordingly.

When the assignment of applicants to trajectories is based on general criterion

estimates, the value of the conditional expected criterion score of an assigned

candidate from group g is no longer a simple function of the corresponding

augmented criterion estimate. However, using a result from Waldman (1984), it can

be shown that the value can be equated to the mean of a properly defined conditional

truncated multinormal distribution which can be computed using Tallis (1961)
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formula on the expectation of variables that follow a truncated normal distribution.

Using some earlier introduced notation and Eg(Yc|V (h) = v(h) = Vc) to represent

the conditional expected criterion score of an individual from group g with value v(h)

for the highest augmented criterion estimate occuring for criterion c, the above

developments then imply that the expected criterion score of an individual from

group g that is assigned to this criterion, Eg(Y
(a)
c ) can be equated to

Eg(Y
(a)
c ) = Efcg(Eg(Yc|V (h) = v(h) = Vc))

where Efcg indicates expectation over the relative density fcg of V (h) occuring for

criterion c in group g. Next, noting that the expected criterion score of individuals

assigned to criterion c, E(Y
(a)
c ), equals

∑
g τgEg(Y

(a)
c ), the efficiency of the

classification, B, can be computed as B =
P

c qcE(Y
(a)
c )P

c qc
, where qc denotes the required

classification proportion for job c.

The extent of adverse impact can be gauged using any of a number of different

adverse impact indicators. In line with the selection literature, we will focus on the

commonly used adverse impact ratio (AIR). Using the previously introduced

(relative) density functions fcg, the proportion of a specific subpopulation that is

assigned to a specific criterion as well as the total classification proportion, over all

criteria, for a specific subgroup are easily obtained. From these proportions, the

adverse impact ratio can then be calculated as the ratio of the total classification rate

in a specific minority subgroup and the total classification rate in the majority

subgroup.
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Obtaining Pareto-optimal Trade-offs between Classification Efficiency and AI

Given the classification parameter data (e.g., the make up of the applicant

population, the predictor characteristics and their relation to the jobs) that

characterize the classification scenario, using different sets of criterion estimates (i.e.,

different sets of predictor composites) will lead to different trade-offs in terms of

classification efficiency and AI. The issue then becomes that of finding the sets of

criterion estimates that lead to efficiency/AI trade-offs that can not be bettered by

any other set of criterion estimates. The latter trade-offs are typically referred to as

Pareto-optimal and any set of criterion estimates that corresponds to a

Pareto-optimal trade-off is called Pareto-optimal as well.

Observe that a similar issue has been treated before by De Corte, Lievens &

Sackett (2007, 2008), albeit in a selection, instead of the present classification decision

context. To resolve the issue, these authors propose adopting a multi-objective

optimization framework. Because this framework represents a generic approach to

solving for Pareto-optimal solutions in general multi-objective decision contexts, we

decided to follow the same strategy for obtaining Pareto-optimal trade-offs in the

present classification context. However, because of the numerical complexities

involved in calculating the classification efficiency and AI for given sets of criterion

estimates, we adopted an evolutionary multi-objective optimization program instead

of the more classical normal boundary intersection variant (Das & Dennis, 1998)

implemented by De Corte et al. (2007). More specifically, we approximate the set of

Pareto-optimal classification efficiency and AI trade-offs using the nondominated

sorting genetic algorithm II (NSGA-II) of Deb, Pratap, Agarwal, & Meyarivan, 2002.
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Implementation and illustration

We wrote a computer program that integrates the present analytic method to

obtain the outcomes of general classification decisions within the NSGA-II routine.

To illustrate the method and its implementation in the genetic algorithm, data are

borrowed from a study by Johnson, Abrahams, and Held (2004), reporting

intercorrelations and effect sizes of 9 subtests from the ASVAB (Armed Services

Vocational Aptitude Battery), and their validities regarding 32 Navy occupations.

Throughout the example, it is assumed that the total applicant pool consists of 78%

majority (White) en 22% minority (Black) applicants. Three of the 9 subtests were

selected as predictors: Verbal (VE), Automotive-Shop Information (AS) and Coding

Speed (CS). Their intercorrelations and effect sizes are shown in Table 1, while their

validities concerning 5 Navy occupations are displayed in Table 2. The 5 positions

are Aviation Boatswain’s Mate - Fuels (ABF), Aviation Structural Mechanic -

Equipment (AME), Construction Mechanic (CM), Aircrew Survival Equipmentman

(PR) and Steelworker (SW).

Given the aforementioned values of the classification parameters, the proposed

procedure was used to analyze the optimal adverse impact - classification efficiency

trade-offs for an intended classification system with an overall selection rate of 50%.

The criterion specific selection rates are 8, 11, 9, 12 and 10%. Because the scenario

encompasses three predictors to optimally assign individuals to one of the five

criteria, each complete set of decision variables consists of 15 predictor weights, which

are restricted between 0 and 1. After 25 generations (i.e., iterations), the NSGA-II

algorithm resulted in the Pareto-optimal front, this is a collection of Pareto-optimal

efficiency/AI trade-offs, plotted in Figure 1. Table 3 provides additional details on a
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selected number of the obtained optimal trade-offs. These selected trade-offs are

indexed by a red diamond in Figure 1, and for each of them, Table 3 indicates the

value of the classification efficiency and the adverse impact ratio objective, as well as

the value of the decision variables that correspond to the Pareto-optimal trade-off.

– insert Figure 1 about here –

For example, using Figure 1 and Table 3, it can be verified that Pareto-optimal

trade-off point 3 corresponds to an AIR of .69 and a classification efficiency of .34.

To properly interpret the latter value, it must be compared to the expected job

performance of randomly classified individuals which equals −.15 for the present

application parameter data. Also, because trade-off number 3 is Pareto-optimal, no

other set of predictor weights (and, hence, no other set of composites and estimated

criteria) will do at least as well on one of the objectives and, at the same time, do

better on the other objective.

As a further example, consider Pareto-optimal trade-off point 1 in Figure 1,

representing an AIR of .31 and a classification efficiency of .48. These outcomes

correspond to using regression weighted criterion estimates, and represent the

optimal classification efficiency. All other Pareto-optimal trade-offs result in a lower

efficiency, but at the same time in a higher AIR. On the other end of the Pareto

front, we find Pareto-optimal trade-off point 5, with an efficiency of .13, and the

highest attainable level of AIR in this scenario: .86. All other Pareto-optimal

trade-offs result in a lower AIR, but at the same time in a higher efficiency.
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Discussion

Previous research on personnel decisions has shown that adopting a

classification instead of a selection perspective in an appropriate context can lead to

an increased level of expected job performance of the assigned individuals. However,

given the reality of effect sizes of certain predictors, adverse impact is expected to

arise in classification situations just as it does in selection situations so that the

quality of the assigned applicants may no longer be the single focus of classification

decisions. In response to the already in the selection literature vigorously debated

quality/adverse impact issue, the paper is the first to present an analytic method to

estimate the efficiency as well as the adverse impact of classification decisions. In

addition, the new method is implemented in a genetic algorithm in order to obtain

the predictor weights that lead to Pareto optimal trade-offs between the goals of

efficiency and diversity. These Pareto-optimal trade-offs represent the optimal levels

of AIR obtainable for each level of classification efficiency, as well as the optimal

levels of efficiency, for all attainable levels of AIR.

In the absence of further information, there is no single Pareto-optimal trade-off

that can be said to be better than the other trade-offs. Decisions about the relative

value of the Pareto-optimal solutions depends on the amount of efficiency one is

willing to give up, in order to reach a lower level of adverse impact. It is clear

though, that general, compared to regression weighted, predictor composites lead to

much more balanced efficiency-diversity trade-offs. Also, as shown in the example

application, the method permits a better informed design of composite predictors to

perform classification decisions for which efficiency as well as diversity are important

goals.
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Apart from its advantages, the present method has certain limitations as well.

In particular, its results are based on certain assumptions about the distribution of

predictors and criteria in the different subgroups, but identical assumptions have

been invoked by previous studies of the effects of predictor weighing on the balance

between selection quality and diversity (De Corte et al., 2007) and on classification

efficiency (Scholarios et al., 1994). Also, some of these assumptions such as, for

example, the assumption that all criteria have equal variance can be relaxed to extend

the method to the case where some positions are more critical to fill than others.

In summary, practitioners and researchers interested in the outcome of

classification decisions, based on specific predictors and their characteristics, are

provided with a method that yields the expected efficiency and the adverse impact

ratio of these planned classification decisions. In addition, they can dispose of a

decision aid in designing predictor composites that offer a Pareto-optimal balance

between the goals of quality and work force diversity. Finally, as illustrated in the

example, using general instead of regression weighted predictor composites leads to a

much wider range of attainable diversity levels.
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Table 1

The matrix RX of predictor correlations, and their effect sizes

Predictor intercorrelations Effect sizes

Predictors VE AS CS White - Black d

VE 1.000 0.684

AS 0.506 1.000 1.213

CS 0.337 0.029 1.000 0.178

Note. The three predictor variables are Verbal (VE), Automotive- Shop Information
(AS) and Coding Speed (CS) ASVAB subtests.

Table 2

The matrix D of predictor validities

Criteria

Predictors ABF AME CM PR SW

VE 0.469 0.344 0.446 0.457 0.499

AS 0.524 0.404 0.546 0.487 0.646

CS 0.257 0.231 0.238 0.393 0.176

Note. Predictors are Verbal (VE), Automotive- Shop Information (AS) and Coding
Speed (CS) ASVAB subtests. The criteria are five Navy occupations, namely Aviation
Boatswain’s Mate - Fuels (ABF), Aviation Structural Mechanic - Equipment (AME),
Construction Mechanic (CM), Aircrew Survival Equipmentman (PR) and Steelworker
(SW).



Table 3

Selected pareto-optimal classification efficiency/ adverse impact trade-offs

Predictor weights
Optimal Adverse Classification
trade-off impact efficiency VE AS CS

1 .3142 .4812 0.1966 0.4193 0.1786
0.1076 0.3442 0.1848
0.1532 0.4635 0.1729
0.1381 0.4074 0.3347
0.1897 0.5472 0.0962

2 .5000 .4315 0.8603 0.6983 0.5635
0.3545 0.0422 0.7160
0.2483 0.4989 0.1727
0.1667 0.2271 0.6259
0.3111 0.6164 0.0261

3 .6905 .3406 0.4477 0.0770 0.8550
0.0094 0.0016 0.6827
0.0669 0.2042 0.6373
0.0271 0.1407 0.7818
0.4757 0.9879 0.0671

4 .7967 .2515 0.2158 0.0643 0.9848
0.0043 0.0027 0.9276
0.0135 0.0775 0.6491
0.0668 0.0000 0.6304
0.4644 0.6290 0.8227

5 .8551 .1311 0.1132 0.1213 0.8110
0.0132 0.0152 0.7463
0.0374 0.0086 0.3587
0.0377 0.0260 0.9512
0.0052 0.0005 0.9080
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Figure 1. Pareto surface with Pareto-optimal efficiency/ AI trade-offs


