
The body as a reservoir: locomotion and sensing
with linear feedback

Ken Caluwaerts, Benjamin Schrauwen
Reservoir Lab - Electronics and Information Systems Department - Ghent University

B-9000 Ghent, Belgium
Email: ken.caluwaerts@ugent.be, benjamin.schrauwen@ugent.be

Abstract—It is known that mass-spring nets have compu-
tational power and can be trained to reproduce oscillating
patterns. In this work, we extend this idea to locomotion and
sensing. We simulate systems made out of bars and springs and
show that stable gaits can be maintained by these structures
with only linear feedback. We then conduct a classification
experiment in which the system has to distinguish terrains while
maintaining an oscillatory pattern. These experiments indicate
that the control of compliant robots can be simplified if one
exploits the computational power of the body’s dynamics.

Keywords—morphological computation, embodiment, reservoir
computing, tensegrity, central pattern generator

I. INTRODUCTION

It is known that neural circuits can gain universal compu-
tational power through appropriate static feedback and output
[4]. If the system itself is rich enough, it is often sufficient to
use only a linear readout layer, as the system can provide the
necessary non-linearities itself.

Hauser et al. [1] applied this idea to random mass-spring
networks in two dimensions, instead of typical neural net-
works. They showed that relatively small networks (approx.
10 point masses) can reproduce stable limit cycles, such as
the Van der Pol oscillator, when linear feedback is used.

Basically one sees the body as a dynamical system that
provides computational power and one then tries to exploit
these features by using appropriate input and output trans-
formations, while leaving the system itself unchanged. The
Reservoir Computing (RC) approach [7] is very similar: one
starts with a random recurrent neural network and instead of
modifying the network itself, only the readout layer is trained.

In this paper we try to bring the ideas from [1] and [4]
closer to robotics, by verifying that locomotion can be induced
in tensegrity-like structures through linear feedback. We then
show that sensing is also possible by making the system
discern two types of terrain.

A. Tensegrity structures

The simplest extension of the spring-mass approach to
robotics is to replace the point masses by spheres. Such
structures do not resist compressive forces due to gravity very
well and are hard to build.

Instead, we replace the point masses by stiff bars and thus
create tensegrity-like structures. These structures tend to have
a good mix of and strength and flexibility. We use the term
tensegrity-like, as real tensegrity structures can be built out

of only bars and (possibly elastic) strings, while in our case
springs that resist both pushing and pulling are used. Creating
large random tensegrity structures is not trivial [6] and is left
as future work, but we expect similar computational power as
these tensegrity-like structures due to the non-linear dynamics.

The springs used in this work are non-linear. The force
acting along a spring is given by [1]:

F = k1d+ k3d
3 + p1v + p3v

3 + Ffb (1)

in which d corresponds to length of the spring minus its
resting length and v to the velocity. The force Ffb generated
by the linear feedback is a linear combination of the spring
lengths. The parameters k1, k3, p1 and p3 are chosen randomly
to create a rich pool of dynamics and hence to increase
computational power, while assuring that the robot is stiff
enough to avoid collapsing under gravity.

II. METHODS

The simulated robots were created by randomly positioning
bars within an ellipsoid with a minimum distance of 50 cm
between the bars. Next, a Delaunay triangulation is performed
on the endpoints of the bars (the spring attachments). A spring
is added for each lattice of the triangulation.

The state of the system is defined as the lengths of the
springs (minus the initial length). The output of the system is a
linear combination of the system’s state and only these weights
are trained. A subset of the springs are actuated (force applied
along the spring) and the magnitudes of the applied force (the
feedback, Ffb) are random, fixed linear combinations of the
system’s output with additive Gaussian white noise (GWN).

All simulations were done using the Open Dynamics Engine
with a time step of 1 ms and controller frequency of 100 Hz.

III. LOCOMOTION

Locomotion is an active research topic in the compliant
robot domain. Hauser et al. [1] showed that spring-mass
networks can maintain a limit cycle with only linear feedback.
Paul et al. [5] developed gaits for tensegrity structures and
found relatively simple actuation patterns. We combine these
results to produce a robot that generates the actuation patterns
for its proper locomotion.

In a first set of experiments, we train the robot by modifying
the weights from the system’s state to the output as in [1] to
generate a desired pattern at the output.



100

0

-100

-200

0-100-200-300
x position (m)

y
 p

o
si

ti
o
n
 (

m
)

Fig. 1. Path traveled by the robot during 10100 seconds (100 s training)
after learning a simple quadratic oscillator. The position of the robot is taken
to be the mean of the positions of all the bars. The robot started at the origin.

We first briefly explain the setup and the training procedure,
then the results and finally a short discussion. The robot
consisted of 10 bars and 81 springs, of which 5 were actuated.
This robot was placed on a flat terrain at the origin.

During training the desired output pattern (a non-linear
oscillator such as the Van der Pol oscillator) is used instead of
the output computed as a linear combination of the system’s
state. Hence, during training the desired output is fed back into
the system. The states of the system are collected during the
training phase (100 s) and used by the learning algorithm to
modify the weights from the system’s state to the output. To
train the weights, we used linear regression.When the training
phase ends, the testing phase (10000 s) starts and the actual
output is fed back into the system.

Fig. 1 shows a result of our approach. The robot could
maintain a forward velocity of about 0.4 km/h. This is not
the maximum or energetically optimal velocity, but it shows
that with even simple patterns gaits can be produced. We used
the two-dimensional quadratic oscillator from [1] to generate
the desired pattern for the results presented in Fig. 1, but we
obtained similar results with other oscillators. While there is
no guarantee that these patterns are useful for locomotion, they
can serve as a basis for further optimization as there is already
a certain oscillatory behavior in the system.

There is an important advantage of this approach: as the
gait is produced by the combination of the body and the
environment, one gets sensor integration for free. The robot
only moves because of the combination of environment and
body. The sensors only provide a static readout of the state
of the body and it is this readout which is used to drive the
motors. In this sense the body itself is the pattern generator
as it is the state of the body that defines how the motors are
driven. Indeed, if the body has rich enough dynamics, there is
no need for an additional pattern generator which tracks the
the system using sensor information.

An interesting phenomenon that we did not observe in
preliminary experiments without gravity is that gaits become
more robust when noise is injected through the feedback
both during training and testing (more than the small amount
necessary to avoid overfitting). One explanation for this is that
multiple equilibrium configurations can exist and the robot will
tend to fall into one of these when it is not actuated or not
actuated enough to avoid being trapped in such a state. This

1.5

0.5 0

2.5

0

1

1
2

1

z 
(m

)

x (m) y (m
)

Fig. 2. The robot used for the locomotion experiment. The thick green lines
indicate input springs, the dashed lines are bars (60 cm length, 5 cm diameter)
and the thin lines are normal springs (output only).

50 100 150 2000

0

-1

-2

1

2

t (s)

x

Fig. 3. One output variable of the system after learning a Van der Pol
oscillator. After a while, the robot gets trapped in an equilibrium position. By
adding noise to the feedback connections, this can prevented.

is a problem for linear feedback as once the robot is trapped
in a stable state and the kinetic energy drops, it won’t be
able to get out of this configuration. The noise injects energy
into the system to prevent these absorbing configuration from
halting the system. For the locomotion experiment, only a
small amount of noise was necessary (GWN with τ = 0.1).
Fig. 3 shows a similar experiment in which almost no noise
was injected through the feedback. After about 130 s the robot
got trapped in a stable state and couldn’t get out anymore.

IV. SENSING

As the gaits developed by the robot inherently use sensor
feedback, we may expect that the body can also extract envi-
ronmental features. We verified this with a terrain classification
task. We simulated two types of terrain consisting each of
evenly spaced hemispheres placed on the ground as shown in
Fig. 4. The terrains differ by the radius of the hemispheres,
one has spheres with a radius of 7 cm, the other 15 cm. During
training and testing, the terrain is switched every 100 s (one
episode) and the robot is moved to a random position.

The robot used for this task consisted of 25 bars and 258
springs. This ensures that the robot has enough computational
power to learn to maintain a gait on both terrains and to extract
information from the environment. A larger robot was needed
than for the locomotion experiment, because the same readout
should work on both terrains, which is a harder task.

As in the locomotion experiment, the robot should first learn
to maintain a stable oscillatory pattern. This time it has to
maintain the same limit cycle on both types of terrain. We
chose the Van der Pol oscillator as the target pattern. This is
performed in the first training phase, lasting for 80 episodes.



Fig. 4. The robot on one of the terrains used for the sensing experiment (the
springs are not shown for clarity).

Afterwards, the robot generates the desired output pattern
independently (as in the testing phase for the locomotion
experiment) for another 80 episodes. The 40 first episodes of
the free run phase are used to train the terrain classifier. The
final 40 episodes are used to test the classifier. This means
that there are 20 train and test episodes for each terrain.

Next, the classifier was trained using the 40 training
episodes for the terrain classifier. Linear regression was used
with the length of the springs as input variables and one output
variable (1 for the first terrain, -1 for the other). Classification
is then performed by averaging the output over one episode
and applying the sign function. The error measure used was
0-1 loss. While linear regression is not an optimal training
algorithm for classification, we used it for this experiment as
it is a linear classifier (the robot provides the non-linearities)
and the classic training technique for Reservoir Computing.
Similar results were obtained with other linear classifiers.

The classifier output (before the sign function) on the
classfier test set is shown in Fig. 5. The test error rate was
5/40 (12.5%), while the train error rate was 1/40 (2.5%).

For the sensing experiment, a larger amount of noise was
applied, as the robot could more easily get trapped in a stable
configuration (due to the terrain and increased weight). Adding
more noise as the environments get more complex is not a
viable general solution, as the robot will become noise driven.

The neural circuit in our approach (linear feedback) is one of
the simplest imaginable and already provides some interesting
behaviors. If one needs additional computational power that
the body itself cannot provide (e.g. long-term memory), more
complex neural circuits can be added. As long as one keeps
the body in the loop and uses a bottom-up approach, the
aforementioned advantages should allow for a robust solution.

V. CONCLUSION

We presented experimental results from a first exploration
of a computational approach to morphological computation
applied to tensegrity-like structures. We were able to produce
stable locomotion patterns in these structures with only lin-
ear feedback. Next, the problem of extracting environmental
information was addressed with a simple classification task.

The current approach was quite ad-hoc, because we imposed

a desired output pattern and used random feedback connec-

0

0.5

1

-0.5

-1
0 10 20 30 40

episode (100 s)

m
e
a
n

 o
u

tp
u

t

Fig. 5. Test output for the sensing experiment. The light bars are the desired
output (1 for terrain 1, -1 for terrain 2), the dark bars are the system’s output.

tions. There is no guarantee that one will obtain optimal gaits
with this technique. But because the system already gener-
ates oscillating patterns autonomously, this might be a good
foundation for gait optimization. Gaits obtained in this way
automatically use sensor feedback through the body itself. This
is a more natural approach than starting with an independent
pattern generator and then adding sensor information.

Where to go from here? One interesting path is to incorpo-
rate realistic muscle models [2] to verify if the computational
power of the system increases. Tensegrity also seems to play
a role at the cellular level [3], so one may ask on which level
does morphological computation begin? Finally, how are body
and mind related as they are both dynamical systems with
computational power? Our experiments show that not much is
needed to maintain a gait or to detect basic properties of the
environment. So how do we develop powerful controllers for
compliant robots by combining the computational aspects of
neural networks and physical systems?

ACKNOWLEDGMENT

This research was funded by a Ph. D. fellowship of the
Research Foundation - Flanders (FWO) and the European
Community’s Seventh Framework Programme FP7/2007-2013
Challenge 2 Cognitive Systems, Interaction, Robotics under
grant agreement No 248311 - AMARSi.

REFERENCES

[1] H. Hauser, R. Pfeifer, A. J. IJspeert, and W. Maass. A theoretical
foundation for morphological computation. [in preparation].

[2] A. V. Hill. The heat of shortening and the dynamic constants of muscle.
Proceedings of the Royal Society of London Series B Biological Sciences,
126(843):136–195, 1938.

[3] D. E. Ingber. Tensegrity: the architectural basis of cellular mechanotrans-
duction. Annual Review of Physiology, 59(1):575–599, 1997.

[4] W. Maass, P. Joshi, and E. D. Sontag. Computational Aspects of Feedback
in Neural Circuits. PLoS Computational Biology, 3(1):20, 2007.

[5] C. Paul, J. W. Roberts, H. Lipson, and F. J. Valero Cuevas. Gait production
in a tensegrity based robot. ICAR 05 Proceedings 12th International
Conference on Advanced Robotics 2005, pages 216–222, 2005.

[6] C. Paul, H. Lipson, and F. J. V. Cuevas. Evolutionary form-finding of
tensegrity structures. Proceedings of the 2005 conference on Genetic and
evolutionary computation GECCO 05, page 3, 2005.

[7] D. Verstraeten, B. Schrauwen, M. D’Haene, and D. Stroobandt. 2007 spe-
cial issue: An experimental unification of reservoir computing methods.
Neural Networks, 20(3):391–403, 2007.


