
Context-dependent environmental sound monitoring
using SOM coupled with LEGION

Damiano Oldoni, Student Member, IEEE, Bert De Coensel, Member, IEEE,
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Abstract— Environmental sound measurement networks are
increasingly applied for monitoring noise pollution in an urban
context. Intelligent measurement nodes offer the opportunity to
perform advanced analysis of environmental sound, but trade-
offs between cost and functionality still have to be made. When
using a tiered architecture, local nodes with limited computing
capabilities can be used to detect sound events of potential
interest, which are then further analyzed by more powerful
nodes. This paper presents a human-mimicking model for
detecting rare and conspicuous sound events. Features encoding
spectro-temporal irregularities are extracted from the sound,
and a Self-Organizing Map (SOM) is used to identify co-
occurring features, which most likely belong to a single sound
object. Extensive training allows this map to be tuned to the
typical sounds that are heard at the microphone location.
A Locally Excitatory Globally Inhibitory Oscillator Network
(LEGION) is used to group units of the SOM in order to
construct distinct sound objects.

I. INTRODUCTION

Advances in the design of low-cost computing devices and
sensors, together with an increase in bandwidth and covering
power of low-cost wireless networks, are forming a techno-
logical push for the use of wireless sensor networks [1].
Acoustical sensor networks in particular provide a wide
range of applications, such as audio surveillance for public
security [2], [3], habitat monitoring [4], [5] or environmental
noise pollution monitoring [6], [7]. Information retrieved
from the latter could be used to assess potential noise
annoyance or sleep disturbance, to validate noise maps or
even to locally steer activities, e.g. via intelligent traffic
systems.

Although the hardware, storage capacity and communi-
cation bandwidth needed for building environmental sound
measurement networks is increasingly becoming cheaper,
trade-offs between cost and functionality still have to be
made. For example, it is infeasible to perform advanced
sound source recognition using small, cost- and energy-
efficient nodes, while it is also infeasible to simply record
and transmit the sound at all microphones continuously, due
to data storage and transmission bandwidth limitations. A
solution for this problem is to use a tiered architecture (see
e.g. [5]), in which the spatial resolution of the network is
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exploited by using cheap local nodes with limited computing
capabilities, which select and transmit sound fragments of
possible interest to be processed by more powerful nodes
(usually centrally located).

One of the most basic techniques for sound event detec-
tion is thresholding: when the instantaneous sound pressure
level exceeds a predefined threshold, the occurrence of a
sound event is assumed, and the node starts recording for
a given period of time. In case of adaptive thresholding,
the threshold is relative to the background level, which
can vary in time slowly [8]. More recently, a number of
techniques for selecting salient parts of the auditory scene
have been proposed, inspired by the neural mechanisms that
guide human attention [9], [10], [11]. However, a major
disadvantage of current techniques is that no distinction is
made between frequently occurring and thus expected sound
events, and rare events. Moreover, the kind of expected
sound events depends on the context of the microphone. For
example, the sound of birds singing can be expected near a
microphone situated inside an urban park, while the sound
of cars passing by is expected in a busy street.

The ideal node in an environmental sound measurement
network for monitoring noise pollution should, in a com-
putationally efficient way, be able to learn and discern the
sounds frequently occuring at the location of the microphone,
thus distinguishing between common and rare or conspicuous
sound events. In this paper, we show how this goal could be
achieved using a simple biologically inspired technique.

Features encoding spectro-temporal irregularities are ex-
tracted from standard 1/3-octave band levels, which can
be measured with off-the-shelf sound level meters. Subse-
quently, sound events are discerned using a combination
of two types of neural networks: a Self-Organizing Map
(SOM) [12] that allows—after extensive training—to identify
co-occurring sound features and a Locally Excitatory Glob-
ally Inhibitory Oscillator Network (LEGION) [13] for group-
ing and segregation of corresponding sound fragments. The
combination of both neural networks models two essential
features of the brain: the SOM mimics the plasticity (during
the learning phase) and complex morphology of the network
of neurons forming the auditory cortex, while the LEGION
approximates the dynamic oscillations between connected
neurons.

In Section II we provide a description of the coupled
SOM-LEGION network, starting from the sound extraction,
and the specific solutions adopted. The model was applied in



different real scenarios: the results and some discussions are
provided in section III. Finally, a section with conclusions
follows in IV.

II. METHODOLOGY

A. Sound feature extraction

In a first stage, a feature vector is extracted, at regular
time intervals, from the sound signal measured by the node
microphone. Instead of calculating a detailed time-frequency
representation of the raw sound wave, the model starts from
the 1/3-octave band spectrum, calculated with a temporal
resolution of 1 s. This procedure has the main advantage
that off-the-shelf sound measurement equipment can be used
as a front-end, which reduces the computational load on
the measurement node. The choice of time resolution can
be justified by noting that the sounds of main importance
for environmental noise pollution monitoring (cars, trains,
aircraft, fans etc.) have a relatively slow varying temporal
envelope [14], [15]. A simplified cochleagram s(f, t) is then
calculated using the Zwicker loudness model [16], which
accounts for energetic masking. The complete hearable fre-
quency range is considered (0 to 24 Bark) with a spectral
resolution of 0.5 Bark, resulting in 48 spectral values at
frequencies fj = 1

2j Bark, for each timestep.
The mechanism for extracting the feature vector, which

characterizes the amount of novelty in the sound signal,
is inspired by the way the human auditory system biases
its attention toward particularly conspicuous events. The
auditory system is, next to absolute intensity, also sensitive
to spectro-temporal irregularities. Based on existing models
for auditory saliency [9], [10], [11], the proposed model
calculates measures for intensity, spectral and temporal mod-
ulation using a center-surround mechanism, which mimicks
the receptive fields in the auditory cortex. In particular, multi-
scale features are calculated in parallel by convolving the
cochleagram with various 2D gaussian and difference-of-
gaussian filters gi(f, t). The former encode intensity, while
the latter subtract between a “center” fine scale and a “sur-
round” coarser scale, and encode the spectral and temporal
gradient of the cochleagram at 16 scales (4 for intensity, 6
for spectral contrast and 6 for temporal contrast):

ri(f, t) = (s ∗ gi)(f, t) (1)

with i = 1, 2, . . . , 16. Fig. 1 shows a section of the filters
along the time or frequency axis. Finally, a feature vector ~r(t)
is constructed at each timestep, consisting of 16× 48 = 768
values:

~r(t) =
16∑

i=1

48∑
j=1

ri(fj , t)~e48(i−1)+j (2)

with {~ek : 1 ≤ k ≤ 768} the standard basis for the 768-
dimensional Euclidean space.

B. Feature co-occurrence analysis: Self-organizing map

The self-organizing map (SOM), an abstract mathematical
model of topographic mapping from the (visual) sensors to
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Fig. 1. Cross section of the receptive filters that are used to calculate
(a) intensity, (b) spectral contrast and (c) temporal contrast. For the latter,
causality is preserved by only convolving with the past.

the cerebral cortex [17], is most often described as an unsu-
pervised technique for the visualization of high-dimensional
data [18]. It does so using typically a 2D network of units or
nodes. Their representation in the high-dimensional space is
provided through reference vectors. After initialization, their
coordinates are modified during the training process wherein
the following (vastly simplified) steps are repeated until a
stopping criterion is met:

1) Feed an input high-dimensional data point to the SOM.
2) Determine the best-matching unit (BMU) i.e. the unit

corresponding to the closest reference vector.
3) Move the reference vector corresponding to the BMU

and, to a lesser extent, those of the neighbouring units
in the 2D grid, closer to the input high-dimensional
data point.

In practice, the training process and the resulting SOM
are strongly influenced by a number of parameters, such
as the size of the SOM, the type of initialization of the
units, the strength of learning and the type of neighbourhood
considered in the third step, as well as the evolution over time
of the learning parameters.

Nevertheless, after training it is clear that the frequency
distribution of the input data in the high-dimensional space
will be approximated by the reference vectors of SOM
units, possibly leading to dense high-dimensional clusters
interspaced by regions where the reference vectors of the
SOM units are more distant. This emerging order is the basis
for the effective visualization in the SOM. Consequently, the
SOM can also be considered to perform a kind of abstraction,
compressing information while preserving the most impor-
tant high-dimensional relationships [12]. A trained SOM
could then be understood as a nonlinear 2D projection of



the probability density function of the high-dimensional input
data. An intuititive quantification of the SOM quality is then
the average high-dimensional distance of a set of data points
to their respective BMUs.

Now, we provide a brief, more formal description of the
SOM technique, based on the description in [18]. More
formally, we consider an n-dimensional input space Rn,
in our application the 768-dimensional space of raw sound
features. The SOM units are represented by the reference
vectors ~mi ∈ Rn, with index i identifying the unit. The M
units in the 2D network are aligned on a regular Mx by
My grid and are represented as ~mi = (mx,my) ∈ R2. As
the vectors ~mi are adapted during training, we will write
~mi (t) to denote the vector at time-step t during training,
and use ~mi only when training is complete. Input data is
represented as ~r ∈ Rn, and at time-step t, the sample ~r (t)
is processed by the SOM. The BMU at time-step t is then
found by considering

c (t) = arg min
i
‖~r (t)− ~mi (t)‖ . (3)

Thus, at time step t, ~mc(t) (t) denotes the BMU for the input
sample ~r (t). Adapting the BMU or, indeed, any unit, is then
performed as follows:

~mi (t+ 1) = ~mi (t) + hc(t),i (~r (t)− ~mi (t)) , (4)

where h, the neighbourhood function, performs a non-linear
smoothing selection on the discrete 2D neighbourhood struc-
ture. Often used is a Gaussian function of the distance
between the BMU at time step t, c(t), and the generic unit
i:

hc(t),i = α (t) exp

(
−
∥∥ ~mi − ~mc(t)

∥∥2

2σ2 (t)

)
. (5)

The time-step dependent parameters governing the behaviour
of this type of neighbourhood function are the learning rate
0 < α (t) < 1 and the width of the 2D neighbourhood σ (t).
Both are monotonically decreasing in t:

α(t) = α0
C

C + t
, C =

N

100
, (6)

σ(t) = 1 + (σ0 − 1) (
N − t
N

) (7)

where N is the number of samples. Observe that hc,i = α (t)
only for the BMU, and is strictly decreasing for units farther
from it in the 2D grid. Thus, for a constant similarity, the
BMU is adapted to a stronger extent than any neighbouring
units.

A final point concerns the visualisation of the 2D grid after
training. Due to the high dimensionality of the raw feature
space, the visualization of the trained map via projection
on particular planes is rarely informative—one could argue
that if such an approach would lead to satisfactory results,
there was less need to apply the SOM algorithm in the
first place. Rather, in order to easily identify regions with
similar high-dimensional representations, it will be more
informative to display how close in the high-dimensional

space a unit in the map is to its neighbouring units. In fact,
a typical way to visualize the morphology of the map uses
the so-called U-matrix [19], which is a matrix of dimensions
[2Mx − 1, 2My − 1] containing both the distances between
the nearest neighbours and their average. Color-coding the
units on the map on the basis of their average distance to
their nearest neighbours allows distinguishing regions where
2D neighbouring reference vectors are similar, from regions
of high variability. We provide an example in Section III.

When training is complete, the SOM quality can be
assessed on the basis of two concepts. The first is the
average distance between each input vector from a set of
test samples and its BMU, the so-called average quantization
error E. It is computed as follows for a set of test samples
~r (1) , . . . , ~r (N):

E =
∑N

t=1

∥∥~r (t)− ~mc(t)

∥∥
N

, (8)

with ~mc(t) now denoting the BMU for test sample ~r (t).
The second concept is the topographic error, the pro-

portion of test samples for which the BMU and the next-
best-matching unit are not neighbours. A low topographic
error can be considered to be indicative of a focused SOM,
clustering the units around the dense regions in Rn.

These concepts complement each other quite well: if all
the units are widely spaced in the Rn space formed by
the eigenvectors, the SOM is very likely to obtain a quite
low average quantization error, while the topographic error
is likely to be large. If, in contrast, the units are packed
too tightly around the densest regions in Rn, the average
quantization error can be expected to be high, while the
topographical error is expected to be low.

To reduce both the average quantization error and the
topographic power of the map, it is usually sufficient to
reduce the initial width of the neighbourhood function σ0

and/or the learning rate α0, making the map less flexible,
while simultaneously increasing the number of training runs
to compensate for the slower learning [12].

A hexagonal lattice was used in this paper, allowing a 2D
grid of equal-spaced units while maximizing for any value of
σ (t) the number of neighbours in the grid. The unit reference
vectors were initialized by the linear initialization function,
resulting in a regular array of vectorial values that lie on the
subspace spanned by the eigenvectors corresponding to the
two largest principal components of input data used during
the training [18]. In our application, the high-dimensional
space is composed of the raw sound features, meaning each
unit corresponds to an abstract prototype of a sound. The
goal is thus to group similar (in the raw feature sense) sound
fragments in the SOM. Sound feature values that often arise
together, and are thus often part of the same sound fragment,
are then expected to have the same BMU, or to even cluster
close together in the SOM. In order to allow this behaviour to
arise, a proper choice of features is crucial, as well as proper
values for the parameters governing the SOM construction,
training and resulting performance.



The training phase has to take into account a very large
number of input data: in our case 86400 samples (the number
of seconds in one day) were used. Afterwards, the trained
SOM is ready to receive new data samples and localize the
BMU.

As we will now show, a natural link between SOM
and LEGION then arises: the similarity of a raw feature
vector and a specific SOM unit is, from a neural oscillatory
point of view, a measure of the external stimulation that
a LEGION oscillator receives. Conceptually the SOM unit
and the LEGION oscillator can be considered the same
formal neural unit. In fact, the two neural networks are the
expression of two different functionalities of ideal neurons:
the long term memory formation is modeled by the SOM
extensive training while the dynamic oscillatory correlation
of sensory cortex neurons excited by an auditory stimulus is
schematized by LEGION. The LEGION network model and
the details of the SOM-LEGION coupling are developed in
the next section.

C. Segregation: LEGION

Increased insight in the oscillatory correlation properties of
the neurons in the sensory cortex during the 1980s resulted in
an increase in theoretical research on possible computational
models of the corresponding biological mechanisms. One
of the first models thus constructed, by von der Malsburg
and Schneider [20], was later extensively developed in the
auditory context by Wang [21], [22] using a so-called shift-
ing synchronization theory, based on oscillatory correlation,
where neuronal oscillators representing the neuronal coun-
terpart of specific sound features are used.

In that context, each sound object was represented by
synchronization of a group of oscillators corresponding to the
relative sound features. Contrarily, desynchronization among
different groups of oscillators meant that the sound is the
sum of different auditory streams.

The Wang model is based on a particular network archi-
tecture referred to as LEGION [13]: it is generally composed
of a 2D grid of oscillators, in our coupled SOM-LEGION
architecture corresponding to the units in the SOM. The
dynamics of the i-th oscillator is the combined activity of
an excitatory unit xi and an inhibitory unit yi:

ẋi = 3xi − x3
i + 2− yi + IiH (pi − ϕ) + Si + ρ , (9)

and
ẏi = ε (γ (1 + tanh (xi/β))− yi) , (10)

where Ii is the external stimulation, H is the Heaviside
function, pi is the so-called lateral potential, ϕ is a threshold,
Si is the overall coupling contribution due to the near
oscillators of the network and ρ < 0 is a source of Gaussian
noise. There are three regulating parameters: γ, ε and β,
where the last two are small positive constants.

The external stimulation Ii in (9), together with the
permanent connection weights Tik (explained later), entails
the core of the SOM-LEGION coupling. Ii depends on the

distance between the input raw feature vectors ~r(t) and the i-
th unit of the trained SOM, closely related to the quantization
error in the SOM. It is computed as

Ii (t) = IH
[
‖~r (t)− ~mi‖−1 − λMh (t)

]
, (11)

where I is a positive constant, H the Heaviside function,
‖~r (t)− ~mi‖−1 is a measure of the similarity of the input
vector to the i-th unit, Mh (t) is the h-order simple moving
average of the inverse of the distance of the BMU and 0 <
λ < 1 is a relative threshold. Because of the use of H , this
formulation of the external stimulation can be referred to as
a binarization: oscillators similar enough to the raw feature
vector are stimulated, while those too far away are not.

It must be clear by now that all variables in (9)-(10) are
dimensionless. It holds true for the variable of integration
which is naturally referred as time and that here we call
internal time or LEGION time and indicated as tL; at the
contrary in (11) the real time is involved. The simplest way
to match them is to fix a certain LEGION time interval τL

and impose the equality τL = 1 s thus avoiding the confusion
between two different time scales. Returning to (9)-(10) it
means that:

ẋi =
xi

dtL
=

1
τL

xi

dt
, dt = τL dtL, (12)

and the same holds for yi.
If Ii is positive and H = 1, the i-th oscillator produces a

near-steady stable orbit between a so-called silent phase (left
branch of the ẋ-nullcline cubic function in (9)) and an active
phase (right branch). The passage between them occurs at
a faster time scale compared to motion within each phase,
thus resulting in a sort of jumping. Finally, the parameter γ
in (10) influences the relative time spent in each phase.

The coupling term Si is typically composed of two terms:

Si =
∑

k∈N(i)

WikH (xk − θx)−WzH (z − θxz) , (13)

with the first term taking into account the phase of the
oscillators in the neighbourhood, N (i), through the use of
dynamic connection weights (explained later) and the second
term referring to the activity of a global inhibitor z weighted
by Wz . If at least one oscillator is in the active phase, z → 1
at a slow time scale whereas z → 0 if all oscillators are in the
silent phase, thus allowing the activation of new oscillators
(for more details on the form of z and the threshold θxz , see
([21])).

Terman and Wang [23] formulated a procedure called
dynamic normalization, significantly speeding up the syn-
chronization within each oscillator block. It involves the
dynamic connection weights, which can be assessed from the
external stimulation, and the so-called permanent connection
weights:

u̇i = η (1− ui) Ii − νui , (14)

Ẇik = WT Tik uiuk −Wik

∑
j∈Ni

Tij uiuj − ωνWik , (15)



where the variable u measures whether the oscillator i is
stimulated, the constants η � ν are chosen so that ui

tends to 1 quickly if the oscillator i is stimulated, while
it relaxes slowly to 0 when it doesn’t receive any external
stimulation. In (15), WT is the so-called total dynamic
connection weight and the last term, not explicitly dependent
on u, is here for the first time introduced as a dissipating
term weighted by the parameter ω: this term does not affect
appreciably the normalization if ων � 1. When using this
procedure, all the oscillators belonging to the same externally
excited group receive the same amount of coupling from
their neighbours, irrespective of whether they are completely
surrounded by externally stimulated oscillators or not, being
one of oscillators at the border of the group. The Tik are
called permanent connection weights and, contrarily to the
dynamic weights Wik, are fixed between two neighbouring
oscillators, being the expression of the hardwired connections
in the network. In the SOM-LEGION coupled model, these
permanent weights are determined during training, being
related to the similarity of two neighbouring units, δik =
‖~mi − ~mk‖−1:

Tik = Tmax

[
1 + φ

(
δik − δmin

δmax − δmin
− 1
)]

, (16)

where the constant Tmax is the maximal permanent connec-
tion weight and φ < 1 is a scaling factor in order to have
(1− φ)Tmax ≤ Tik ≤ Tmax. Thus, the more similar two
units of the SOM are, the higher the coupling between the
two corresponding oscillators is.

The study of the dynamics of our LEGION network
implies solving hundreds of coupled differential equations,
rendering impossible any attempt to process in real-time the
massive amount of data acquired by a sound measurement
network. To speed up the computational process the singular
limit method developed by Linsay and Wang [24] is ex-
tensively used. This method, in the form of an algorithm,
allows skipping most of the computation by considering the
fact that the oscillatory system feels the effect of oscillator
changes only when oscillators jump up or down: only at those
moments the lateral potential and global inhibitor values
can change. Thus, the only information needed to know the
dynamics of the entire system is the branch occupied by each
oscillator and the time at which a jump occurs (for more
details on the method, see [24]).

The lateral potential, as implemented in [24], is not
suited for dynamic external stimulation I (t). In this paper a
different and simpler approach was used: at the end of each
cycle of the algorithm the active oscillators that do not have
at least 1 of 6 neighbours active are forcedly inhibited by
moving them to the left branch.

III. RESULTS

In our work we have focused on two different sound
scenarios: a typical urban sound environment defined by
a mixture of light and heavy traffic noise, labelled as T,
and a park, with typical natural sounds and only marginally
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Fig. 2. Distance of the raw feature vector related to a typical sample
from T and two maps trained at the same location, but with different initial
parameters: (a) α0 = 0.6, σ0 = 50, high flexibility; (b) α0 = 0.03,
σ0 = 10, low flexibility. Training length: 86400 samples.

affected by human presence, labelled P. Two fixed measure-
ment stations, one for each scenario, recorded standard 1/3-
octave band levels calculated with a time resolution of 1 s.
Different values for some SOM parameters were tested in
order to improve the ability of SOM to identify co-occurring
sound features. The dimensions of the 2D grid seemed to
be not critical above lower limit values. In this paper they
were fixed to Mx = 25 and My = 100. The most critical
parameters were found to be the length of training runs, the
initial value of the learning rate, α0, and the width of the
2D neighbourhood σ0. To evaluate the quality of the SOM
training, some sound excerpts were recorded at the same
scenarios but not used during the training phase. An example
is provided in Fig. 2, wherein the distance between the raw
feature vector related to a quiet moment at T and the units
of two maps trained at T but with different flexibility are
plotted. The less flexible map, which is the one trained with
smaller α0 and σ0, displays a better focusation and is thus
preferable.

Training maps in fixed scenarios result in a strong sound-
context dependency. Thus, all of the units of a map trained
in P are very dissimilar to raw feature vector corresponding
to a typical sample from T, as can be seen in Fig. 3(d).
Obviously, the units in such a map display a better matching
for a quiet natural sound sample, as shown in Fig. 3(b). In
contrast, the map trained in T shows good focusation and
a low quantization error for both the samples Fig. 3(a) and
(c), as even in a road traffic environment, silent periods are
present (e.g. during the nocturnal part of the recording used
for training). This context dependency allows an intuitive
way to distinguish between common and rarely occurring
(or even new) sound events, possibly triggering an alert or a
more detailed analysis of the sound events: by re-training the
map with that specific input, a later occurence of the same
sound will no longer trigger an alert. The context dependency
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Fig. 3. Distance of the raw feature vector related to a typical sample from
P and the units in the SOM trained in (a) T, (b) P. Distance of the raw
feature vector related to a typical sample from T and the units in the SOM
trained in (c) T, (d) P.

can also be exploited in a different way: feeding a sample to
a number of SOMs, each of which was trained on a different
context, and comparing the focusations and the quantization
errors, can yield information about which context the sample
most likely belongs to.

The context dependency can be reduced by training the
SOM with excerpts coming from various scenarios. There is
an interesting parallel between this situation and the human
brain, which is exposed to a lot of different sound contexts
during life. To approximate this multi-context learning, a
series of 51 sound excerpts of 15 minutes where recorded at
various locations in and around the city of Ghent, including
traffic-free shopping streets, street canyons with low and
high traffic intensity, residential areas, open squares, urban
parks and quiet areas at the edge of the city. The new
sound samples replaced partly of the night time samples of
each scenario, T and P respectively, thus creating two more
heterogeneous scenarios called HT and HP. Two new SOMs
were trained, one in HT and the other in HP. The units of the
old SOMs cover the new sounds only poorly, having been
trained exclusively with inputs coming from their specific
scenario, T or P. In contrast, the new SOMs are very versatile
and can match practically all types of inputs corresponding
to the wide range of scenarios they have been trained on.
In Fig. 4 this aspect is visualized by taking into account a
1 s sound fragment from a crowded shopping street, where
talking passers-by can be heard. Moreover, the new SOMs
still show a low quantization error for samples from T or P,
as shown in Fig. 5.

The U-matrix of the SOM trained in HT is shown in
Fig. 6, revealing how the SOM is composed of regions where
neighbouring units are very similar and regions where the
opposite holds true. This is common if the SOM has been
trained on the basis of a very diverse set of sounds (e.g.,
coming from very different contexts).
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Fig. 4. Distance between the raw feature vector of a sample from a crowded
street and the units in the SOM trained in (a) T, (b) P, (c) HT. Training
length: 86400 samples, α0 = 0.03, σ0 = 10.
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Fig. 5. Distance between the raw feature vector of a typical sample from T
and the units of the SOM trained in (a) T, (b) HT. Distance between the raw
feature vector of a typical sample from P and the units in the SOM trained
in (c) P, (d) HP. Training length: 86400 samples, α0 = 0.03, σ0 = 10.

As explained at the end of Section II-B, the LEGION
oscillators and the SOM units are two different functional
representations of the same neural units. In particular, the
units best matching the input can be interpreted as exter-
nally excited neuronal oscillators, in accordance with (11).
LEGION thus provides:

1) grouping of contiguous excited oscillators representing
particular raw feature vectors, by means of coherent
oscillations;

2) segmentation of distinct groups of oscillators by intro-
ducing a phase among the groups oscillation.

For the simulation shown in Fig. 7 the SOM trained in
P was chosen. The parameters for SOM training were set
as follows: α0 = 0.03, σ0 = 10. The values h = 3
and λ = 0.92 were used for binarization in (11) and the
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Fig. 6. U-matrix of a SOM trained in HT. Training length: 86400 samples,
α0 = 0.03, σ0 = 10.

external stimulation I was set respectively to 0.2 and 0 for
stimulated and unstimulated oscillators. The neighbourhood
was composed of the 6 nearest neighbours. The maximal
value of the global inhibitor Wz was set to 1.7. The following
values for the parameters regarding the dynamic connection
weights Wik in (14)–(15) were used: η = 3.0, ν = 0.1 and
ω = 1. The permanent connection weights, as defined in
(16), were calculated using φ = 0.5 and T = 1.5. Of the
parameters in (9)–(10) governing the dynamics of a single
oscillator, only γ is needed if the singular limit method is
adopted, and it is set to 6.5 here. Finally, for the LEGION
time, the value τL = 15 was used.

Fig. 7 shows oscillatory dynamics of LEGION together
with the similarity to the SOM units and the external
stimulation I(t) for a period of 2 s. It is a clear example
of the ability of LEGION to segregate different groups of
stimulated oscillators by letting them move to the active
phase at different times. In particular, Fig. 7 at t = 4.2 s
shows the transient phase wherein the oscillators recombine
their dynamic connection weights to adapt themselves to the
new external input.

IV. CONCLUSIONS

A model for context-dependent environmental sound mon-
itoring, rigidly grounded on neurological mechanisms, was
constructed in this paper. The plasticity of the human cortex,
in the context of processing spectro-temporal features, was
simulated by the use of a Self-Organizing Map (SOM) based
on 1 s standard 1/3-octave band levels. Much as human be-
ings do, sounds were learned within the context in which they
were usually heard, resulting in a high context dependency
and a high tuning of the model on the typical sounds heard
in the specific scenario. In other words, how the presence
or absence of a sound during training influenced the SOM,
depends on the other sounds perceived during training. After
training, the map could be used to assess how typical a new
sound fragment is by determining its similarity to the units

t = 3 t = 3.05 t = 3.20 t = 3.24

t = 4 t = 4.20 t = 4.24 t = 4.36 t = 4.44

Fig. 7. Left (2 columns): similarity (inverse of the distance) of two input
samples at t = 3 s (top) and t = 4 s (bottom), before (1st column) and
after (2nd column) binarization (λ = 0.92, moving average order: h = 3).
Right (4 columns): some snapshots of LEGION taken at different times. The
samples used here are extracted from test input data recorded in scenario P.

of the SOM.
A different manifestation of the context dependency is

the number of nodes a SOM devotes to a specific type of
sound (e.g. car passages, near-silence, pedestrian chatter).
Correspondingly, the more heterogeneous the soundscape on
which a SOM is trained, the smaller the number of nodes
dedicated to each specific type of sound.

By coupling the SOM to a Locally Excitatory Globally
Inhibitory Oscillator Network (LEGION), which simulates
the oscillatory correlation activity of the neuronal sensory
cortex, we were able to use the coupled model for object
formation and segregation tasks, where an object in our
context is a group of contiguous units similar to the new
sound sample.

The model could be used to distinguish between common
and rare sound events in a context-specific manner. Moreover,
we feel the model merits further research in order to assess
its suitability for specific environmental sound recognition
and segregation. In order to do so, future work will have
to focus on increasing the time resolution and the sound
stream formation ability by reducing the transient time in
the LEGION oscillatory dynamics.

A different avenue of interest is increasing the biological
plausability of the SOM-LEGION coupling. More to the
point, previously unheard sound events can result in little
activation of the map, while one would prefer to have a
LEGION-segregation between known and unknown compo-
nents even in such a setting, especially in case of highly
salient, though unknown, events. Segregation could also



be performed for unknown sound events by changing the
binarization threshold, perhaps by considering local maxima
in activation of the SOM. In the current implementation,
previously unheard components will likely be ignored due to
them having a smaller activation than the known components
of the sound event. Another issue regards the training phase.
In this paper there is a sharp distinction between training
and testing phase, which is not biologically plausible: to a
certain extent, connections in the brain remain flexible, and
training from external stimuli remains possible. A possible
improvement of the model could be to trigger a new SOM
learning phase when conspicous but unknown sound events
are observed.
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