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Abstract. Discrete Clifford analysis is a higher dimensional discrete function theory based on skew Weyl relations. It is
centered around the study of Clifford algebra valued null solutions, called discrete monogenic functions, of a discrete Dirac
operator, i.e. a first order, Clifford vector valued difference operator. In this contribution, we establish a Cauchy-Kovalevskaya
extension theorem for discrete monogenic functions defined on th&grid m-tuples of integer multiples of a variable mesh

width h. Convergence to the continuous case is investigated. As illustrative examples we explicitly construct the Cauchy-
Kovalevskaya extensions of the discrete delta function and of a discretized exponential.
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INTRODUCTION

The Cauchy-Kovalevskaya extension theorem [1, 5] is well-known; for a well-documented account on this result we
refer to [2]. The idea behind the concept of Cauchy-Kovalevskaya extension (short: CK extension) is to characterize
solutions of suitable (systems of) PDE’s by their restriction, sometimes together with the restrictions of some of their
derivatives, to a submanifold of codimension one.

In the complex plane, choosing the involved differential operator to be the Cauchy—Riemann operator, the CK
extension theorem states that a holomorphic function in an appropriate region of the complex plane is completely
determined by its restriction to the real axis. Moreover, given this restriction, the theorem also provides a reconstruction
formula for the original function.

Euclidean Clifford analysis is a function theory which provides a higher dimensional generalization of the theory of
holomorphic functions in the complex plane; the theory focusses on monogenic functions, i.e. Clifford algebra valued
null solutions of the Dirac operatek = S| ; &dy ., Where(ey, ..., en) is an orthonormal basis &™, underlying the
construction of the Clifford algebra. The CK extension theorem in this context thus is a direct generalization of the
complex plane case; taking, in order to be in accordance with what follows, the signature of the Clifford algebra to be
(m,0), it reads as follows.

Theorem 1 IdentifyR™~% with {x € R™: x; = 0}, and Ietf(xz,X3, ...,Xm) be real analytic in an open s€ of RM1,

containing the origin. Then there exists an open neigbourlmmﬂfz in R™ and a unigue monogenic function fah
given by
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such that its restriction t@ is preciselyf. Here% stands for the restriction af to R™1.

In the paper [3] a discrete counterpart of Euclidean Clifford analysis, based on skew Weyl relations was constructed.
Basic definitions were established for a discrete Dirac opeEatdiscrete monogenic functions and discrete spherical
monogenics, i.e. homogeneous discrete monogenic polynomials. Now we establish a CK extension theorem in discrete
Clifford analysis. The convergence of the discrete results to the corresponding continuous ones is investigated and
illustrative examples are given. In an introductory section, see also [3], the basic framework for discrete Clifford
analysis is included.
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BASIC NOTIONS OF THE DISCRETE SETTING

Let R™ be them-dimensional Euclidean space with orthonormal basgisj = 1,...,m. In the discrete Clifford
setting, the equidistant latticE' with general mesh widtth > 0 over the spac&®™ is introduced byZ[' =
{(€1h,€ah, ..., lmh) | (41, 02,...,¢m) € Z™}. A Clifford vector x thus will only be allowed to show co-ordinates which
are integer multiples of the mesh widthThe one-sided forward and backward diﬁerenﬁ?sj =1,...,mactona

functionu as
At = u(~+herj])—u(-)7 Al = u(-)—ur(]-—hej)

and are seen as ‘lowering operators’. The corresponding discrete (star) Laplacian is given by

. m.o M/ f(x+hej)— f(x—he f
Ah[f](g):;lA}“Aj M;( (x e,)hz (x e,)) o f®)
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To introduce the discrete Dirac operator, the so-called Hermitean setting is used, where the CliffordRigeltsra
embedded in a bigger complex Clifford algeléta,, the underlying vector space of which has double the dimension.
This allows us to split each basis elemeptinto a forward and backward basis eleme]ﬁtand g, satisfying the

anti-commutator relations; e; +-€;€; =0,€/ e/ +€/e =0ande/e; +€; € = §j,. The discrete Dirac operator
ki f(x+he)—f(x) _ f(x)—f(x—hey)
_ + XA N8 X X X—Ne;
RS € V-1 o o=l

factorizes the star Laplacia(ﬁ)2 = A;;) and tends t@x ash — 0. A discrete functions then is called discrete monogenic
iff itis in the kernel of the discrete Dirac operator. ‘Raising operat)&f‘s’ interacting with the corresponding ‘lowering
operators’Aji according to the skew Weyl relatiod§ X;" — X;"A; = 1 andA; X, — X;"A{ = 1, combine into the

discrete vector variabl® = z’j“:l (e}’Xf + ej*XJ-*). The discrete Euler operathy, see also [3], has the explicit form

E=3", (ej*eij*Aj* +ej*ej+Xj+Aj+) and satisfies intertwining relations with the Dirac operator and the vector
variable which also hold in the continuous Clifford setting, D&X + XD =2E +m, DE =ED+D andEX = XE+ X.
Discrete homogeneous polynomials of degkealso called discrete spherical monogenics, are, by definition, the
eigenfunctions of the discrete Euler operator with eigenviallie order to determine them, we decompdsmto co-
ordinate variableg; = e]ij* + ej*XJ*, andD into co-ordinate difference operatals= e]-+AJ-+ + € Ay, which inherit
their (anti)commutator relations from the skew Weyl relations, naragly — &;0; = 1 anddy§; +&jdp =0, £ # j.
Invoking the intertwining relation betwedhandX, it is easily seen tha¢; = &;(E + 1), whence the natural powers
of the operato&; acting on the ground state &}‘[1}, are the basic discrete homogeneous polynomials of dégree
in the variablex;, similar tox'j‘ in the continuous setting. The homogeneous discrete polynoﬁj‘i{eﬂﬂp‘are explicitly
given by§j[1](x) = x; (¢] +¢;) and, fom=1,2,...andj=1,...,m,

n n—1

L (x)) =X (e +€)) |] (& —h2i%),  EP1)(x)) = (sz +nhx (e e — e;e{)) |] O¢—h%i%) (1)

THE DISCRETE CAUCHY-KOVALEVSKAYA EXTENSION

Let f be a discrete function in the variables, ..., xn), defined on the gri(th*l and taking values in the algebra
over {e;,eg,...,e,%,er;}. Then it can be shown that there exists a unique discrete monogenic function, called the
Cauchy-Kovalevskaya extension (short CK extension),dh the variablegx, ..., xm), defined on the grid!" and
taking values in the algebra ovéef, € s e,}e,;}, such that its restriction te; = 0 equalsf. Explicitely, this CK
extension is given by

< &)

CKM(XLXZ“”’Xm):kZOTfk(xz"“’xm) @)

where, denoting the restriction B, to Z"* by D}, it holds thatfo = f and fx;1 = (—1)¥"1Dj, f.



Note that, in this definition there are no conditions imposed on the original funttisince from (1) it follows that
12”“[1] (x1) =0, forn> % and&2"[1)(x;) =0forn > % +1, implying that for every poinfxy, ..., xm) of the grid
7y, the series reduces to a finite sum.

Ashapproaches zer@, tends tad while §" 1] (xq) — " ej and& 2 [1] (x1) — x2". Formally, the discrete CK
extension thus tends to the corresponding continuous CK extension. However, convergence depends on the considered
function, since the continuous CK extension only exists for real analytic functions. For example, the CK extension of
a delta function exists only in the discrete setting; or> 0 the values will diverge. On the other hand, the discrete
counterpart of the real analytic function €xp) admits a CK extension that converges to the continuous one tvhen
approaches zero. Both cases are illustrated below.

ILLUSTRATIVE EXAMPLES

CK extension of the discrete delta function

As a first example, we present the CK extension of the discrete delta function, i.e. the restriction to mﬁ‘drid

of the functiondp(xp, . .., Xm) on R™1, taking the value 1 if0,...,0) and the value O elsewhere. As every discrete
function given by its values in the vertices of the grid can be written as a linear combination of shifted delta functions,
the CK extension of the delta function is a basic building block for the CK extension of other functions. We will only
treat the casen = 2 explicitely; however, other dimensions may be directly computed as well.

) k
The CK extension op(x2) is given byCK [8g] (x1,X2) = Z % fu(x2) wherefp(xz) = do(x2), and
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This allows to calculate the scalar part of (8, which is depicted in figure 1. For a poif#;, xp) of the grid, it is
given by
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Whenh approaches zero, the values of [Bi{x2)] (x1,%2) increase in absolute value to infinity, for every point of the
grid (x1,X2) with x1 # . Note that the continuous functiai is not real analytic and hence has no CK extension in
the continuous setting.

FIGURE 1. Scal(CK|[dp] (x1,%2)), first fully displayed, then zoomed in and finally given by a contourplot



CK extension of a discrete exponential

Again we restrict ourselves to dimensiom= 2. The CK extension of the restriction of the real analytic function
exp(xz) to Zy, is given by

k
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where the functiongy are given byfp = exp(x2), fox = ( hzlk) Z)(—l)J (21k> exp(xz + (k— j)h) and
J:

-1 k+1 2k+1 . 2k—|—1 ] 72k+l C(2k+-1 ]
f2k+1:(hz% [e{ JZ)(_l)J< j )exp(xz+(k+l—1)h)—e2 JZJ(_l)J( j )exp(xz—(k+1—])h)]

For a point(xy, x2) of the gridZ2, the scalar part of Cilexp(x2)](x1,X2) is given by

k-1
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Whenh approaches zero, the CK extension of the discrete function very quickly approaches the CK extension of the

continuous function. Figure 2 depicts the values of both the continuous as the discrete CK extensigr2f fxp
two different values oh.
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FIGURE 2. Scal(CK[exp(x2)] (x1,X2)) both discrete and continuous, for= 1 andh = %



