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Abstract. Discrete Clifford analysis is a higher dimensional discrete function theory based on skew Weyl relations. It is
centered around the study of Clifford algebra valued null solutions, called discrete monogenic functions, of a discrete Dirac
operator, i.e. a first order, Clifford vector valued difference operator. In this contribution, we establish a Cauchy-Kovalevskaya
extension theorem for discrete monogenic functions defined on the gridZm

h of m-tuples of integer multiples of a variable mesh
width h. Convergence to the continuous case is investigated. As illustrative examples we explicitly construct the Cauchy-
Kovalevskaya extensions of the discrete delta function and of a discretized exponential.
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INTRODUCTION

The Cauchy-Kovalevskaya extension theorem [1, 5] is well–known; for a well–documented account on this result we
refer to [2]. The idea behind the concept of Cauchy-Kovalevskaya extension (short: CK extension) is to characterize
solutions of suitable (systems of) PDE’s by their restriction, sometimes together with the restrictions of some of their
derivatives, to a submanifold of codimension one.

In the complex plane, choosing the involved differential operator to be the Cauchy–Riemann operator, the CK
extension theorem states that a holomorphic function in an appropriate region of the complex plane is completely
determined by its restriction to the real axis. Moreover, given this restriction, the theorem also provides a reconstruction
formula for the original function.

Euclidean Clifford analysis is a function theory which provides a higher dimensional generalization of the theory of
holomorphic functions in the complex plane; the theory focusses on monogenic functions, i.e. Clifford algebra valued
null solutions of the Dirac operator∂x = ∑m

k=1ek∂xk, where(e1, . . . ,em) is an orthonormal basis ofRm, underlying the
construction of the Clifford algebra. The CK extension theorem in this context thus is a direct generalization of the
complex plane case; taking, in order to be in accordance with what follows, the signature of the Clifford algebra to be
(m,0), it reads as follows.

Theorem 1 IdentifyRm−1 with {x∈ Rm : x1 = 0}, and let f̃ (x2,x3, . . . ,xm) be real analytic in an open set̃Ω of Rm−1,
containing the origin. Then there exists an open neigbourhoodΩ of Ω̃ in Rm and a unique monogenic function f inΩ,
given by

f (x1,x2, . . . ,xn) = exp
(
−x1e1∂̃x

)
[ f̃ ] =

∞

∑
k=0

1
k!

xk
1(−e1∂̃x)k[ f̃ ]

such that its restriction tõΩ is preciselyf̃ . Here∂̃x stands for the restriction of∂x to Rm−1.

In the paper [3] a discrete counterpart of Euclidean Clifford analysis, based on skew Weyl relations was constructed.
Basic definitions were established for a discrete Dirac operatorD, discrete monogenic functions and discrete spherical
monogenics, i.e. homogeneous discrete monogenic polynomials. Now we establish a CK extension theorem in discrete
Clifford analysis. The convergence of the discrete results to the corresponding continuous ones is investigated and
illustrative examples are given. In an introductory section, see also [3], the basic framework for discrete Clifford
analysis is included.
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BASIC NOTIONS OF THE DISCRETE SETTING

Let Rm be them-dimensional Euclidean space with orthonormal basisej , j = 1, . . . ,m. In the discrete Clifford
setting, the equidistant latticeZm

h with general mesh widthh > 0 over the spaceRm is introduced byZm
h =

{(`1h, `2h, . . . , `mh) |(`1, `2, . . . , `m) ∈ Zm}. A Clifford vectorx thus will only be allowed to show co-ordinates which
are integer multiples of the mesh widthh. The one-sided forward and backward differences∆±

j , j = 1, . . . ,m, act on a
functionu as

∆+
j [u] =

u(·+hej)−u(·)
h

, ∆−
j [u] =

u(·)−u(·−hej)
h

and are seen as ‘lowering operators’. The corresponding discrete (star) Laplacian is given by

∆∗
h[ f ](x) =

m

∑
j=1

∆+
j ∆−

j [u] =
m

∑
j=1

(
f (x+hej)− f (x−hej)

h2

)
− 2m

f (x)
h2

To introduce the discrete Dirac operator, the so-called Hermitean setting is used, where the Clifford algebraR0,m is
embedded in a bigger complex Clifford algebraC2m, the underlying vector space of which has double the dimension.
This allows us to split each basis elementej into a forward and backward basis elemente+

j ande−j , satisfying the
anti-commutator relationse−j e−` +e−` e−j = 0, e+

j e+
` +e+

` e+
j = 0 ande+

j e−` +e−` e+
j = δ j`. The discrete Dirac operator

Dh[ f ](x) =
m

∑
j=1

(
e+

j
f (x+hej)− f (x)

h
+ e−j

f (x)− f (x−hej)
h

)
factorizes the star Laplacian

(
D2

h = ∆∗
h

)
and tends to∂x ash→ 0. A discrete functions then is called discrete monogenic

iff it is in the kernel of the discrete Dirac operator. ‘Raising operators’X±
j , interacting with the corresponding ‘lowering

operators’∆±
j according to the skew Weyl relations∆+

j X+
j −X−

j ∆−
j = 1 and∆−

j X−
j −X+

j ∆+
j = 1, combine into the

discrete vector variableX = ∑m
j=1

(
e+

j X−
j +e−j X+

j

)
. The discrete Euler operatorE, see also [3], has the explicit form

E = ∑m
j=1

(
e+

j e−j X−
j ∆−

j +e−j e+
j X+

j ∆+
j

)
and satisfies intertwining relations with the Dirac operator and the vector

variable which also hold in the continuous Clifford setting, i.e.DX +XD= 2E+m, DE = ED+D andEX = XE+X.
Discrete homogeneous polynomials of degreek, also called discrete spherical monogenics, are, by definition, the

eigenfunctions of the discrete Euler operator with eigenvaluek. In order to determine them, we decomposeX into co-
ordinate variablesξ j = e+

j X−
j +e−j X+

j , andD into co-ordinate difference operators∂ j = e+
j ∆+

j +e−j ∆−
j , which inherit

their (anti)commutator relations from the skew Weyl relations, namely∂ jξ j − ξ j∂ j = 1 and∂`ξ j + ξ j∂` = 0, ` 6= j.
Invoking the intertwining relation betweenE andX, it is easily seen thatEξ j = ξ j(E+1), whence the natural powers
of the operatorξ j acting on the ground state 1,ξ k

j [1], are the basic discrete homogeneous polynomials of degreek

in the variablex j , similar toxk
j in the continuous setting. The homogeneous discrete polynomialsξ k

j [1] are explicitly
given byξ j [1](x j) = x j (e+

j +e−j ) and, forn = 1,2, . . . and j = 1, . . . ,m,

ξ
2n+1
j [1](x j) = x j (e+

j +e−j )
n

∏
i=1

(x2
j −h2i2), ξ

2n
j [1](x j) =

(
x2

j +nhxj(e+
j e−j −e−j e+

j )
) n−1

∏
i=1

(x2
j −h2i2) (1)

THE DISCRETE CAUCHY-KOVALEVSKAYA EXTENSION

Let f be a discrete function in the variables(x2, . . . ,xm), defined on the gridZm−1
h and taking values in the algebra

over
{

e+
2 ,e−2 , . . . ,e+

m,e−m
}

. Then it can be shown that there exists a unique discrete monogenic function, called the
Cauchy-Kovalevskaya extension (short CK extension) off , in the variables(x1, . . . ,xm), defined on the gridZm

h and
taking values in the algebra over

{
e+

1 ,e−1 , . . . ,e+
m,e−m

}
, such that its restriction tox1 = 0 equalsf . Explicitely, this CK

extension is given by

CK [ f ] (x1,x2, . . . ,xm) =
∞

∑
k=0

ξ k
1 [1](x1)

k!
fk(x2, . . . ,xm) (2)

where, denoting the restriction ofDh to Zm−1
h by D′

h, it holds thatf0 = f and fk+1 = (−1)k+1D′
h fk.



Note that, in this definition there are no conditions imposed on the original functionf , since from (1) it follows that
ξ

2n+1
1 [1](x1) = 0, for n > |x1|

h andξ
2n
1 [1](x1) = 0 for n > |x1|

h +1, implying that for every point(x1, . . . ,xm) of the grid
Zm

h , the series reduces to a finite sum.
As h approaches zero,Dh tends to∂x while ξ

2n+1
j [1] (x1)→ x2n+1

j ej andξ 2n
j [1] (x1)→ x2n

j . Formally, the discrete CK
extension thus tends to the corresponding continuous CK extension. However, convergence depends on the considered
function, since the continuous CK extension only exists for real analytic functions. For example, the CK extension of
a delta function exists only in the discrete setting; forh→ 0 the values will diverge. On the other hand, the discrete
counterpart of the real analytic function exp(x2) admits a CK extension that converges to the continuous one whenh
approaches zero. Both cases are illustrated below.

ILLUSTRATIVE EXAMPLES

CK extension of the discrete delta function

As a first example, we present the CK extension of the discrete delta function, i.e. the restriction to the gridZm−1
h

of the functionδ0(x2, . . . ,xm) on Rm−1, taking the value 1 in(0, . . . ,0) and the value 0 elsewhere. As every discrete
function given by its values in the vertices of the grid can be written as a linear combination of shifted delta functions,
the CK extension of the delta function is a basic building block for the CK extension of other functions. We will only
treat the casem= 2 explicitely; however, other dimensions may be directly computed as well.

The CK extension ofδ0(x2) is given byCK [δ0] (x1,x2) =
∞

∑
k=0

ξ k
1 [1] (x1)

k!
fk(x2) where f0(x2) = δ0(x2), and

f2n(x2) =
2n

∑
j=0

(−1) j+n
(

2n
j

)
δ(n− j)h

h2n

f2n+1(x2) = e+
2

(
2n+1

∑
j=0

(−1) j+n+1
(

2n+1
j

)
δ( j−n−1)h

h2n+1

)
+e−2

(
2n+1

∑
j=0

(−1) j+n
(

2n+1
j

)
δ(n+1− j)h

h2n+1

)

This allows to calculate the scalar part of CK[δ0], which is depicted in figure 1. For a point(x1,x2) of the grid, it is
given by

1+
| x1

h |
∑
n=1

x2
1 ∏n−1

m=1

(
x2

1−m2h2
)

h2n(n!)2 whenx2 = 0, (−1)|
x2
h |

| x1
h |

∑
n=| x2

h |

x2
1 ∏n−1

m=1

(
x2

1−m2h2
)

h2n(n− x2
h )!(n+ x2

h )!
whenx2 6= 0

Whenh approaches zero, the values of CK[δ0(x2)] (x1,x2) increase in absolute value to infinity, for every point of the
grid (x1,x2) with x1 6= x2. Note that the continuous functionδ0 is not real analytic and hence has no CK extension in
the continuous setting.

FIGURE 1. Scal(CK [δ0] (x1,x2)), first fully displayed, then zoomed in and finally given by a contourplot



CK extension of a discrete exponential

Again we restrict ourselves to dimensionm = 2. The CK extension of the restriction of the real analytic function
exp(x2) to Zh, is given by

CKh[exp(x2)](x1,x2) = exp(x2)+
| x1

h |
∑
k=1

(ξ1)
2k
h [1](x1)
(2k)!

f2k(x2)+
| x1

h −1|
∑
k=0

(ξ1)
2k+1
h [1](x1)

(2k+1)!
f2k+1(x1)

where the functionsfk are given byf0 = exp(x2), f2k =
(−1)k

h2k

2k

∑
j=0

(−1) j
(

2k
j

)
exp(x2 +(k− j)h) and

f2k+1 =
(−1)k+1

h2k+1

[
e+

2

2k+1

∑
j=0

(−1) j
(

2k+1
j

)
exp(x2 +(k+1− j)h)−e−2

2k+1

∑
j=0

(−1) j
(

2k+1
j

)
exp(x2− (k+1− j)h)

]

For a point(x1,x2) of the gridZ2
h, the scalar part of CKh[exp(x2)](x1,x2) is given by

exp(x2)

1+
| x1

h |
∑
k=1

(−1)k


x2

1

k−1

∏
m=1

(
x2

1− (mh)2)
(2k)!h2k

k

∑
m=−k

(
(−1)m

(
2k

k−m

)
exp(mh)

)


Whenh approaches zero, the CK extension of the discrete function very quickly approaches the CK extension of the
continuous function. Figure 2 depicts the values of both the continuous as the discrete CK extension of exp(x2), for
two different values ofh.
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FIGURE 2. Scal(CK [exp(x2)] (x1,x2)) both discrete and continuous, forh = 1 andh = 1
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