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This paper describes special genetic operators for searching an 

optimal solution (in terms of heuristic methods) in the problems where 
the solution is represented as a sequence of unique elements (numbers, 
letters etc, e.g. 42751368 or BDACE). There is a number of problems 
with similar solution representation: Travelling Salesman Problem 
(TSP), Graph Theory problems (minimal or maximal path on a graph) 
etc. Authors try and assume the formalization as follows: we need to 
find a maximum (or minimum) of an objective function F(X), within a 
solution pool of {x1, x2, …, xn}, where n is the length of vector X and 
each xi is unique. In other words, the problem is in finding the sequence 
of the solution vector X* components bringing the minimum (or 
maximum) value to the objective function F(X*).  

Such problems can be solved using analytical techniques such as 
branch and bound method but the more the number of the vector x 
components, the more is the polynomial time for finding a solution and 
from some value of n it is nearly impossible to use analytical 
techniques.  

The authors propose to use genetic algorithm (GA) to solve the 
above mentioned problem as a reliable heuristic technique. GA does not 
ensure an optimal solution, however it usually gives good 
approximations in a reasonable amount of time. Genetic algorithms are 
loosely based on natural evolution and use a “survival of the fittest” 
technique, where the best solutions survive and are varied until we get a 
good result. The classical GA process consists of the following steps: 
1) Encoding; 2) Evaluation; 3) Crossover; 4) Mutation; 5) Decoding. 

A suitable encoding is found for the solution to a problem so that 
each possible solution has a unique encoding and the encoding is some 
form of a string. For our problem this condition is satisfied and no 
solution encoding/decoding is needed, so we use GA excluding the 
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coding/decoding steps. Then the initial population is selected, usually 
at random. The fitness of each individual in the population is then 
computed, according to the objective function F(X); that is, how well 
the individual fits the problem and whether it is near the optimum 
compared to the other individuals in the population. This fitness is used 
to find the individual’s probability of crossover. If an individual has a 
high probability (which indicates that it is significantly closer to the 
optimum than the rest of its generation) then it is more likely to be 
chosen to crossover. Crossover is where the two individuals are 
recombined to create new individuals which are copied into the new 
generation. For our problem the classical GA crossover doesn’t work 
because it produces children with duplicates and missing elements. 
Some crossovers for such situations have been developed so far, but we 
choose two which are simple and effective: a variation of the Greedy 
Crossover (GC) and Partially Matched Crossover (PMC). GC: we 
choose the first element from one of the parent chromosomes (parent1 
= 12345678; parent2 = 85213647). We pick 1 from parent1, child1 = 
1*******. We must pick every element from one of the parents and 
place it in the position it was previously in. Since the first position is 
occupied by 1, the number 8 from parent2 can not be there. So we must 
now pick the 8 from parent1, child1 = 1*******8. This forces to put 7 
in position 7 and 4 in position 4, as in parent1, child1 = 1**4**78. 
Since the same set of position is occupied by 1,4,7,8 in parent1 and 
parent2, we finish by filling in the blank positions with the elements of 
those positions in parent2: child1 = 15243678, and we deduce child2 
from the complement of child1.  

In PMC we take two random points (like in 2-point classical 
crossover) and swap the respective genes on the same positions in both 
parents: Parents 12|34|5 and 35|21|4 => 3->2 and 4->1 => Children 
43215 and 25341 (respectively). 

Next some individuals are chosen randomly to be mutated. 
Classical mutation has also to be replaced with one producing feasible 
changes to the solution, ie it is possible to swap two randomly selected 
elements or inverse the order in the elements located between two 
randomly selected ones. Once this is done, a new generation has been 
formed and the process is repeated until some stopping criterion has 
been reached. At this point the process is complete. 

Computation experiments performed in Mathcad and Microsoft 
Visual C# .NET conclude the effectiveness of the described GA. 


