
 1
Optimal resequencing using Genetic algorithm*

by Dmitriy Borodin, Pieter Caluwaerts,

Viktor Gorelik and Alexander Rodyukov
University College of Ghent, Belgium

Dorodnicyn Computing Centre of RAS, Russia
Borisoglebsk State Pedagogical University, Russia

This paper describes special genetic operators for searching an

optimal solution (in terms of heuristic methods) in the problems where
the solution is represented as a sequence of unique elements (numbers,
letters etc, e.g. 42751368 or BDACE). There is a number of problems
with similar solution representation: Travelling Salesman Problem
(TSP), Graph Theory problems (minimal or maximal path on a graph)
etc. Authors try and assume the formalization as follows: we need to
find a maximum (or minimum) of an objective function F(X), within a
solution pool of {x1, x2, …, xn}, where n is the length of vector X and
each xi is unique. In other words, the problem is in finding the sequence
of the solution vector X* components bringing the minimum (or
maximum) value to the objective function F(X*).

Such problems can be solved using analytical techniques such as
branch and bound method but the more the number of the vector x
components, the more is the polynomial time for finding a solution and
from some value of n it is nearly impossible to use analytical
techniques.

The authors propose to use genetic algorithm (GA) to solve the
above mentioned problem as a reliable heuristic technique. GA does not
ensure an optimal solution, however it usually gives good
approximations in a reasonable amount of time. Genetic algorithms are
loosely based on natural evolution and use a “survival of the fittest”
technique, where the best solutions survive and are varied until we get a
good result. The classical GA process consists of the following steps:
1) Encoding; 2) Evaluation; 3) Crossover; 4) Mutation; 5) Decoding.

A suitable encoding is found for the solution to a problem so that
each possible solution has a unique encoding and the encoding is some
form of a string. For our problem this condition is satisfied and no
solution encoding/decoding is needed, so we use GA excluding the

* The research is funded by the European CAPSCHED project

2

2

coding/decoding steps. Then the initial population is selected, usually
at random. The fitness of each individual in the population is then
computed, according to the objective function F(X); that is, how well
the individual fits the problem and whether it is near the optimum
compared to the other individuals in the population. This fitness is used
to find the individual’s probability of crossover. If an individual has a
high probability (which indicates that it is significantly closer to the
optimum than the rest of its generation) then it is more likely to be
chosen to crossover. Crossover is where the two individuals are
recombined to create new individuals which are copied into the new
generation. For our problem the classical GA crossover doesn’t work
because it produces children with duplicates and missing elements.
Some crossovers for such situations have been developed so far, but we
choose two which are simple and effective: a variation of the Greedy
Crossover (GC) and Partially Matched Crossover (PMC). GC: we
choose the first element from one of the parent chromosomes (parent1
= 12345678; parent2 = 85213647). We pick 1 from parent1, child1 =
1*******. We must pick every element from one of the parents and
place it in the position it was previously in. Since the first position is
occupied by 1, the number 8 from parent2 can not be there. So we must
now pick the 8 from parent1, child1 = 1*******8. This forces to put 7
in position 7 and 4 in position 4, as in parent1, child1 = 1**4**78.
Since the same set of position is occupied by 1,4,7,8 in parent1 and
parent2, we finish by filling in the blank positions with the elements of
those positions in parent2: child1 = 15243678, and we deduce child2
from the complement of child1.

In PMC we take two random points (like in 2-point classical
crossover) and swap the respective genes on the same positions in both
parents: Parents 12|34|5 and 35|21|4 => 3->2 and 4->1 => Children
43215 and 25341 (respectively).

Next some individuals are chosen randomly to be mutated.
Classical mutation has also to be replaced with one producing feasible
changes to the solution, ie it is possible to swap two randomly selected
elements or inverse the order in the elements located between two
randomly selected ones. Once this is done, a new generation has been
formed and the process is repeated until some stopping criterion has
been reached. At this point the process is complete.

Computation experiments performed in Mathcad and Microsoft
Visual C# .NET conclude the effectiveness of the described GA.

