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This paper presents the overview of crossover and mutation 

operators for permutation representation of genetic algorithm 

solution chromosome with examples. 

 

Introduction 

Genetic algorithms (GA) are based on natural evolution and use the “survival 

of the fittest” approach, where the best solutions survive and are varied until a 

good result is found.  

This class of heuristic algorithms proved reasonably good efficiency for 

different combinatorial and optimization problems [5,6,7,8].  

The classical GA consists of the following steps: 1) Generation of Initial 

Population (usually pseudo-randomly); 2) Selection of solutions for crossover; 

3) Crossover of two or more solutions to produce new solutions; 4) Mutation of 

some solutions; 5) Selection for the new population; 5) If the stopping criteria is 

not satisfied, go to step 2; otherwise return the quasi-optimize solution.  

A typical GA requires a genetic representation of the solution domain and a 

fitness function to evaluate the solution domain, which in many cases appears to be 

an objective function for the problem under study. 

The whole genetic process is driven by a hope that new solutions generated 

by crossover operator will be better in terms of fitness function (FF) value than 

their “parent” solutions. Trapping in the local optima – a common problem of 

search techniques – is reduced by mutation operator – a minor change of solution 

components in order to change its position on the FF curve.  

Classical GA was proposed by Holland in the 1970s [9] and was based on the 

binary representation of the solution domain. Many GA implementations include 

solution encoding and decoding procedures into binary string. This explains by a 

relatively easy work with such binary structure due to only two possible values of 

the solution components: 0 and 1. Effective crossover and mutation operators have 

been developed for the binary representation but nowadays more and more 

problems are encoded in a problem-specific way. There are three major 

interpretations of a permutation [3]. For example, in TSP, permutations represent 

tours and the relevant information is the adjacency relation among the elements of 

a permutation. 
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In resource scheduling problems, permutations represent priority lists and the 

relevant information is the relative order of the elements of a permutation. In other 

problems, the important characteristic is the absolute position of the elements in 

the permutation. We consider the permutation solution representation as a 

sequence of unique integer numbers, as shown on figure 1. 

Location 0 1 2 3 4 5 6 7 … N Unique 

Genes 3 1 7 9 5 6 4 N … 2  

Fig. 1. Chromosome with Permutation Solution Representation 

A solution is called a chromosome, solution items (elements) – genes. The 

rule for any genetic operator involving chromosome genes change is to keep the 

chromosome genes unique. In particular, this is a demand for crossover and 

mutation operators. 

 

Crossovers 

Normally, crossover is performed with two chromosomes, called parent 

chromosomes, or parents, to create new chromosomes, child chromosomes or 

children.  The idea is to take information from both parents and transfer it to the 

children hoping that children would be better in terms of fitness function.  

In most cases, from two parents it is possible to get one child or two children. 

There are many various crossover operators developed for permutation 

chromosomes [1,6,7,8,10]. We consider the most popular and suitable for various 

problems.  

 

1. Sorting crossover: this operator sorts one parent permutation toward the 

order of the other parent permutation. 

The following pseudo-code[thesis] is a generic algorithm for sorting 

crossover, the details on sorting crossovers are discussed in [7].  

 
2. Partially-matched crossover (PMX).  

Step 1. Randomly select a segment of genes from parent 1 and copy them 

directly to child 1. Note the indexes of the segment. For the random selection of a 

segment two random numbers are generated (the condition is 0 <= Rand_N1 < 

Rand_N2 < Parent1_Length) and used as the first and last indexes of the segment 

respectively.  

Step 2. In the same segment positions of parent 2, select each value that has 

not already been copied to child 1. 



Step 3. For each of the selected values:   

Step 3.1. Note the index of the value in parent 2 and locate the value 

from parent 1 in the same position.  

Step 3.2. Locate the same value in parent 2.  

Step 3.3. If the index of this value in parent 2 is a part of the original 

segment, go to step 3.1 using this value.  

Step 3.4. If the position isn't a part of the original segment, insert the 

value derived from step 3 into child 1 in this position.  

Step 4. Copy any remaining positions from parent 2 to child 1.  

For child 2, swap the parents and perform steps 1-4.  

Figure 2 gives a PMX example. 

 
Fig 2. Partially-matched crossover example 

 

3. Cyclic crossover (CX): identifies a number of so-called cycles between 

two parent chromosomes. 

Step 1. Child 1 gets the first gene of parent 1. 

Step 2. In Parent 1, find gene equal to gene 1 in parent 2; check if child 1 

contains this gene. If not, copy this gene to child 1 at the same place, let it be place 

x. Otherwise – go to step 5. 

Step 2.i. In parent 1, find gene equal to gene x in parent 2; check if child 

1 contains gene x. If not, copy gene x to child 1 at the same place, let it be 

place x1; repeat Step 2.i with x=x1. Otherwise – go to Step 3. 

Step 3. Final step: once Step 2 is completed, fill in empty genes of child 1 

with corresponding values of parent 1. 

Figure 3 illustrates CX iterations. 

  

 
Fig 3. Cyclic crossover example, iterations from left to right 

4. Order crossover (OX): segments of genes with same positions are copied 

from both parents to both children, the missing genes are copied to child 1 in the 

order these genes are located in parent 2.  
Step 1. Select two random genes and copy the segment between them to both 

children from parent 1 and 2 respectively. 



Step 2. Take a set of genes from parent 1, missing in child 1, and in order 

they are positioned in parent 2. 

Step 3. Put genes from the set to empty places in child 1 consequently. 
 

Parent 1: 8 4 7 | 3 6 2 5 | 1 9 0 

Parent 2: 0 1 2 | 3 4 5 6 | 7 8 9 

Step 1 

Child 1:  _ _ _ | 3 6 2 5 | _ _ _ 

Step 2 

Set of missing genes: 

8 4 7 1 9 0 

Reordering according to Parent 2 

0 4 7 1 8 9 

Step 3 

Child 1:  0 4 7 | 3 6 2 5 | 1 8 9 

 
For the child 2, just swap parents: 
Parent 1: 0 1 2 | 3 4 5 6 | 7 8 9 

Parent 2: 8 4 7 | 3 6 2 5 | 1 9 0 

Step 1 

Child 1:  _ _ _ | 3 4 5 6 | _ _ _ 

Step 2 

Set of missing genes: 

0 1 2 7 8 9 

Reordering according to Parent 2 

8 7 2 1 9 0 

Step 3 

Child 2:  8 7 2 | 3 6 2 5 | 1 9 0 

 

Result 

Parent 1: 8 4 7 3 6 2 5 1 9 0 

Parent 2: 0 1 2 3 4 5 6 7 8 9 

[order crossover] 

Child 1:  0 4 7 3 6 2 5 1 8 9 

Child 2:  8 7 2 3 4 5 6 1 9 0 

 

Mutation 

The most common mutation operators for permutation chromosomes are 

[1,2,3,7]: 

1. Inversion: this operator selects two random genes along the chromosome 

and reverses the segment between these two genes. According to [7], “it is 

particularly well-suited for the TSP and for all the problems that naturally admit a 

permutation representation in which adjacency among elements plays an important 

role.”  



Scramble: this operator randomly reorders the genes between two randomly 

selected points. Another implementation is possible: randomly chosen genes are 

randomly reordered while keeping the rest chromosome genes in the absolute 

order. 

       
Fig. 4. Scramble and inversion mutation operators. 

 

2. Insert: this operator randomly selects one gene and inserts it before or 

after a different randomly selected gene in the chromosome (see figure 5, point 1 

and point 2 respectively). These operators are used for scheduling problems in 

which relative order of elements is important. 

 
Fig. 5. Insert mutation operator. 

 

3. Swap and adjacent swap (two-element swap): the swap operator selects 

two genes and swaps them. The adjacent swap swaps two neighbor genes. 

        
Fig. 6. Swap and adjacent swap mutation operators. 

 

Mutation is a non-deterministic operator with a given probability distribution, 

and it can generate an offspring more than one mutation operator away from the 

parent. 

 

 

Real Case Application 

 



Figure 7 below illustrates the real-case problem solved by GA with 

chromosome permutation representation. 

 
Fig. 7. Example of real-case permutation chromosome implementation. 

 

Conclusion and Future Work 

GA is a widely used and powerful optimization method. It has been very 

successful when applied to problems that can be coded naturally as binary strings. 

However, ordering problems are more naturally coded as ordered lists and there is 

no standard GA for manipulating such representations. One of the important 

problems is to design a suitable crossover operator together with an effective 

mutation. We suggest that it is possible to start with universal crossover and 

mutation operators such as the ones described in the current paper and then modify 

them to be problem-specific by taking into account genes relations. Problem 

specific information can not only make the solution quality better but also improve 

the performance of GA. 

For the further work it is reasonable to make evaluation criteria for crossover 

and mutation operators in order to make them predictable, which should lead to a 

theory, such as described in [7]. 
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