
Crossover and Mutation Operators for Genetic Algorithm with

Permutation Representation of Solution Domain

Dmitriy BORODIN
1
, Wim DE BRUYN, Bert VAN VRECKEM, Viktor

GORELIK

University College Ghent, Belgium

Dorodnycin Computing Center of Russian Academy of Science, Moscow,

Russia

This paper presents the overview of crossover and mutation

operators for permutation representation of genetic algorithm

solution chromosome with examples.

Introduction

Genetic algorithms (GA) are based on natural evolution and use the “survival

of the fittest” approach, where the best solutions survive and are varied until a

good result is found.

This class of heuristic algorithms proved reasonably good efficiency for

different combinatorial and optimization problems [5,6,7,8].

The classical GA consists of the following steps: 1) Generation of Initial

Population (usually pseudo-randomly); 2) Selection of solutions for crossover;

3) Crossover of two or more solutions to produce new solutions; 4) Mutation of

some solutions; 5) Selection for the new population; 5) If the stopping criteria is

not satisfied, go to step 2; otherwise return the quasi-optimize solution.

A typical GA requires a genetic representation of the solution domain and a

fitness function to evaluate the solution domain, which in many cases appears to be

an objective function for the problem under study.

The whole genetic process is driven by a hope that new solutions generated

by crossover operator will be better in terms of fitness function (FF) value than

their “parent” solutions. Trapping in the local optima – a common problem of

search techniques – is reduced by mutation operator – a minor change of solution

components in order to change its position on the FF curve.

Classical GA was proposed by Holland in the 1970s [9] and was based on the

binary representation of the solution domain. Many GA implementations include

solution encoding and decoding procedures into binary string. This explains by a

relatively easy work with such binary structure due to only two possible values of

the solution components: 0 and 1. Effective crossover and mutation operators have

been developed for the binary representation but nowadays more and more

problems are encoded in a problem-specific way. There are three major

interpretations of a permutation [3]. For example, in TSP, permutations represent

tours and the relevant information is the adjacency relation among the elements of

a permutation.

1
 Correspondence: Dmitry Borodin, Faculty of Business Information and ICT, Schoonmeersstraat 52,

9000 Ghent, Belgium. Tel: +32486335470. email: dmitriy.borodin@hogent.be

http://en.wikipedia.org/wiki/Genetic_representation
http://en.wikipedia.org/wiki/List_of_academic_disciplines
http://en.wikipedia.org/wiki/Fitness_function

In resource scheduling problems, permutations represent priority lists and the

relevant information is the relative order of the elements of a permutation. In other

problems, the important characteristic is the absolute position of the elements in

the permutation. We consider the permutation solution representation as a

sequence of unique integer numbers, as shown on figure 1.

Location 0 1 2 3 4 5 6 7 … N Unique

Genes 3 1 7 9 5 6 4 N … 2

Fig. 1. Chromosome with Permutation Solution Representation

A solution is called a chromosome, solution items (elements) – genes. The

rule for any genetic operator involving chromosome genes change is to keep the

chromosome genes unique. In particular, this is a demand for crossover and

mutation operators.

Crossovers

Normally, crossover is performed with two chromosomes, called parent

chromosomes, or parents, to create new chromosomes, child chromosomes or

children. The idea is to take information from both parents and transfer it to the

children hoping that children would be better in terms of fitness function.

In most cases, from two parents it is possible to get one child or two children.

There are many various crossover operators developed for permutation

chromosomes [1,6,7,8,10]. We consider the most popular and suitable for various

problems.

1. Sorting crossover: this operator sorts one parent permutation toward the

order of the other parent permutation.

The following pseudo-code[thesis] is a generic algorithm for sorting

crossover, the details on sorting crossovers are discussed in [7].

2. Partially-matched crossover (PMX).

Step 1. Randomly select a segment of genes from parent 1 and copy them

directly to child 1. Note the indexes of the segment. For the random selection of a

segment two random numbers are generated (the condition is 0 <= Rand_N1 <

Rand_N2 < Parent1_Length) and used as the first and last indexes of the segment

respectively.

Step 2. In the same segment positions of parent 2, select each value that has

not already been copied to child 1.

Step 3. For each of the selected values:

Step 3.1. Note the index of the value in parent 2 and locate the value

from parent 1 in the same position.

Step 3.2. Locate the same value in parent 2.

Step 3.3. If the index of this value in parent 2 is a part of the original

segment, go to step 3.1 using this value.

Step 3.4. If the position isn't a part of the original segment, insert the

value derived from step 3 into child 1 in this position.

Step 4. Copy any remaining positions from parent 2 to child 1.

For child 2, swap the parents and perform steps 1-4.

Figure 2 gives a PMX example.

Fig 2. Partially-matched crossover example

3. Cyclic crossover (CX): identifies a number of so-called cycles between

two parent chromosomes.

Step 1. Child 1 gets the first gene of parent 1.

Step 2. In Parent 1, find gene equal to gene 1 in parent 2; check if child 1

contains this gene. If not, copy this gene to child 1 at the same place, let it be place

x. Otherwise – go to step 5.

Step 2.i. In parent 1, find gene equal to gene x in parent 2; check if child

1 contains gene x. If not, copy gene x to child 1 at the same place, let it be

place x1; repeat Step 2.i with x=x1. Otherwise – go to Step 3.

Step 3. Final step: once Step 2 is completed, fill in empty genes of child 1

with corresponding values of parent 1.

Figure 3 illustrates CX iterations.

Fig 3. Cyclic crossover example, iterations from left to right

4. Order crossover (OX): segments of genes with same positions are copied

from both parents to both children, the missing genes are copied to child 1 in the

order these genes are located in parent 2.
Step 1. Select two random genes and copy the segment between them to both

children from parent 1 and 2 respectively.

Step 2. Take a set of genes from parent 1, missing in child 1, and in order

they are positioned in parent 2.

Step 3. Put genes from the set to empty places in child 1 consequently.

Parent 1: 8 4 7 | 3 6 2 5 | 1 9 0

Parent 2: 0 1 2 | 3 4 5 6 | 7 8 9

Step 1

Child 1: _ _ _ | 3 6 2 5 | _ _ _

Step 2

Set of missing genes:

8 4 7 1 9 0

Reordering according to Parent 2

0 4 7 1 8 9

Step 3

Child 1: 0 4 7 | 3 6 2 5 | 1 8 9

For the child 2, just swap parents:
Parent 1: 0 1 2 | 3 4 5 6 | 7 8 9

Parent 2: 8 4 7 | 3 6 2 5 | 1 9 0

Step 1

Child 1: _ _ _ | 3 4 5 6 | _ _ _

Step 2

Set of missing genes:

0 1 2 7 8 9

Reordering according to Parent 2

8 7 2 1 9 0

Step 3

Child 2: 8 7 2 | 3 6 2 5 | 1 9 0

Result

Parent 1: 8 4 7 3 6 2 5 1 9 0

Parent 2: 0 1 2 3 4 5 6 7 8 9

[order crossover]

Child 1: 0 4 7 3 6 2 5 1 8 9

Child 2: 8 7 2 3 4 5 6 1 9 0

Mutation

The most common mutation operators for permutation chromosomes are

[1,2,3,7]:

1. Inversion: this operator selects two random genes along the chromosome

and reverses the segment between these two genes. According to [7], “it is

particularly well-suited for the TSP and for all the problems that naturally admit a

permutation representation in which adjacency among elements plays an important

role.”

Scramble: this operator randomly reorders the genes between two randomly

selected points. Another implementation is possible: randomly chosen genes are

randomly reordered while keeping the rest chromosome genes in the absolute

order.

Fig. 4. Scramble and inversion mutation operators.

2. Insert: this operator randomly selects one gene and inserts it before or

after a different randomly selected gene in the chromosome (see figure 5, point 1

and point 2 respectively). These operators are used for scheduling problems in

which relative order of elements is important.

Fig. 5. Insert mutation operator.

3. Swap and adjacent swap (two-element swap): the swap operator selects

two genes and swaps them. The adjacent swap swaps two neighbor genes.

Fig. 6. Swap and adjacent swap mutation operators.

Mutation is a non-deterministic operator with a given probability distribution,

and it can generate an offspring more than one mutation operator away from the

parent.

Real Case Application

Figure 7 below illustrates the real-case problem solved by GA with

chromosome permutation representation.

Fig. 7. Example of real-case permutation chromosome implementation.

Conclusion and Future Work

GA is a widely used and powerful optimization method. It has been very

successful when applied to problems that can be coded naturally as binary strings.

However, ordering problems are more naturally coded as ordered lists and there is

no standard GA for manipulating such representations. One of the important

problems is to design a suitable crossover operator together with an effective

mutation. We suggest that it is possible to start with universal crossover and

mutation operators such as the ones described in the current paper and then modify

them to be problem-specific by taking into account genes relations. Problem

specific information can not only make the solution quality better but also improve

the performance of GA.

For the further work it is reasonable to make evaluation criteria for crossover

and mutation operators in order to make them predictable, which should lead to a

theory, such as described in [7].

References

(1) Abido, M. A., Elazouni, Ashraf M. Precedence-Preserving GAs

Operators for Scheduling Problems with Activities' Start Times Encoding //

Journal of Computing in Civil Engineering, Vol 24, Issue 4, pp. 345-356

(2) T. Bäck, D. B. Fogel, T. Michalewicz (eds.) (2000) Evolutionary

computation 1: Basic algorithms and operators // Institute of Physics Publishing.

(3) T. Back, D. B. Fogel, and Z. Michalewicz (eds.) (1997), Handbook of

evolutionary computation, Oxford press.

(4) L. Davis. (1985) Job-shop Scheduling with Genetic Algorithms //

Proceedings of an International Conference on Genetic Algorithms and Their

Applications, pp. 136-140.

(5) Gorelik V., Fomina T. (2004) Fundamentals of the Operations

Research // Textbook for university students. Moscow State Pedagogical University

in association with Lipetsk State Pedagogical University, 248 p. (in Russian)

(6) C. Moon, J. Kim, G. Choi and Y. Seo. (2002) An efficient genetic

algorithm for the traveling salesman problem with precedence constraints //

European Journal of Operational Research 140, pp. 606-617.

(7) A. Moraglio (2007) Towards a Geometric Unification of Evolutionary

Algorithms / PhD Thesis, Department of Computer Science, University of Essex,

392 p.

(8) I. Oliver, D. Smith, and J. Holland (1987) A study of permutation

crossover operators on the traveling salesman problem // Proceedings of the

Second International Conference on Genetic Algorithms, pp. 224–230.

(9) Pinedo Michael (2008) Scheduling: Theory, Algorithms and Systems.

Springer: Third Edition. 671 p.

(10) P.W. Poon, J.N. Carter (1995) Genetic Algorithm Crossover

Operators for Ordering Applications // Computers&Operations Research, Vol. 22,

pp. 135-147.

(11) Zhao Wei (1987) Zhao Wei, Krithi Ramamritham. Simple and

Integrated Heuristic Algorithms for Scheduling Tasks with Time and Resource

Constraints // The Journal of Systems and Software, Vol. 7, pp. 195-205.

