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Abstract  

Background 

Noise is typically conceived of as being detrimental for cognitive performance; 

however, a recent computational model based on the concepts of stochastic resonance 

and dopamine related internal noise postulates that a moderate amount of auditive 

noise benefit individuals in hypodopaminergic states. On the basis of this model we 

predicted that inattentive children would be enhanced by adding background white 

noise while attentive children’s performance would deteriorate. 

Methods 

Fifty-one secondary school pupils carried out an episodic verbal free recall test in two 

noise conditions. In the high noise condition, verb-noun sentences were presented in 

the presence of auditory background noise (white noise, 78 dB), and in the low noise 

condition sentences were presented without noise. 

Results 

Exposure to background noise improved performance for inattentive children and 

deteriorated performance for attentive children and eliminated episodic memory 

differences between attentive and inattentive school children. 

Conclusions 

Consistent with the model, our data show that cognitive performance can be 

moderated by external background white noise stimulation in a non-clinical group of 

inattentive participants. This finding needs replicating in a larger sample using more 

noise levels but if replicated has great practical applications by offering a non-

invasive help to improve school results in children with attentional problems. 
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Background  

It has long been known that cognitive processing is easily disturbed by incompatible 

environmental stimulation which distracts attention from the task [1]. This effect is 

believed to stem from competition for attentional resources between the distracting, 

and the target stimuli. Such negative distractor effects hold across a wide variety of 

tasks and stimuli as well as in different participant populations [2-6]. For some 

populations the effects are predicted to be especially strong. For instance, individuals 

with attentional problems such as attention deficit/ hyperactivity disorder (ADHD) are 

generally acknowledged to be more vulnerable to distraction than normal control 

children [7, 8].  

At the same time there are reports of contradictory findings where 

certain types of task irrelevant noise actually improve the performance of children. 

Surprisingly, this effect seems most pronounced in children with attention deficits. 

Under certain circumstances children with attentional problems (including those with 

ADHD), rather than being distracted, actually benefit from background task-irrelevant 

noise presented concurrently with a target task. For instance, background music 

improved performance on a simple arithmetic task [9] and a continuous performance 

task (CPT) [10] for children with ADHD. More recently, Stansfeld et al. [11] found 

that under certain conditions road traffic noise can improve performance on episodic 

memory tasks, especially in children at risk for attentional problems and academic 

under-achievement. Research data from our group demonstrated that adding 

background white noise to the environment enhanced memory performance of 

children with ADHD [12].  
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Why these paradoxical effects should occur is not well understood. 

Most accounts in the past, for example the optimal stimulation theory by Zentall and 

Zentall [13] and later models of cognitive energetic and motivational processes [14], 

have focused on the role of background stimulation as a generator of increased 

arousal which counteracts boredom. A recent computational model has attempted to 

explain these positive effects of background noise on performance in a different way 

[15]. This model combines two factors: (i) It explains how noise enhances attention 

and performance in general by the concept of stochastic resonance (SR) and (ii) 

explains why there are individual differences in the way noise affects the brain by a 

model of individual differences in dopamine. 

Stochastic Resonance – how noise strengthens the signal: SR is a 

fundamental mechanism that contributes to the process of noise improved signaling. 

SR or noise-improved signaling is a well-established phenomenon across a range of 

experimental settings; SR exists in any threshold-based system with noise that 

requires passing of a threshold for the registering of a signal. SR can be observed in 

nature in any non-linear dynamical system, which is not working at its optimum, in 

particular SR has been found in the nervous system. The simplest examples of noise 

benefit can be seen in the detection of sensory signals. When a weak signal (e.g. a 

tone stimulus) is presented below the hearing threshold it becomes detectable when 

random or white noise is added to the signal. In essence, this account proposes that 

the additional variability provided by the noise interacts with the weak signal pushing 

it above the detection threshold [see 16 for a review]. SR has been found in several 

modalities; audition [17], vision [18], and touch [19] where stochastic noise improves 

sensory discriminability. Recently SR has been shown to work across modalities, for 

example when auditory noise improves visual signal detection [20]. Most SR studies 
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have used perception tasks, requiring the detection of weak peripheral sensory inputs. 

However few studies have examined how noise influences cognitive performance. 

Recent empirical evidence suggests that SR can also improve central processing and 

cognitive performance, for example, SR has been found in cognitive tasks where 

auditory noise improved the speed of arithmetic computations (Usher & Feingold, 

2000) and visual memory recall [21]. Thus, adding noise to the input of information 

processing system can increase the signal-to-noise output of such systems. SR is 

usually quantified by plotting detection, or cognitive performance, as a function of 

noise intensity. This relationship follows an inverted U-curve function, where 

performance peaks at a moderate noise level. That is, moderate noise is beneficial for 

performance whereas too little, or too much, noise attenuates performance. For 

extensive reviews on the influence of noise on the nervous system the reader is 

referred to recent reviews [16, 22]. 

Individual differences in the SR effect: Dopamine is a neurotransmitter 

that modulates an neural cell response to its environment and determines the 

probability that it will fire to a stimulus [23]. Alterations in dopamine function are 

related to individual differences in attention [24, 25], cognition [26] and motivated 

behavior [27, 28]. Dopamine release has both tonic (background levels) and phasic 

(response to specific environmental events) components regulated by different brain 

regions [29, 30]. Tonic dopamine levels are suggested to modulate the phasic 

reactivity; a low tonic level increase stimulus dependent phasic release, and the 

opposite, a high tonic level suppress phasic release [31]. Low tonic levels cause 

neural instability associated with cognitive symptoms such as failure to sustain 

attention [32]. The hypodopaminergic state in ADHD is distinguished by low tonic 

dopamine levels leading to excessive reactivity to environmental stimulation [33, 34].  
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If the firing probability or gain parameter is low, neurons fire at random yielding 

poor cognitive performance and the opposite also occurs with a high gain yielding 

cognitive stability and thus high performance. This responsiveness of neurons is 

modulated through dopamine that enhances the differentiation between background, 

efferent firing and afferent external stimulation.  

It has been shown recently that neural noise related to dopamine tone is 

an integral part of inter-neuronal communication and that a sufficient level of noise 

may be necessary for normal function of the nervous system [22, 35], through the 

process of SR. That is, there exists both external noise – outside of the nervous 

system – and neural noise (related to dopamine tone) inside the system. The moderate 

brain arousal model (MBA) [15], is a neurocomputational model that relies on classic 

conditions for stochastic resonance and the modulating properties of dopamine-

related gain and neural noise in neural responsivity. It suggests that 

hypodopaminergic brains need higher input noise to function at their full potential. 

Thus the model suggests that external white noise could compensate for behavioral 

dysfunction connected to conditions caused by impaired dopamine transmission. 

Accordingly, ADHD children have a low gain parameter owing to low levels of 

baseline dopamine neuron firing. Neurocomputationally the MBA model shows that 

more external environmental noise is required for optimal performance in cognitive 

tasks in ADHD children (low gain) compared to normally developed (high gain). 

Accordingly, the external noise will compensate for reduced neural background 

activity (noise) in ADHD; increased levels of external auditive noise can activate 

internal noise and restore the activity level. Further, given the inverted U function 

that operates in relation to noise and performance in SR, it also predicts that levels of 

background noise that might be beneficial for ADHD children would be detrimental 
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for those with normal attention. Crucially, the beneficial effects are not specific to 

ADHD (Figure 1): they are also found in dopamine-related neurodegenerative 

disorders such as: akinesia [36], Parkinson’s disease [37] and in aging [38]. These 

effects have been modeled in terms of age dependent dopamine loss [39].  

In this paper we investigate, for the first time, how noise influence 

cognitive performance in a normal, non-clinical, group of children that differ from 

each other in their attentional abilities. Recent evidence suggests that dopamine plays 

a role in attention also in non-clinical groups. When a visual orienting task was used 

to study a normal group of children, it was found that those children who were 

homozygous for alleles influencing dopamine transportation displayed inattention on 

left-hand sided stimuli, whereas those who were heterozygotes did not [40]. The 

response to amphetamine has also been found to be influenced by genetic factors; it 

depends on the functional polymorphisms of the Catechol O-methyltranserase 

(COMT) gene in a normal population of humans. Mattay et al. [41] found that 

amphetamine enhanced prefrontal efficiency measured by fMRI for the val/val (high 

DA metabolism) genotype, whereas met/met (low DA metabolism), had no such 

effect on low to medium workload, and decreased efficiency on high workload tasks. 

Furthermore, preservations errors were decreased by amphetamine in the val/val, but 

not the met/met groups, in a Wisconsin Card Sorting Test (WCST). In another study 

on healthy controls by Mattay et al. (2000) dextroamphetamine was found to increase 

N-back working memory performance in group with low baseline working-memory 

capacity, whereas the performance worsened in a group with high baseline 

performance [42]. Dextroamphetamine also had differential effects on the BOLD 

fMRI response on these groups. These findings have been corroborated in a study 

using a spatial working memory task where stimulant medication only improved 
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memory performance in healthy individuals with low baseline working memory 

capacity [43]. This was also mirrored by increased cerebral blood flow in dorsolateral 

prefrontal cortex and posterior parietal cortex. Taken together these studies indicate 

that dopamine influences performance and brain activity differently also in groups 

consisting of healthy controls depending on tasks that are linked to attention and 

working memory (e.g., WCST, N-back, spatial working memory). This body of data 

is consistent with the view that ADHD is best conceptualized as a continuum rather 

than a discrete category and that ADHD symptoms are distributed in populations [44]. 

The syndrome of ADHD represents a transition of degree rather than of a kind and 

diagnostic thresholds are therefore somewhat arbitrary resting on general and cultural 

norms about behavior and development [45]. In addition, a comparison of the extreme 

points in a normal distribution shows the same heritability patterns as a comparison 

between ADHD and control [46]. This, in turn, suggests that non-clinical persons with 

low and high attention may show similar effect from noise as ADHD and control 

persons do.  

In this paper, we study inattentive and normally attentive children’s 

episodic memory in a verb-noun sentence recall task under two conditions varying in 

terms of the levels of background auditive white noise. Our prediction is that in the 

low noise condition the inattentive children will perform inferior to the attentive 

children and in the high noise condition these differences should disappear as noise 

benefits the inattentive but not the normally attentive children.  
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Methods 

Participants 

Fifty-one secondary school pupils (25 boys and 26 girls) between 11-12 years 

(M=11.7) participated in the study. The group consisted of children from two school 

classes, year seven (86% of children participated). Participants where divided into two 

groups depending on their attention ability, as assessed on a seven point Likert scale. 

Attention were evaluated by their teachers. The assessment scale is the same that was 

used in the longitudinal research program Individual Development and Adaptation 

[47]. Participants that scored high (6 or 7, having severe problems in the class room) 

on inattention where assigned to the inattentive group. This group consisted of 10 

participants, 6 of them also scored high on hyperactivity as evaluated by the teachers. 

The comparison group comprised the remaining 41 children that scored 5 or lower at 

the scale, and were assessed as average- or highly attentive. None of the inattentive 

group had an ADHD diagnosis and none were treated with medication. Achievements 

and scholastic skills (3 point scale) and reading ability [7 point scale; 47] were also 

rated by their teachers. Children’s school achievement was assessed in terms of 

whether their school performance was at the level expected for the age group. General 

cognitive skills and reasoning ability was assessed using the Raven’s progressive 

matrices test [48]. The Raven’s test assesses learning and problem solving ability and 

correlates highly with the g-factor in IQ tests. Finally, a forward and a backward digit 

span test were conducted, which measures short-term and working memory 

respectively. Table 1 shows the results from these tests divided into the high and low 

attentive group and other background characteristics. The groups were well matched 
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on school performance and general cognitive ability the inattentive group had less 

developed reading skills. 

*** INSERT TABLE 1 ABOUT HERE *** 

Design  

The design was 2 x 2, where noise levels (low versus high) was the within participant 

manipulation and the between group variable was teacher rated classroom attention 

level (normal versus inattentive). 

Materials 

All participants undertook a verbal episodic recall test. The to-be-remembered (TBR) 

items consisted of 96 sentences divided into 8 separate lists with 12 verb-noun 

sentences in each list. Each sentence consisted of a unique verb and a unique noun 

(e.g., “roll the ball”) in Swedish. The sentences were placed in random order. List-

order (1-8) and condition-order (no noise vs. noise) were counterbalanced and noise 

was present on every second list. All to-be-remembered sentences were recorded on a 

CD. A new item was read every 9th second. The sentences were read in both the low 

noise and the high noise condition. The equivalent continuous sound level of the 

white noise and the speech signal was 78 and 86 dB, respectively and the signal-to-

noise ratio was 8 dB. The signal was sufficiently strong so that all participants could 

errorless perceive the content of the words in both conditions (i.e., the tests were a 

cognitive memory test and not a perceptual test). The two noise levels were chosen to 

correspond to levels where earlier studies have found effect of SR on cognition in an 

arithmetic’s test for a normal population [49] and on working memory for Alzheimer 

patients [4]. Recordings were made in a sound studio. 
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Procedure 

The testing was conducted at the child’s school, following permission from parents 

and children. University College of Sogndal, Norway and the regional ethic board in 

Stockholm approved the study. The participants were tested individually in a room 

during the school day. The test lasted for about 45 minutes including instructions. 

Before starting the experiment proper, two practice sentences were presented.  The 

time taken to present each list was approximately 1 minute and 40 seconds. The noise 

exposure was continuous during the encoding phase and was present every second 

list; no noise was present during retrieval. Directly after presentation of the last item 

in a list, participants performed a free recall test in which they spoke out loud as many 

sentences as possible, in any order. 

Results  

Recall performance 

A 2 x 2 mixed ANOVA was conducted with one between-subject factor, Group 

(normal attention vs inattentive) and one within-subjects factor, encoding condition 

(low noise vs high noise). We choose the standard scoring procedure in the action 

memory literature [12, 50], where strict scoring are used for the nouns (exact matches 

were required) and lenient scoring are used for verbs (where non-exact matches are 

scored as correct). This is because nouns are typically recalled somewhat better 

compared to verbs [51]. There where no main effects of noise (F(49,1) = .01, p = .94) 

or group (F(49,1) = .30, p = .59) both groups performed at the same level overall 

across the two conditions. However, the interaction between noise and group was 

significant (F(49,1) = 9.96, p = .003, eta2  = .17) (Fig 2). This interaction was further 

explored with planned simple contrasts for the within subjects factors, using paired 



 - 13 - 

sample t-tests. Consistent with the hypothesis addition of white noise enhanced 

performance for the inattentive group (M = .39 vs. .44), and impaired performance for 

the attentive group (M = .46 vs. .41). Inattentive children performed better in the high 

rather than the low noise condition (t(9) = 1.84, p = .05 one-tailed). The opposite was 

the case for the normally attentive group (t(40) = -3.46, p = .001).  

 

*** Insert Figure 1 about here **** 

 

As reported above the two groups differed with respect to reading skills, as judged by 

teachers; with the inattentive group possessed inferior reading skills compared to the 

attentive group. However, when reading ability was added as a covariate to the main 

analysis the original interaction effect, although diminished, persisted (F(48,1)= 7.13, 

p = .010), even though reading level was independently related to performance 

(F(6,1)= 1.46, p = .213). A Spearman’s rank order correlation revealed negative 

correlation between reader skills and positive effect of noise (r = .335, N= 51, p = 

.016), a positive correlation between attention and reading ability (r = .498, N= 51, p 

< .001) and finally, a high positive correlation between teacher ratings of inattention 

and hyperactivity (r = .789, N= 51, p < .001)  

 

Discussion  

We have proposed a framework for understanding individual difference in the 

facilitative effects of auditive white noise on performance. As predicted the results 

show different effects of noise in attentive and inattentive children selected from the 

normal population. There was significant improvement in performance for the 
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children rated as inattentive by their teachers, and a significant decline in performance 

for those rated as attentive. Furthermore these effects seem independent of other 

factors measured in the study – attentional ability seems to be a key marker of this 

effect. These results are similar to those previously reported with ADHD patients 

[12]. Here we discuss theoretical and practical implications of these findings. 

  From a theoretical point of view the findings are consistent with the 

suggestion that the neural noise level associated with dopamine tone in inattentive 

children is sub-optimal (see also Sikström & Söderlund, 2007) and that noise may 

enhance performance through the phenomenon of stochastic resonance (SR). 

According to our view, noise in the environment yields an input to the perceptual 

system, which can either compensate for low noise in the neural system leading to an 

output consisting of improved cognitive performance, or, depending on pre-existing 

levels of neural noise, can add too much to an already well functioning system. The 

specific neuro-biological and neuro-chemical mechanisms responsible for these 

effects need further research. For instance, auditive white noise may have its effects 

either at a perceptual or neuro-psychological level or may operate a neuro-chemical 

level directly altering levels of dopamine release [15, 52]. Animal models of 

dopamine function or pharmacological probes to manipulate tonic and phasic 

dopamine are called for to investigate these effects. 

  Stimulant medication (e.g. methylphenidate) also improves cognitive 

performance in children with ADHD [53, 54]. This medication increases dopamine 

levels by blocking the dopamine transporter [55]. Low performing healthy controls 

also benefit from increased dopamine transmission, which is manifested in improved 

cognitive performance and increased prefrontal cortical activity [43]. Our data show 

that auditory white noise exerts potentially similar effects on cognition as medication 
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through the phenomenon of stochastic resonance (SR). Noise is characterized by 

randomness, and introduces variability in the nervous system [16]. A poorly tuned 

neural system benefit from noise. In fact, the stochastic resonance theory predicts that 

noise that is applied to the signal as an input to a neural cell, improves the signaling 

efficiency of the output of the cell, where the non-linearity in the firing threshold of 

the neural cells is the key to improvement of the signal to noise ratio [16, 56].  

Despite the fact that it appears that noise and methylphenidate 

improves cognitive performance, the underlying mechanism that is the basis of these 

phenomena are likely to be different. Theoretically speaking the difference between 

these phenomena is clear. Methylphenidate changes the strength (but not the 

variability) of the input, which is typically modeled by the gain parameter in abstract 

neural networks [23]. In contrast, noise changes the variability of the input (but per 

definition does not influence the strength) of the input. However, despite these clear 

differences in the underlying level, the behavioral outcome may be similar, and the 

two mechanisms interact in a complex way, making it difficult to distinguish the 

phenomena at the behavioral level [57]. Furthermore, direct evidence of difference 

between these levels is emerging. Pålsson and Söderlund et al. [58] studied the effect 

of methylphenidate, dopamine and noise on the startle response in a rat model of 

ADHD. They found that both control and ADHD strains (SHR) benefited from noise; 

however, this effect was also found in dopamine lesioned rats, suggesting that 

dopamine is not a necessary requirement for the stochastic resonance phenomenon to 

occur.  

  Another theoretical interpretation of the data is that noise in a general 

way increase arousal that makes the subject more alert, and less drowsy. The optimal 

stimulation model states that hyperactivity is as a homeostatic response to 
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underarousal in order to achieve an optimal arousal level [13]. However, this model 

does not make any explicit predictions about the selective effects of external 

stimulation whereas in the current study inattentive persons benefited from extra 

stimulation and attentive children did not. In the cognitive energetic model state 

factors like arousal, activation and effort are taken into account to explain 

shortcomings in ADHD patients [59]. According to this model state factors can be 

moderated by event rate (inter-stimulus-intervals, ISI) and workload in cognitive tasks 

both under- and over arousal can be produced. Recent research has shown that 

stimulant medication (methylphenidate) and shortened event rate can produce the 

same effect in a Go-Nogo task [60]. From our point of view the term arousal is poorly 

defined in the literature, and could be interpreted in terms of wakefulness or in term of 

neural arousal. To fully investigate the arousal-noise hypothesis an experiment would 

have to be designed where arousal is explicitly manipulated and measured. We argue 

that that proposed framework, including the dopaminergic influence on stochastic 

resonance, provides a more elaborated view both at the neural and at the behavioral 

level. To account for the current data an arousal view would have to argue for a 

selective lower arousal for the inattentive children. Finally, our experience is that the 

subjects in our experiment are fully aroused, the testing condition at hand are very 

stimulating, and subjects are very motivated to perform well.  

By highlighting the role of individual differences in the facilitative 

effects of auditive noise the current study refines our understanding of SR. SR 

exhibits an inverted U-curve function, where performance peaks at a moderate noise 

level. However, this is an oversimplification, as there is no absolute sense in which a 

moderate noise level is optimal. An “optimal” noise level for one individual could be 

either too high, or too low amount of noise for another individual. These complex 



 - 17 - 

interactions between noise and performance may account for some of the 

contradictory findings in the previous literature. For example, earlier research on 

noise in normal populations has shown both enhancing and detrimental effects of 

auditory white noise on cognition in non-clinical groups (90 dB) on simpler, short-

term memory tasks like anagrams, whereas speech noise was detrimental [61]. These 

noise effects also interacted with other variables such as gender and time of the day 

[62], which makes these results equivocal. No effect of white noise was found in digit 

span recall in two experiments, whereas speech noise had a detrimental effect [4, 5]. 

However, noise improvement was found in a simple addition task in selected groups, 

elderly and young participants [63] and among elderly and Alzheimer patients [4]. In 

Broadbent’s early research negative effects of noise have been found using high 

(excessive) noise levels around 100 dB [64-66]. In later experiments by Broadbent 

and colleagues, (word recall tasks) lower noise levels (80-85 dB) were used; results 

showed no effects of noise when exposed during the encoding phase but deteriorating 

results if exposed during the recall phase [67, 68]. More recently, episodic memory 

has been found to be particularly vulnerable to speech noise, whereas traffic noise 

showed no effect [2]. Results from the present study would indicate that the effects of 

external noise would have look quite different in many of these studies if participants 

had been divided into attentive and inattentive or young and elderly, that is high and 

low gain participants (tentatively high / low dopamine groups). Selective effects of 

noise can easily get hidden in group-means if some participants improve and others 

are impaired. Our data may encourage noise researchers to reanalyze their 

experiments dividing participants by individual differences in attention and 

performance. Preliminary data from our lab, on an ADHD rat model provide further 

support for noise benefit. The Spontaneous hypertensive rat (SHR) showed improved 
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sensorymotor gating by showing more a pronounced pre-pulse inhibition of the startle 

reflex when exposed to white noise as compared to control strains, even though 

control rats also increased their inhibition in noise conditions (Pålsson, Söderlund et 

al., submitted).  

Reading disability is a common co-morbidity in ADHD. Consistent 

with these findings, our data show lower reading skill for the inattentive group. 

Reading disability is also linked with reduced short-term verbal memory that requires 

phonetic coding of material, but not necessarily with executive functions or long-term 

memory [69, 70]. This is also consistent with our data that show a lower performance 

in the digits forward task that measures short-term memory, but no deficits for digits 

backward task that is related to working memory capacity. The MBA model accounts 

for these findings because the digits backward task is a more demanding task leading 

to higher brain arousal and thus good performance for inattentive children, whereas 

the less demanding digit forwards task does not sufficiently arouse the brain for the 

low attention children [15]. Additionally, the positive correlation between reading 

ability and noise enhancement suggests that noise enhances phonemic awareness. 

This is consistent with the idea that dyslexia is caused by phonological deficits [71], 

however, a further investigation of phonologic awareness is outside the scoop of the 

present study.  

 

Limitations 

The current study has a number of limitations. First, ratings of academic attainment 

and reading were based on single item non-validated scales. Second, only two noise 

levels were investigated. It would be interesting to include different levels so that the 

entire stochastic resonance curve can be mapped out. One prediction from our model 
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is that in attentive group, a subset of participants will benefit from noise when levels 

are individually adjusted. Furthermore, it would be of interest to investigate if the SR 

effect depends on tasks that puts different demands on cognitive control. Third, only 

one test of cognitive ability was tested. Future research may study whether the effects 

found here generalizes to other tasks such as executive and inhibitory functions. This 

is of particular importance while investigating the possibility of noise, as an 

intervention in ADHD. A final limitation of the present study is that the experiment 

was not designed to study differential effects of noise on study and recall. The 

experiment manipulates noise at encoding, but not at retrieval, so the effects of noise 

seen can only be attributed to the conditions at encoding. To what extent noise 

presented at recall influences performance cannot be determined by the experiment. 

However, the MBA predicts that the conditions where noise is beneficial during 

encoding should also be beneficial for performance during retrieval. At same time it 

may be difficult to directly compare encoding and retrieval conditions, because the 

task demand for encoding task may differ from the demands at retrieval.  

 

Conclusions  

In summary, the present study suggests that cognitive performance can be moderated 

by external stimulation in a non-clinical group of teacher rated inattentive 

participants. This finding could have great practical applications offering a non-

invasive help to improve school results in children with attentional problems. 

Increasing the awareness of this phenomenon in teachers’ opens up for a possibility of 

more efficient learning. In particular awareness should be raised regarding the 

possibility that the environment has be individually adjusted to the need of the 
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children, where inattentive children in a normal population show noise benefit when 

performing cognitive tasks. In our data these effects eliminated the differences 

between high performing, attentive and low performing inattentive children. The 

possibility that attention can be improved by the addition of carefully controlled levels 

of white noise into ones environment is potentially of major practical significance. 

Currently ADHD children are treated successful with medication, where 

environmental stimulation could be seen as a complementary method to deal with 

inattentive problems. This could be of particular importance for the significant 

population of parents that are at unease with medication. Environmental stimulation 

could provide a compelling complement in the future.  
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Figures 
Figure 1: Individual difference in SR curves 

  

Note. Performance on cognitive tests (y-axis) is optimal for moderate noise levels (x-axis), 

and attenuated for both too low and too high noise levels. More noise is required for optimal 

performance in inattentive or low performing children compared to attentive or high 

performing children. 

 

Figure 2: Recall performance as a function of noise and attention; inattentive 

vs. attentive children (teachers judgments: attentive N= 41; inattentive: N= 10). 
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Tables 

Table 1: Participant characteristics and cognitive test scores 

 

Cognitive and behavioral 

measures  

Attentive group  

N = 41 

(20 boys , 21 girls) 

Inattentive group 

N = 10 

(5 boys, 5 girls) 

Attentive vs. 

Inattentive 

 Mean   SD Range Mean   SD Range t-test score 

Inattention 

(1 = low, 7 = high) 

2.8  (1.6) 1 – 7 

 

6.2  (0.4) 1 – 7 

 

t(49)= 6.67*** 

 

Hyperactivity 

(1 = low, 7 = high) 

2.5  (1.6) 1 – 7 

 

4.9  (2.0) 1 – 7 

 

t(49)= 4.11*** 

School performance 

(1= below, 2= average, 3= above) 

2.3  (0.7) 1 - 3 2.1  (0.7) 1 - 3 t(49)= 0.94 

Reading skill 

(1 = low, 7 = high) 

5.0  (2.0) 1 - 7 3.5  (1.7) 1 - 7 t(49)= 2.38* 

Raven score 

 

41.2  (8.6) 16 - 55 37.3 (10.6) 19 - 53 t(49)= 1.09 

Digits forward 

 

23.1 (9.1) 4 - 42 15.0  (6.6) 4 - 23 t(49)= 3.22** 

Digits backwards 

 

14.9   (6.9) 2 - 34 13.2  (4.2) 7 - 18  t(49)= 0.97 

 Note: * p < .05, ** p < .01, *** p < .001 

 

 


