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Abstract: In a thin client computing environment, applications run on server farms 
and are accessed through thin client protocols like Remote Frame Buffer (RFB), or 
Remote Desktop Protocol (RDP). Although they work well in high and stable 
bandwidth networks, thin client protocols require some modifications to adapt to the 
varying characteristics of wireless networks and to reduce the energy consumption of 
thin client mobile devices. In this paper we present both upstream and downstream 
adaptive protocol optimizations. In the upstream direction, user events are buffered 
to reduce packetization overhead. In the downstream direction an adaptive 
scheduling-based transmission pattern is adopted. Our solution shows we can reduce 
the bandwidth consumption while preserving the Quality of Experience. Those 
adaptive mechanisms were developed as part of MobiThin FP7-funded European 
project.  
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1. Introduction 
In a thin client computing environment, applications run on server farms. Through thin 
client protocols, the client sends user data such as key entries or mouse movements to the 
server, which on its turn sends the graphics output data generated by the applications.  
 The benefits of the thin client computing paradigm are well known: reduction of total 
cost of ownership, improved security and privacy. Today thin client technology is getting 
much more interest thanks to virtualization technologies and the ability to take benefits of 
CPU processing power on remote servers distributed over the network.  
 Different thin client protocols exist, such as Virtual Network Computing’s Remote 
FrameBuffer Protocol (VNC-RFB) [1], Microsoft’s Remote Desktop Protocol (RDP) [2], 
Citrix’ ICA (Independent Computing Architecture) [3], or X11 [4]. These thin client 
solutions provide rather good Quality of Experience (QoE) in a high and stable bandwidth 
network environment and are promising in the mobile wireless networks.  
 These thin client protocols adopt either a polling transmission pattern wherein the client 
regularly requests the server to send a screen update, or a pushing transmission pattern 
wherein the server autonomously sends the screen refresh to the client. In the push model, 
the screen refresh rate can be unnecessary higher than the real user needs, leading to 
overused bandwidth and higher CPU consumption. In the pull model, the screen refresh is 
naturally adapted to client needs. In wide area networks, the network round trip time (RTT) 



can be very high so the refresh rate can become very low while the network bandwidth is 
underused. In contrast to local area networks where the RTT is low, the refresh rate can be 
too fast with respect to the real user needs and device capabilities, which also leads to high 
CPU and bandwidth consumption. In upstream direction, the user events are sent 
immediately as they occur over TCP/IP. The large packetization overhead, due to 
transmitting every user event in its own TCP/IP packet and the TCP acknowledgments 
(ACK), result in sub-optimal bandwidth consumption. As such, current thin client protocols 
working over TCP protocol consume a lot of bandwidth and the QoE is also reduced 
because of the TCP retransmission effects in wireless network [5]. Furthermore in mobile 
wireless environment, the existing thin client protocols have to face strong network 
impairments (handover, fluctuation of radio signals, bandwidth, packet loss or delay).  
 All those elements show that it is possible to optimize the screen update transmission 
and user event transmission by taking into account the network conditions, the user needs, 
the client and the server capabilities. MobiThin is a European FP7-funded project that is 
designing and developing a solution that will enable intelligent distribution of demanding 
services and applications to mobile thin client devices [6]. In addition to the design of a 
suitable framework for thin client service delivery and provisioning, research activities are 
made into thin client protocols to adapt to wireless network characteristics.  
 The remainder of this article is structured as follows. Section 2 presents the system 
architecture and the main blocks of the solution involved in the end-to-end protocol 
adaptation. In section 3 we describe the adaptive mechanisms for both the downstream and 
upstream directions. The experimental results are finally discussed in Section 4.  

2. Overall architecture  
The mobile thin client solution will work in both current internet and mobile wireless 
network infrastructure. Such architecture has been designed by the MobiThin project [6]. 
The thin client protocol should adapt to the varying network conditions and be efficient in 
term of power and bandwidth consumption.  
 In the field of downstream thin client protocol traffic, several studies were conducted to 
evaluate the performance of thin client protocols. [7] discusses the performance of remote 
display mechanisms, adopting server-push or client-pull models, across broad range of 
systems. In addition, to cope with reduced bandwidth consumption on the downlink 
direction, various compression techniques can be used. However none of the studies known 
so far considered remote display mechanisms that adapt to the overall system conditions. 
This reflects the need for a thin client protocol coping with dynamic variations of the 
environment such as handovers, delay variation, decreasing level of mobile device battery, 
user expected QoE, variation of server load and capabilities. The protocol will also have to 
ensure sufficient QoE in a mobile wireless environment. 
 To our knowledge, related work in the field of upstream thin client protocol traffic is 
currently limited to traffic characterization, a.o. by the University of Wurzburg [8][9]. For 
the Independent Computing Architecture (ICA), Citrix' thin client protocol, the authors 
demonstrate how nearly all packets sent by the client are either TCP acknowledgements or 
IP packets containing a single user event. Furthermore, they point out that in the design of 
the ICA protocol, responsiveness has played a more important role than packetization 
overhead.  In [10], we have quantified the power consumption of the wireless platform on 
thin client devices due to thin client protocol traffic. Although the WNIC is mostly in idle 
state, the results indicate that transmitting and receiving data account for up to 30 % of the 
total WNIC power consumption, even under circumstances of low packet loss and only 
medium congestion. This illustrates the need to optimize thin client protocol bandwidth 
consumption.  



 

Figure 1: Thin client protocol adaptation to environment constraints 

 In this paper, as illustrated in Figure 1, we propose two protocol optimizations. In the 
downstream direction, a scheduled-based screen update transmission pattern is introduced, 
where the scheduled refresh is adapted to the client needs and current wireless network 
conditions. In the upstream direction, a user event buffering mechanism is presented that 
decreases the packetization overhead while taking into account user responsiveness. 

3. Protocol adaptivity mechanisms 

3.1 Protocol adaptivity for downstream direction 

We propose a transmission mechanism driven by the idea that the screen updates are 
scheduled based on terminal, server and network conditions, as well as user expectations.  

 

Figure 2: Scheduling pattern for adaptive screen updates 

 As shown in Figure 2, based on system conditions (battery level, processing speed, 
supported decoding, available bandwidth, delay, etc.) the client estimates a scheduling 
value which it sends to the server in the form of a “Scheduling Request” message. Besides 
the maximum update frequency, this message can contain specific refresh criteria (such as 
the area of interest and the desired encoding scheme). Upon receipt of the Scheduling 
Request message the server may re-estimate the scheduling value before enforcing the 
scheduling onto the screen update transmission. Therefore, as soon as the server detects 
some areas having been updated the server transmits the screen data to client based on the 



predefined scheduled value. This process will be regularly applied leading to a dynamic 
adaptation of the thin client protocol.  
 By using this pattern to dynamically adapt to the client and server capabilities and the 
varying network conditions, we expect to minimize the power consumption by adapting the 
refresh rate to the real user needs and to the device capabilities as well as optimally use the 
available bandwidth. The adaptive scheduling algorithm can also prevent slowdowns 
caused by end-to-end congestion by slightly increasing the scheduled value to let the client 
the time to render the screen updates. Therefore better bandwidth consumption with 
acceptable QoE, even on degraded network conditions, is expected for some use cases 
(office application, internet browsing). Although the pattern may prove to be advantageous 
when the user plays a video we do not expect much in this area and believe other transport 
protocol and encoding means are more suitable, for example presented in [11]. 
 The proposed pattern was implemented on TightVNC [12] that is based on an optimized 
version of the Remote Frame Buffer protocol. 

3.1.1 Client and server scheduling algorithms 

 
(a) Client side algorithm    (b) server side algorithm 

Figure 3: scheduling value evaluation 

As shown in Figure 3(a), the client estimates the scheduling value based on motion and 
network conditions estimation. The motion estimation was implemented by calculating the 
percentage of pixels to update per frame. The system conditions were estimated by 
calculating the display time and updates’ receipt frequency. The system conditions are 
network impairments such as bandwidth reduction, client impairment such as decoding 
capability, or server impairment such as reduced transmission rate.  
 The display time is the time elapsed between the receipt of the first pixels received in a 
framebuffer update and the display of the last pixels of the same framebuffer update on the 
client’s screen. If this time reaches a certain threshold we conclude there is bandwidth 
restriction because the data takes longer time to be transmitted, or there is client congestion 
because it takes more time to treat the received data.  
 The updates’ receipt frequency is an average of the measured real scheduling calculated 
by the client. This measure represents the time between the receipts of two frame updates.  
If the calculated value is above a certain threshold we can conclude there is client or server 
congestion, or bad network condition.  



 The server, as shown in Figure 3 (b), also evaluates the average scheduling value so it 
can estimate the congestion. When this mean scheduling value is too long this is probably 
due to server congestion, client congestion or a bandwidth restriction. In our 
implementation, when congestion is detected, the server applies a scheduling higher than 
the one asked by the client to let the client the time to treat all pending updates thereby 
reducing the congestion. If this dynamic adaptation was not activated, the client could not 
be able to display these update properly and in this case the user may suffer from a 
sensation of slowdown.  

3.2 Protocol Adaptivity for Upstream direction 

In general, three types of messages dominate the upstream traffic generated by pull thin 
client protocols. A first source are the acknowledgements (ACK) that are generated by TCP 
to ensure reliable transmission. The other two types are generated by the thin client protocol 
itself, namely user events and requests for display updates. 
 These observations are confirmed by Figure 4 depicting a histogram of the IP packet 
size, captured in the upstream direction from client to server during a typical VNC session 
involving text editing and browsing. Table I gives an overview of the size of the VNC-RFB 
protocol message. 
 Typically, user input is encoded as a series of small packets generated quickly one after 
another, resulting in a major packetization overhead. For example, moving the pointer 
results in a series of PointerEvent messages that only contain the new coordinates. A key 
stroke results in two KeyEvent messages, one for the press and one for the release action.  

 
 
 

 
 
 Every single user event is encapsulated in a separate TCP/IP packet, which results in a 
major packetization overhead.  KeyEvents contain 8 bytes of data, but are prepended with a 
32-byte TCP header and a 20-byte IP header, accounting for a packetization overhead of 
87%. Similarly, the TCP/IP packetization of PointerEvents leads to an overhead of 90%. 

3.2.1 Adaptive user event buffering 

A major fraction of the packetization overhead could be reduced if a single TCP segment 
would contain multiple VNC-RFB protocol messages.  This can be achieved by buffering 
the user events at the VNC layer. However, this increases the user perceived latency 
between the user input and the result becoming visible on the screen. Therefore, the 
buffering time should be adapted to the current network roundtrip time, in order not to harm 
the user interactivity experience. 
 A straightforward approach to determine the buffering delay BD(t) at time t can be 
proposed as: 
 

RFB message data size [B] 
RFB        IP             

overhead 
[%] 

FBUpdateRequest 10 62 83.87 

KeyEvent 8 60 86.67 

PointerEvent 6 58 89.66 

BD(t) = UPPER_BOUNDARY – RTT(t)                                               (1) 

Table 1: Packetization overhead of 
upstream RFB protocol messages 

Figure 4: Histogram of packet size of upstream VNC traffic 



 
 The value for the UPPER_BOUNDARY can be adapted according to the requirements 
of the application at hand. As indicated in [13], users tolerate less delay for highly 
interactive applications. While for text editing a delay is tolerated of up to 150 ms, for 
gaming mostly delays up to 80 ms are accepted. 

3.2.2 Implementation  

On a Linux platform, we have extended a TightVNC server with the adaptive buffering 
algorithm, as shown in Figure 1. A buffer was implemented between the RFB protocol 
layer and the TCP layer. The TCP layer was extended with our own kernel module to 
expose TCP state information to the other layers. More specifically, this module was used 
to retrieve the network roundtrip time estimation that is maintained by the TCP protocol. 
Based on this information, the optimal buffering delay is configured. 

4. Performance evaluation 

4.1 Downstream Experimental Results  

To assess the improvements of our optimizations, we have set a test bed wherein a gateway 
was used to shape the bandwidth. The tests consisted of comparing the bandwidth used by 
the legacy client with the enhanced one for different scenarios, and with different 
scheduling periods. All user events were recorded and automatically executed to guarantee 
reproducibility of the scenarios. 

4.1.1 Results in high bandwidth network (LAN)  

Figure 5 (a) presents the bandwidth used by the VNC client while the user is writing a text 
in an office text editing application with a refreshment period of 500 ms. The bandwidth 
comprises the upstream and downstream data. This rather high scheduled period value 
allows making more visible the differences comparing the enhanced protocol from the 
legacy protocol.  

 

(a) Comparison of Bandwidth usage   (b) Cumulated bandwidth usage during 3,282s 

Figure 5: bandwidth consumption, for a text application, in high available bandwidth network  

 While the legacy client receives several little updates, the enhanced client receives less 
but bigger updates regrouping all the modifications made since the previous update 
received. If we look at the cumulated bandwidth values, on the Figure 5 (b), we can see that 
a connection with a legacy client always uses more bandwidth than with the enhanced 
client. In this scenario, the higher the scheduled period value the lower the overall 
bandwidth consumed. This represents a bandwidth gain from 15 to 40%.  



 To balance the bandwidth consumption with good QoE, the user can determine which 
level of interactivity he finds acceptable. Besides, previous studies suggest round trip delays 
from 150ms to 1s depending on the interactivity requirements [13]. From experience we 
can conclude that a scheduling value of 300ms is a good trade-off.  
 The proposed pattern presents some benefits since a modification of the scheduled 
period can reduce the bandwidth consumption while preserving same or slightly lower 
QoE. Another benefit is that the pattern will naturally reduce the radio activity that is an 
important factor for a mobile terminal to increase the device autonomy. 

4.1.2 Results in low bandwidth network  

In Figure 6, we have limited the bandwidth at 15kbit/s. We compared a legacy viewer with 
the modified viewer with a scheduled updated period set to 300ms. 

 

Figure 6: bandwidth used for a text application with a limitation of 15kbit/s  

 We can observe that the modified viewer is not much affected by this limitation. 
Contrary to the legacy client, the updates of the modified viewer are regular: the quality of 
experience is still good for client with a scheduled value of 300ms while the legacy client’s 
QoE is worse. If the limitation is reduced to 10kbit/s, the modified viewer starts to give 
lagged results and for a better quality of service, the client has to increase its scheduled 
period. A 600ms-client seems to be an interesting trade-off in those conditions, giving a 
slightly improved QoE over the legacy viewer. 

4.2 Upstream Experimental Results 

For the experimental validation, the reference architecture depicted in Figure 1 was used. 
The buffering algorithm was evaluated for increasing values of network delay up to 150 ms 
and each experimental run comprised 20 iterations, in order to factor out random noise. The 
VNC latency is defined as the average time between the client sending a 
FramebufferUpdateRequest and receiving the subsequent FramebufferUpdate.  
 For reference purposes, the behaviour of unmodified VNC under increasing network 
delay is presented in Figure 7 (a). Without user event buffering, the upstream bandwidth 
slightly decreases for higher network delays, due to longer TCP roundtrip delays. In Figure 
7 (b), the user event buffering is applied, with an UPPER_BOUNDARY of 100 ms. 
Referring to Equation (1), for network delays below 100 ms, the user event buffering 
algorithm can be applied and hence the bandwidth is drastically reduced up to 6 kbps for a 
RTT of 80 ms. The fact that the latency is higher than the UPPER_BOUNDARY is due to 
processing delays at the server. In some cases, the server does not respond immediately to a 
FramebufferUpdateRequest, because the screen has not changed since the previous screen 
update, and a deferred update mechanism is activated [1]. Typically, screen changes result 
from user input, e.g. in a text editor and buffering user events will lead to more deferred 
updates. This increases the total perceived latency. In a next version of the algorithm, we 
will take into account the server processing. 



 
(a) Unmodified     (b) UPPER_BOUNDARY = 100 ms 

Figure 7: VNC latency and upstream bandwidth for different values of the network roundtrip time, with and 
without user event buffering. 

5. Conclusions 
In this paper, adaptive thin client protocol optimisations were presented for both the 
upstream and the downstream direction. In the downstream direction, an adaptive and 
scheduled-based screen update transmission pattern was introduced. We highlighted the 
benefits of reduced bandwidth and energy consumption with still a good or acceptable QoE. 
In the upstream direction, the buffering of user events decreases the packetization overhead 
and leads to important bandwidth savings. The buffering period is adapted to the current 
network delay, in order to preserve the user perceived latency.  
 The adaptive protocol, combined with ongoing MobiThin research activities, is 
expected to ease the introduction of thin client applications into mobile wireless network 
using mobile terminals.  

Acknowledgments  
Part of the research leading to these results was done for the MobiThin project and has 
received funding from the European Community’s Seventh Framework (FP7/2007-2013) 
under grant agreement nr 216946.  

References 
[1] T. Richardson, Q. Stafford-Fraser, Kenneth R. Wood, and Andy Hopper, Virtual Network Computing, IEEE Internet 
Computing, 1998, Vol.2, Issue 1, pp. 33-38. 

[2] Microsoft, Windows Remote Destkop Protocol [RDP] and Windows Terminal Services, http://www.microsoft.com  

[3] C. Inc., Citrix Independent Computing Architecture (ICA) and Citrix Xen App, http://www.citrix.com 

[4] X.Org Foundation project, an open source implementation of the X Window System, http://www.x.org  

[5] Hari Balakrishnan, Venkata N. Padmanabhan, Srinivasan Seshan, and Randy H. Katz. A comparison of mechanisms for 
improving TCP performance of wireless links. IEEE/ACM Transactions on Networking, 6(5), December 1997. 

[6] MobiThin, http://www.mobithin.eu 

[7] S. Jae Yang Nieh, Matt Selsky, and Nikhil Tiwari. The Performance of Remote Display Mechanisms for Thin-Client 
Computing. USENIX Association, Montery, California, USA, June 10-15, 2002. 

[8] Emmert B, Binzenhofer A, Schlosser D, Weiss M. "Source traffic characterization for thin client based office applications". In 
Lecture Notes In Computer Science 2007; pp 86-94. 

[9] Schlosser D, Binzenhofer A, Staehle B. "Performance comparison of Windows-based thin client architectures". In Proceedings 
of Australasian Telecommunication Networks and Applications Conference (ATNAC) 2007. 

[10] Simoens P, Vankeirsbilck B, Ali F.A., Deboosere L, De Turck F, Dhoedt B, Demeester P. "Characterization of power 
consumption in thin clients due to protocol data transmission over IEEE 802.11". 

[11] P.Simoens et al. Design and implementation of a hybrid remote display protocol to optimize multimedia experience on thin 
clients. Australasian Telecommunication Networks and Applications Conference, December 2008 

[12] TightVNC Software,  http://www.tightvnc.com  

[13] Niraj Tolia, David G. Andersen, M. Satyanarayan. Quantifying Interactive User Experience on Thin Clients. IEEE Computer, 
Volume 39 – 3, pages 46-52, March 2006.  

http://www.microsoft.com/�
http://www.citrix.com/�
http://www.x.org/�
http://www.mobithin.eu/�
http://www.tightvnc.com/�

	An adaptive approach to optimize thin client protocols
	1. Introduction
	2. Overall architecture
	3. Protocol adaptivity mechanisms
	3.1 Protocol adaptivity for downstream direction
	3.1.1 Client and server scheduling algorithms
	3.2 Protocol Adaptivity for Upstream direction
	3.2.1 Adaptive user event buffering
	3.2.2 Implementation

	4. Performance evaluation
	4.1 Downstream Experimental Results
	4.1.1 Results in high bandwidth network (LAN)
	4.1.2 Results in low bandwidth network
	4.2 Upstream Experimental Results

	5. Conclusions
	Acknowledgments
	References


