MOBITHIN Management Framework:
Design and Evaluation

Lien Deboosere*, Mario Kindf, Abdeslam Taguengaytef, Pieter Simoens*, Bert Vankeirsbilck*,
Fritz-Joachim WestphalT, Thomas Plantier?, Filip De Turck*, Bart Dhoedt* and Piet Demeester*

*IBBT - Department of Information Technology, Ghent University
Gaston Crommenlaan 8, bus 201, 9050 Gent, Belgium
Email: lien.deboosere @intec.ugent.be

TT-Systems Enterprise Services GmbH
Goslarer Ufer 35, 10589 Berlin, Germany

iPrologue
ZA de Courtaboeuf, 12 Avenue des Tropiques,
BP 73 - 91 943 Les Ulis Cedex, France

Abstract—In thin client computing, applications are executed
on centralized servers. User input (e.g. keystrokes) is sent to a
remote server which processes the event and sends the audiovisual
output back to the client. This enables execution of complex
applications on thin devices. Adopting virtualization technologies
on the thin client server brings several advantages, e.g. dedicated
environments for each user and interesting facilities such as
migration tools. In this paper, a mobile thin client service
offered to a large number of mobile users is designed. Pervasive
mobile thin client computing requires an intelligent service
management to guarantee a high user experience. Due to the
dynamic environment, the service management framework has
to monitor the environment and intervene when necessary (e.g.
adapt thin client protocol settings, move a session from one server
to another). A detailed performance analysis of the implemented
prototype is presented. It is shown that the prototype can handle
up to 700 requests/s to start the mobile thin client service. The
prototype can make a decision for up to 700 monitor reports per
second.

I. INTRODUCTION

In the thin client computing paradigm, computation and
storage are shifted from the client terminal (e.g. desktop PC,
laptop, PDA) to the network. User applications are executed
on a remote server and the client device only deals with user
interaction and the presentation of the screen graphics. Since
only basic functionality and processing power is required at
the client, redundant hardware can be stripped of the device,
resulting in thin devices that are lightweight and could be made
energy efficient.

The thin client concept is very promising for mobile users.
The mobile user can execute all applications, even without
falling back on a restricted mobile version of the application.

Because all data and applications are shifted to the network,
it is of the utmost importance that the thin client service is
always on, is ubiquitously available and offers a high Quality
of Experience (QoE). Current thin client deployments are
mostly situated in corporate Local Area Networks (LAN),

which are highly controlled environments offering fixed and
stable bandwidth availability. The MobiThin project [1] aims
to port the thin client concept into the wireless domain, either
in a Local or Wide Area Network (LAN/WAN). At least
in a WAN-environment, a broad audience of mobile users
are connected through unreliable wireless connections. This
imposes severe challenges for delivering a good quality of
experience for the end user. Ideally, the user should get the
same perceived application responsiveness as when running
the application locally. These challenges can be met by
an intelligent Service Management Framework. In Figure 1,
three components of the mobile thin client service can be
distinguished: a management server, a thin client server and
a client terminal. The Service Management Framework is
distributed among the three components. By monitoring the
environment, the Service Management Framework enables
adapting to variations in the state of the environment in which
the mobile thin client service operates.

(Service Management Framework)

' ' '

user input

(e.g. keystrokes)
- -
«—

audiovisual output

Thin Client

Thin Client Server Management Server

Fig. 1. Mobile thin client service: the service management framework is
distributed among management servers, thin client servers and client terminals.

The remainder of this paper is structured as follows. Related
work is described in section II. In section III is described
how the mobile thin client service can adapt to variations in
the state of the environment. The architecture of the Service

Management Framework is discussed in section IV. Techni-
cal implementation details of the prototype of the Service
Management Framework are covered in section V. Detailed
measurements on the response time of the prototype and a
performance analysis are discussed in section VI. Finally, con-
clusions are drawn and future work is described in section VII.

II. RELATED WORK

With resource-limited mobile devices, visiting websites
containing rich-content and executing complex applications
is impossible. To enable rich web-content, a proxy-based
approach is proposed in [2]. The active content is replaced with
an AJAX-based remote display component. This proxy-based
approach is limited to web content and executing complex
applications on the mobile device remains impossible. In the
current work, a thin client solution is proposed to enable both
visiting rich web-content and executing complex applications
on a mobile device. With that approach, all applications, even
webbrowsers, run on a remote server. In [3], pTHINC is
introduced to add specific functionality (e.g. server side screen
scaling, portrait and landscape viewing modes) when visiting
websites on the mobile device over a thin client protocol.
Examples of thin client protocols are Citrix Independent Com-
puting Architecture (ICA) [4], Virtual Network Computing
(VNC) [5] and more recently THINC [6] and a hybrid thin
client protocol that automatically switches between two modes
depending on the amount of motion in the screen [7].

The management of current thin client deployments is
straightforward. First of all, the limited number of users
is well-known. The administrators know what application is
executed by which user. Secondly, current thin client services
are deployed in stable environments, usually in a corporate
LAN. This means both the infrastructure and the network
used by the thin client service are under control of the com-
pany itself. Examples of thin client management systems are
Prologue’s UselT suite [8] and Citrix> Workflow Studio [4].
These systems target fixed users for accessing IT resources of
a single business entity, while the service envisioned in this
paper targets a wide range of IT resources accessible to a
broad audience of mobile users.

To deliver a high QoE for a large number of mobile users
in a WAN environment, an adaptive thin client protocol is
required to cope with variations in the environment. How-
ever, not all environmental changes can be compensated by
tuning the thin client protocol settings. Therefore, a Service
Management Framework is presented in this paper, able to
guarantee a high user experience for all users during their
complete session.

III. ADAPTIVITY

The mobile thin client service is offered in a dynamic en-
vironment: the wireless network conditions are unpredictable,
but also the load on the thin client servers is unpredictable,
since it depends on the amount and the kind of applications
executed by the users, which is not known in advance. The

mobile thin client service can adapt to changes in the environ-
ment in two ways: (i) by optimizing the thin client protocol
settings and (ii) by migrating a user’s session from one thin
client server to another. Examples of optimizing thin client
protocol settings can be found in [7], [9]. The migration of
user sessions within the scope of adapting to changes in the
environment is discussed below.

By supplying information about the state of the environ-
ment, the Service Management Framework can enhance the
efficiency of the thin client protocol to increase the user’s
experience. However, not all situations can be solved by
adapting the thin client protocol. For example, when a server
gets overloaded, adaptations on the thin client protocol level
might not be sufficient to keep guaranteeing a high user
experience. The only solution is then to move one or more
sessions from this server to another one. Migration can be
used as a means for load balancing, but also to anticipate on
the varying network delay due to the mobility of the users.
When the network delay between the user’s device and the thin
client server executing his session becomes too high, moving
the user’s session to a faster reachable thin client server can
enhance the user experience. Another application of migration
is for maintenance purposes: all sessions from a server are
moved to other thin client servers, in order to allow the system
administrator to shutdown the server for maintenance.

It is important that a user session can be migrated efficiently,
ideally without the user noticing. To avoid problems with
process migration tools (e.g. open files, network connections,
etc.) [10], virtualization technologies can be adopted. In that
case, every user has his own Virtual Machine (VM). Migrating
a VM, while the user stays connected, from one thin client
server to another relies on the migration tools of the adopted
virtualization technology also referred to as live migration.
Examples of virtualization technologies supporting live migra-
tion are Xen [11], Kernel-based Virtual Machine (KVM) [12]
and VMWare [13]. Adopting virtualization technologies on
the thin client server also brings other advantages: (i) the
VM’s are isolated (e.g. if one VM crashes, it does not cause
tearing down other VM’s), (ii)) VM’s can be personalized
(e.g. desktop background, application settings), (iii) different
operating systems can be executed on a single server.

IV. SERVICE MANAGEMENT FRAMEWORK (SMF)

To support the mobile thin client service, able to adapt to
variations in the environment, an intelligent Service Manage-
ment Framework is needed. The architecture of the SMF is
shown in Figure 2. The connection management component
accepts requests from users and provides authentication and
authorization. A component related to user management is
required to handle subscription information, personal settings
and to manage the user’s session. The data management
component is required to provide access to specific data on
users, sessions and the infrastructure. A business support
component is present for accounting purposes. An Application
Delivery Service (ADS) is introduced to ensure the scalability
of the mobile thin client service: since it is impossible to

Service Management Framework (SMF)

Connection Management

Infrastructure Management

User Management

‘ Authentication ‘ Monitoring ‘

‘ Network Management ‘ ‘

Subscription ‘

Server Selection

‘ Authorization ‘

‘ ‘ Resource Management ‘

‘ Profile & Preferences ‘

‘ Connection ‘ Migration

Self Management ‘ ‘ Session Management ‘

Business Support

Data Storage Service Application Delivery Service

Data Management

Fig. 2. Service Management Framework

assume all existing applications are installed in every VM, the
ADS enables automatic distribution of applications to VM’s. A
technology that can be used for the ADS is called application
streaming [14]. The storage of personal data as well as
application delivery are services that can be provided by
external providers. A component to communicate with these
external services is added to the SMF. The most challenging
component is the infrastructure management component which
is discussed in more detail below.

Efficient management of the infrastructure requires a moni-
toring component to gather information on the current state
of the infrastructure. Based on monitoring information, in-
telligent decisions can be made to optimize resource usage
while guaranteeing a high user experience. The infrastruc-
ture management is responsible for the proper distribution
of sessions among the available servers. The goal of this
distribution is a trade-off between load balancing and energy
efficiency. Load balancing should pursue an ideal distribution
of load between available servers, for example, having nearly
equal distribution of load among all servers. From an energy
efficiency point of view, it is more efficient to concentrate
the load on as less servers as possible. This allows to shut-
down non-used servers and conserve energy [15]. Resource
usage optimizations always have to take the user experience
into account since the SMF is responsible to guarantee the
desired quality to the users at all times. An intelligent server
selection algorithm is required to select an appropriate server
for each user, depending on the current location of the user,
the current state of the infrastructure and the user’s profile.
When the conditions of the environment have changed in
such way that a high user experience cannot be guaranteed
anymore, the migration component will migrate the user’s
session to another, well-chosen server. Network management
is another part of the infrastructure management. Since the
mobile thin client service is offered in a WAN-environment,
the network management handles different types of network
connections (e.g. WiFi, UMTS). The network management is
also responsible to negotiate QoS-classes with the network
control component of the network operator. The Resource
Management component keeps track of the resource usage
and state of the whole system. One of the tasks of this
component is guaranteeing the high availability of the mobile
thin client service by implementing one or more resilience

functionalities. For example, when a server has failed, the
Resource Management component should automatically trig-
ger a server failover mechanism. Another function of the
Resource Management component is reserving resources for
the users’ sessions. Finally, the Self Management component
is responsible for the proper working of the mobile thin client
service. This component contains the intelligence of the mobile
thin client service. It receives information from the Monitoring
component about the state of the complete environment in
which the mobile thin client service operates. Based on this
information, it knows how to make an intelligent decision in
order to adapt to variations in the environment and optimize
the mobile thin client service.

V. IMPLEMENTATION DETAILS

The implemented SMF-components of interest for this paper
are shown in Table I. To enable rapid and simplified implemen-
tation of the Service Management Framework, Java EJB3 has
been used. An EJB is a managed component controlled by a
JEE application container. The container controls the lifecycle
of the EJBs and the resources they are using. The design of
the components takes into account they are running inside a
JEE application container.

Two scenarios are described in detail: (@) Login and (b)
Adaptation.

A. Login

The thin client only needs direct access to a single com-
ponent of the implemented prototype: the Connection com-
ponent. Since the mobile device has limited resources, we
cannot assume a Java Virtual Machine is running on the
client terminal. To easily grant the thin client access to the
managed Connection component, it is exposed as a webser-
vice. This allows easy accessing the component from different
programming languages, since standard SOAP-messages are
exchanged between client and server.

Starting the mobile thin client service is split in two parts:
(i) starting a connection with a management server and (i)
starting a specific user session. During the first part, the
management server checks whether the user is authenticated.
When successful, a list of all the user’s sessions is returned.
During the second part, a request to start a specific user session
is handled by the management server and information on how
to reach the user session is returned to the user.

Connection ‘ ‘ Authentication ‘

‘ Authorization ‘

‘ Session Management ‘ ‘ Data Management

1. "start connection" request

2. find user information

[S

T
3. return user information

T
I i
] »
T »
i i
i i
I T
i ;
1
| | 4. check authentication | ! |
| i i
1 | 5. return authenticated | | i
i iRt Rt i i i
| i 6. create Security Context J | |
i i i 3 7. create Ticket N
| i | | 8. return OK i
i i i ool sEwmEe
| i L h i |
! ! 9. return Security Context ! ! !
i e e i |
! ! ! 10. get Session List! ! !
i T T T » i
1 5 | 11. return Session List | H
o e LRt LR P e E e R TR | |
| 12. return Connection Context | ' ' 1 |
NI i i | | i
i i i i i |
(a) Part 1: start connection
Connection ‘ ‘ Authorization ‘ ‘ Session Management ‘ ‘ Server Selection ‘ ‘ Data Management ‘ ‘ Thin Client Server
’ | | | | |
! ! 2. find session information ! ! !
3 3 3. return session information i i i
S . O e e R B e CECCLEER TR R 4 |
! 4. start Session | i | |
i i 5. check authorization ”} 3 i i
i | 6. return OK]] i 1
i 3 i 7. Select Server i 3 3
| 3 g 8. return Server R | |
i 3 3 9. update session information _} 3
: | | 10. retu‘rn OK | |
| : T : :
! ! ! ! 11. Load User Session ! !
A 12.retum Session Context 3 3 3 i
__ 13 retum Session Context __ | 1 1 1 1 1
' | | | | |
(b) Part 2: start session
Fig. 3. Sequence diagrams: starting the mobile thin client service
Component Description
Authentication Checks whether the user is authenticated or not
Authorization Creates a Session Ticket for the user
Connection Accepts incoming requests from user that want to start the service

Server Selection

Round-Robin selection of a server from the database
(more complex load balancing algorithms can be plugged in)

Session Management

Coordinates the process to start a session

Data Management

Retrieve information from the database

TABLE 1
IMPLEMENTED COMPONENTS ON THE MANAGEMENT SERVER

Figure 3(a) shows the sequence diagram of the first part
of starting a mobile thin client session. When the Connection
component receives a “start connection” request from a user
identified by a username, it contacts the Data Management
component to retrieve detailed information about this user
(e.g. authentication information, session information and the
user’s profile). The Authentication component is responsible
to check whether the user really is who he claims to be.
When this test is passed, a session ticket is created by the
Authorization component. The Data Management creates a
new session ticket entry in the database and the ticket is
returned to the Connection component. Then, a list of all the
user’s sessions is retrieved from the Session Manager. Finally,

a Connection context object, containing the session ticket and
the list of the user’s session, is created and returned to the
Thin Client.

When the first part of starting a mobile thin client session
is completed, the user can choose which session he wants to
start. He selects a specific session and a “start session” request
is sent to the management server. The sequence diagram for
the second part of starting a mobile thin client session is shown
in Figure 3(b). Upon receipt of a “start session” request, the
Connection component asks the Data Management component
for detailed information about the selected session (e.g. state
information, etc.). Next, the Session Management component
takes over. The Authorization component checks whether the

user is allowed to start the desired session. When granted,
the algorithm of the Server Selection component selects an
appropriate thin client server to execute the user’s session.
While the user session is loaded on the selected thin client
server, the Session Management component creates a Session
Context object, containing the required information for the thin
client to be able to start the thin client protocol session.

B. Adaptation

As stated before, the Self Management component receives
monitoring information about the state of the environment.
Monitoring information is exchanged using standard Simple
Network Monitoring Protocol (SNMP) messages. When a
problem is detected, the Monitoring component sends an
SNMP trap message to notify the Self Management compo-
nent. Based on the trap Object IDentifier (OID) encapsulated
in the SNMP trap message, the Self Management component
understands the problem and looks for a solution. In this paper,
SNMP trap messages notifying the Self Management a thin
client server is getting overloaded, are tackled. To lower the
load on the thin client server concerned, at least one of the
VM’s running on that thin client server should be migrated
to another thin client server. To avoid making simultaneous,
conflicting decisions, the part of the Self Management that
takes a decision is implemented as a singleton.

VI. EXPERIMENTAL RESULTS

The performance of the two scenarios described in the
previous section is evaluated. To approach a realistic use
case, 100k users are subscribed for the mobile thin client
server, each having on average 2 personal VM’s. Since a
thin client server should be able to serve 26 simultaneous
users [13] executing complex applications, at least 100k/26
or 3847 thin client servers should be installed. Information on
the subscribed users and their sessions is loaded in memory to
avoid an I/O bottleneck due to reading and writing from and
to a database.

A. Login

The testbed for evaluating the performance of the imple-
mented prototype of the SMF consists of a single management
server (2 AMD opteron 2212, 4GB RAM, 1Gbps NIC), which
accepts requests from simulated users. The users are simulated
with the Spirent Avalanche 2500 [16] hardware. This measure-
ment device is able to generate 45.000 requests per second to
a webserver, which certainly fullfills our requirements.

In Figure 4, the average response time users perceive during
the first part of starting the mobile thin client service is
depicted. It is clear that the response time increases exponen-
tially when the number of requests/s increases. Beyond 800
requests/sec, the CPU of the management server becomes a
bottleneck and time-outs occur on the client-side which should
of course be avoided as much as possible in a real deployment.
Similar conclusions can be drawn for the perceived response
time during the second part of starting a mobile thin client
session. Figure 5 shows up to 600 requests/s to start a specific
session can be handled by the management server.

N
a
=]

m
£ /
3 200
£
=
@ 150
3
i =
o
* /
g 100 /
(7]
Qo
© 50
[
>
g o
0 7 ; | |
100 300 500 700 900
Requests/s

Fig. 4. Average response time when starting a mobile thin client session
(part 1: authentication and authorization)

o
=]
s)

[]
o o
S ©
T~

NS
o o
S o
T~

Now
o o
S o
T~

Average response time (ms)

=
o
o ©

100 200 300 400 500 600 700
Requests/s

Fig. 5. Average response time when starting a mobile thin client session
(part 2: select server and load session)

B. Adaptation

In this experiment, SNMP trap messages are sent to the
management server when a thin client server becomes over-
loaded. The only solution for this problem is to migrate at least
one of the VM’s running on the thin client server to another
one by means of the online migration tool of the adopted
virtualization technology.

120

100

80
60
40
20 .
. | |
128 256 512

1024

Migration Time (s)

Size of the Virtual Machine (MB)

Fig. 6. Total time to live migrate a Xen Virtual Machine.

To evaluate the performance of the adaptation to overloaded
thin client servers, an evaluation of migrating a VM from one
server to another is described first. The testbed exists of two
thin client servers (4 AMD Opteron 2212, 4GB RAM, 1Gbps
NIC and Xen 3.1 virtualization software) and an NFS-server
containing the filesystem of the VM. In Figure 6, the total
time spent during the migration of a VM is shown. Note that
only a very small downtime in the order of ms, is noticed by

the user [17]. From user perspective, it is important to avoid
this downtime as much as possible, while from infrastructure
perspective, the total time spent on VM migrations should be
kept as small as possible. Figure 6 shows the time spent during
the online migration of a user session depends on the size
of the user session in terms of allocated RAM-memory. This
means migrating multiple small user sessions (e.g. 128MB) is
faster than migrating a single large user session (e.g. 1024MB)
at the cost of two users perceiving a short downtime.

10000 +
1000 -
100 +

10 +

Average response time (ms)

1 :
100 200 300 400 500 600 700 800
Number of SNMP trap messages/s

Fig. 7. Average response time of the Self Management component to an
SNMP trap message.

In a last experiment, the implementation of the Self Man-
agement component is evaluated. The testbed consists of a
single management server (AMD Opteron Processor 2350,
8GB RAM, 1Gbps NIC) and a server generating SNMP
trap messages. When an SNMP trap message arrives at the
management server, a random user session from the thin client
server concerned is selected that should be migrated to another
thin client server. The new thin client server is selected in a
round-robin way from the list of available thin client servers.
Figure 7 shows the average response time of the management
server to solve a reported problem. Up to 700 messages/s can
be handled within on average 3.5 ms. Beyond that boundary,
the CPU load of the core executing the server selection
component becomes overloaded. The average response time
increases a lot and the framework begins dropping SNMP trap
messages, which is unacceptable.

VII. CONCLUSION AND FUTURE WORK

The architecture of a mobile thin client service has been
presented. A detailed study on the architecture and imple-
mentation of the service management framework has been
elaborated. Two scenarios have been briefly discussed: (i)
login and (ii) adaptation. Login to the mobile thin client
service was split in two parts. It was shown that the prototype
of the Service Management Framework can handle up to
700 requests/s for the first part and up to 600 requests/s for
the second part of starting a mobile thin client session. The
CPU was identified as the bottleneck of the system.

The monitoring component detects changes in the envi-
ronment and reports problems to the Service Management
Framework. The case of an overloaded thin client server was
detailed and migrating a VM from a thin client server to

another one was indicated as the only solution to adapt to
this environmental change. It was shown that the implemented
prototype can handle up to 700 reported problems per second.

Future research opportunities include extending the Self
Management component with additional algorithms to further
optimize the mobile thin client service.

VIII. ACKNOWLEDGEMENTS

Part of the research leading to these results was done
for the MobiThin Project and has received funding from
the European Community’s Seventh Framework (FP7/2007-
2013) under grant agreement nr 216946. Lien Deboosere and
Bert Vankeirsbilck are funded by a Ph.D grant of the IWT-
Vlaanderen. Pieter Simoens is funded by a Ph.D grant of the
FWO-V. Filip De Turck is partially funded by postdoctoral
grant of the FWO-V.

REFERENCES

[1] B. Vankeirsbilck, et al., “Bringing Thin Clients to the Mobile World,”
in 2008 Conference of Network & Electronic Media Towards Future
Media Internet, Saint-Malo, France, October 2008.

[2] A. Moshchuk, S. D. Gribble, and H. M. Levy, “Flashproxy: transparently
enabling rich web content via remote execution,” in MobiSys ’'08:
Proceeding of the 6th international conference on Mobile systems,
applications, and services, New York, USA, 2008, pp. 81-93.

[3] J. Kim, R. A. Baratto, and J. Nieh, “pTHINC: a thin-client architecture
for mobile wireless web,” in WWW ’06: Proceedings of the 15th
international conference on World Wide Web, New York, NY, USA,
2006, pp. 143-152.

[4] Citrix Systems Inc., “Application delivery infrastructure for a dynamic
world,” http://www.citrix.com.

[5] T. Richardson, et al., “Virtual network computing,” IEEE Internet
Computing, vol. 02, no. 1, pp. 33-38, 1998.

[6] K. L. Baratto R. and J. Nieh, “THINC: A Virtual Display Architecture
for Thin-Client Computing,” in the Twentieth ACM Symposium on
Operating Systems Principles (SOSP 2005), Brighton, United Kingdom,
October 23-26 2005.

[7]1 P. Simoens, et al., “Design and implementation of a hybrid remote dis-
play protocol to optimize multimedia experience on thin client devices,”
in 2008 Australasian Telecommunications Networks and Applications
Conference, Adelaide, Australia, December 2008.

[8] Prologue, “Useit terminal services,” http://www.prologue.fr.

[9] B. Vankeirsbilck, et al., “Bandwidth optimization for mobile thin client
computing through graphical update caching,” in 2008 Australasian
Telecommunications Networks and Applications Conference, Adelaide,
Australia, December 2008.

[10] C. Clark, et al., “Live migration of virtual machines,” in Proceedings of
the 2nd ACM/USENIX Symposium on Networked Systems Design and
Implementation (NSDI). Boston, MA, USA: USENIX, the Advanced
Computing Systems Association, 2005, pp. 273-286.

[11] P. B. et al., “Xen and the art of virtualization,” SIGOPS Oper. Syst. Rev.,
vol. 37, no. 5, pp. 164-177, 2003.

[12] Qumranet, “Kvm: Kernel-based virtual machine (white paper),”
http://www.qumranet.com/art_images/
files/8/KVM_Whitepaper.pdf.

[13] VMWare Inc., http://www.vmware.com.

[14] D. Song, “Zlstream: An application streaming system by copy-on-
reference block of executable files,” Distributed Computing and Net-
working, Lecture Notes in Computer Science, vol. 4308/2006, pp. 367—
372, 2007.

[15] W. Binder and N. Suri, “Green computing: Energy consumption op-
timized service hosting,” in SOFSEM ’09: Proceedings of the 35th
Conference on Current Trends in Theory and Practice of Computer
Science. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 117-128.

[16] Spirent Communications, “Avalanche 2500,” http://www.spirent.com.

[17] F. Travostino, et al., “Seamless live migration of virtual machines over
the man/wan,” Future Gener. Comput. Syst., vol. 22, no. 8, pp. 901-907,
2006.

