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Abstract— In this paper we introduce a new theoretical for-
mulation for the description of the blood flow in the circulatory
system. Starting from a linearized version of the Navier-Stokes
equations, the Green’s function of the propagation problem
is computed in a rational form. As a consequence, the input-
output transfer function relating the upstream and downstream
pressure and blood flow is written in a rational form as
well, leading to a time-domain state-space model suitable for
transient analysis. The proposed theoretical formulation has
been validated by pertinent numerical results.

I. I NTRODUCTION

The cardiovascular system can be considered as a wide
hydraulic network working under the action of a pulsatile
pump. This hydraulic network is a closed loop and shows
a different behavior at various locations. For instance, the
wave propagation in the arteria tree is of greater influence
than in the capillary bed where the flow is almost steady [1].
The mathematical and numerical modeling of the human
cardiovascular system has become a topic of great interest in
the recent years (see e.g. [2], [3], [4], [5] and the references
therein). The development of this research field arises from
the medical community interested in scientifically rigorous
and quantitative investigations of cardiovascular diseases,
which are responsible today for about the40 percent of death
in industrialized societies [6].

Human arterial system can be mathematically described
by different models with a different level of detail (see
e.g. [7], [8], [9]). For instance, the Windkessel and similar
lumped models are often used to represent blood flow and
pressure in the arterial system [1]. These lumped models can
be derived from electrical circuit analogies where current
I represents arterial blood flow and voltageV represents
arterial pressure. Resistors represent arterial and peripheral
resistance that occur as a result of viscous dissipation inside
the vessels, capacitors represent volume compliance of the
vessels that allows them to store large amounts of blood,
and inductors represent inertia of the blood [10]. The main
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advantage of lumped models is that they can be solved by
ordinary differential equations.

One-dimensional models of the human arterial system
were introduced for the first time by Euler [11] and more
recently, in [12]. It has been shown numerically that the
linearization of the one-dimensional model around a constant
state matches the non-linear system itself. The first direct
derivation of a linearized1D model from axisymmetric
Navier-Stokes equations was carried out in [13].

Over the last years, one-dimensional models of human
arterial system have been intensively investigated [1], [14],
[9], [2]. In [1], it has been shown that, for the particular
case of blood flow, lumped networks can be regarded as
first order discretization of one-dimensional linear systems.
In this work, starting from a linearized version of the Navier-
Stokes equations, we present a spectral1D model which is
suitable for transient blood flow analysis. Using the analogy
of the blood flow propagation problem with transmission
lines, the corresponding Green’s function is developed in
a spectral (rational) form [15]. Hence, rational models that
relates downstream and upstream pressure and blood flow
can be computed and used for time-domain simulations.

II. FROM NON-LINEAR CONSERVATION LAWS TO

TELEGRAPHER’ S EQUATIONS

A basic description of RLC networks as an approximation
of non-linear conservation laws for blood flow can be found
in [16]. In [1], a new approach is described to introduce RLC
networks as approximants of non-linear equations. Starting
from a simplified version of the Navier-Stokes equations
in the axisymmetric form and integrating them over each
cross-sectionA(z, t) of the vessel, the following set of1D
equations is obtained for0 ≤ z ≤ ` (` is the vessel length)
and all t > 0:

∂

∂t
A (z, t) +

∂

∂z
Q (z, t) = 0 (1a)
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∂
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ρ

∂
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= −Kr
Q (z, t)
A (z, t)

(1b)

whereα (the momentum-flux correction coefficient),ρ (the
blood density) andKr (the friction parameter) are supposed
to be constant. A Poiseuille profile is assumed for velocity in
the vessel. Under these hypotheses, the friction parameter can
be assumed asKr = 8πν, whereν is the blood viscosity.A,
P andQ are the unknowns to be determined. The following



relation betweenP andA is assumed [1]

P (A (z, t)) =
β

A0

(√
A (z, t)−

√
A0

)
(2)

where A0 is the section area at rest and the coefficientβ
supposed constant along the whole vessel, is:

β =

√
πhE

(1− σ2)
(3)

The constantsE, h and σ are the Young modulus, the
wall thickness and the Poisson ratio, respectively. Then, the
system (1) can be rewritten in a non-conservative form by
expressing (1) in(P, Q) variables and using the pressure
law (2). Linearizing the system around the constant state
(A, u) = (A0, 0) and setting the following parameters

C ′ =
2A0

√
A0

β
, L′ =

ρ

A0
, R′ =

ρKr

A2
0

(4)

a simple linear model is obtained:

C ′
∂

∂t
P (z, t) +

∂

∂z
Q (z, t) = 0 (5a)

L′
∂

∂t
Q (z, t) +

∂

∂z
P (z, t) = −R′Q (z, t) (5b)

Equations (5) can be regarded as Telegrapher’s equations
[17] whose per-unit-length parameters are given in (4). We
propose a new approach to build rational models of linearized
system (5), which are suitable for transient analysis of
vessels.

III. T HE TELEGRAPHER’ S EQUATIONS AS A

STURM-L IOUVILLE PROBLEM

The Laplace-transformation of the Telegrapher’s equations
(5) yields [17]:

d

dz
P (z, s) = − (R′ + sL′) Q (z, s)

= −Z ′(s)Q (z, s) (6a)
d

dz
Q (z, s) = − (sC ′) P (z, s) + Qs(z, s)

= −Y ′(s)P + Qs (z, s) (6b)

Qs(z, s) is a per-unit-length blood flow source located at
abscissaz [15]. Taking the one-dimensional divergence of
(6a) and replacing it into (6b), we obtain:

d2

dz2
P (z, s)− γ2(s)P (z, s) = −Z ′(s)Qs (z, s) (7)

whereγ2(s) = Z ′(s)Y ′(s). Equation (7) can be regarded as
a Sturm-Liouville problem [18].

If we assume that the blood flow is specified only in
correspondence of abscissaz = 0 and z = `, it can be
described in terms of per-unit-length sources as:

Qs(z, s) = Q0(s)δ(z) + Q`(s)δ(z − `) (8)

where δ(z) is the one-dimensional Dirac distribution and
Q0(s), Q`(s) represent the blood flow at the ends of the
vessel. Since the differential problem (7) is self-adjoint [18],

the corresponding Green’s function can be developed in a
series form.

The Green’s functionG(z, z′) satisfies the Sturm-Liouville
problem corresponding to a unit source with homogenous
boundary condition of the Neumann type:

[L + λr(z)] G(z, z′) = δ(z, z′) (9a)
d

dz
G(z, z′) |z=0 =

d

dz
G(z, z′) |z=` = 0 (9b)

where δ(z, z′) is the one-dimensional Dirac distribution.
OnceG(z, z′) is computed, (7) can be solved as:

P (z, s) =
∫ `

0
G(z, z′) (−Z ′(s)Qs(z, s)) dz′ (10)

The Green’s functionG(z, z′) can be expanded as a series
of a complete set of orthonormal eigenfunctions:

G(z, z′) =
∞∑

n=0

φn(z′)
λ− λn

φn(z) (11)

The orthonormal functionsφn(z) and eigenvaluesλn are
obtained by solving the corresponding eigenvalue problem
with homogenous boundary conditions of Neumann type.
They are found to be:

λn =
(nπ

`

)2
n = 0, 1, 2, · · · (12)

φn (z) = An cos
(nπ

`
z
)

(13)

where

A0 =

√
1
`

An =

√
2
`
, n = 1, · · · ,∞ (14)

Finally, the Green’s function for the one-dimensional wave
propagation is

G(z, z′) = −
∞∑

n=0

A2
n

cos
(

nπ
` z

)
cos

(
nπ
` z′

)

γ2(s) +
(

nπ
`

)2 (15)

The general solution for the downstream and upstream pres-
sure (voltage) of the vessel (transmission line) is computed
by (10) leading to the input/output matrix representation of
the vessel:[

P0(s)
P`(s)

]
=

[ H11 (s) H12 (s)
H21 (s) H22 (s)

]
·
[

Q0(s)
Q`(s)

]

(16)

where

H11 (s) = H22 (s) =
∞∑

n=0

A2
nZ ′(s)

γ2(s) +
(

nπ
`

)2 (17a)

H12 (s) = H21 (s) =
∞∑

n=0

A2
nZ ′(s) cos (nπ)

γ2(s) +
(

nπ
`

)2 (17b)

Assuming that the infinite summation in (17) is truncated to
nmodes, the transfer function matrixH (s) can be rewritten
in a pole/residue form as:

H(s) =
npoles∑

k=1

Rk

s− pk
(18)



wherenpoles = 2(nmodes + 1) represents the total number
of poles and the residuesRk, k = 1, · · · , npoles and poles
pk, k = 1, · · · , npoles can be computed by standard tech-
niques [19].

The rational representation (18) is well-suited for both
circuit synthesis [20] and state-space realization [21]. The
state-space equivalent form can be written as:

ẋ (t) = Ax (t) + BQ (t) (19a)

P (t) = Cx (t) + DQ (t) (19b)

where A ∈ <p×p, B ∈ <p×q, C ∈ <q×p, D ∈ <q×q,
p is the number of states andq = 2 is the number of
ports.Q (t) = [Q0(t) Q`(t)]T and P (t) = [P0(t) P`(t)]T

correspond to upstream and downstream blood flow and
pressure, respectively.

It is to be pointed out that the proposed approach does
not require any space discretization since the Green’s func-
tion G(z, z′) is written in a closed-form in terms of the
eigenfunctions of the differential problem (7). Furthermore,
the proposed technique is also well-suited to incorporate
frequency-dependent effects (e.g. the sleeve effect [13]) by
means of a rational form of theZ ′(s) andY ′(s) operators.
The overall cardiovascular tree can be obtained by properly
connecting the state-space models of each vessel.

IV. N UMERICAL EXAMPLE

The proposed modeling approach has been validated by a
numerical simulation that computes the pressureP`(t) and
the blood flowQ0(t) for a vessel of fixed length (` = 60 cm),
while enforcing the pressure and blood flow at abscissaz = 0
andz = `, respectively. We have considered a vessel with a
radius equal to 0.5 cm and thickness equal to 0.1 cm. The
blood viscosity is set toν=0.035 cm2/s, its density is equal
to 1 g/cm3, the Young modulus is set to 3·106 dyne/cm2,
while the momentum-flux correction coefficientα is 1 [1].
The transfer functionH(s) has been computed by using the
proposed Green’s function based method (GF) and compared
with that of standard transmission line theory (TLT) [22].
The order of the spectral model is set tonmodes = 60. The
algorithm to choose the number of modes is described in
[23]. Fig. 1 shows the magnitude spectra of transfer functions
H11(s) andH12(s).

Then, the state-space representation (19) has been gener-
ated. The pressure is imposed at the left boundary and the
blood flow is enforced at the right boundary. The reference
results are computed in the time-domain by using the exact
formula based on Bessel functions [24]. The proposed state-
space model has been integrated in the time-domain by using
the Gear-Shichman scheme [25]. Figs. 2 and 3 compare the
downstream and upstream pressure and blood flow obtained
by the proposed approach (GF-Gear) with the reference
results (TLT), showing a very good agreement. As clearly
seen by the numerical results, the proposed approach is able
to accurately capture the1D blood flow propagation in a
vessel structure.
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Fig. 1. Magnitude spectra of transfer functionsH11(s) andH12(s).

V. CONCLUSIONS

We have presented an innovative methodology for1D
blood flow transient analysis. The Green’s function of the
one-dimensional propagation is evaluated and used to gener-
ate a rational model whose poles and residues can be easily
computed by means of standard techniques. The rational
model can be directly incorporated into ordinary differen-
tial equations or SPICE-like circuit solvers. The numerical
results have demonstrated the robustness of the proposed
method in capturing the1D blood flow propagation and,
hence, the downstream and upstream pressure and blood flow
waveforms. The proposed methodology will be experimen-
tally validated in the next future.
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Fig. 2. Upstream (top) and downstream (bottom) pressureP (t).
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Fig. 3. Upstream (top) and downstream (bottom) blood flowQ(t).
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