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Abstract—We propose an innovative parametric macromodel-
ing technique for lossy and dispersive multiconductor transmis-
sion lines (MTLs) that can be used for interconnect modeling.
It is based on a recently developed method for the analysis of
lossy and dispersive MTLs extended by using the Multivariate
Orthonormal Vector Fitting (MOVF) technique to build para-
metric macromodels in a rational form. They take into account
design parameters, such as geometrical layout or substrate
features, in addition to frequency. The presented technique is
suited to generate state-space models and synthesize equivalent
circuits, which can be easily embedded into conventional SPICE-
like solvers. Parametric macromodels allow to perform design
space exploration, design optimization, and sensitivity analysis
efficiently. Numerical examples validate the proposed approach
in both frequency and time domain.

Index Terms—Interconnects, parametric macromodeling, ra-
tional approximation, transient analysis.

I. I NTRODUCTION

The increasing demand for performance of integrated cir-
cuits (ICs) pushes operation to higher signal bandwidths, while
rapid advances in manufacturing capabilities have significantly
reduced the feature size and density of these devices. In order
to assist microwave designers, accurate modeling of previously
neglected second order effects, such as crosstalk, reflection,
delay and coupling, becomes increasingly important during
circuit and system simulations. The accurate prediction of
these interconnects effects is fundamental for a successful
design and involves the solution of large systems of equations
which are often prohibitively CPU expensive to solve [1]- [2].
Various levels of design hierarchy, such as on-chip, packaging
and printed circuit boards, require an accurate and efficient
macromodeling of interconnects effects. Over the years, many
macromodeling techniques have been developed [3]- [26].

More recently, a spectral approach has been presented for
the analysis of lossy and dispersive multiconductor transmis-
sion lines [27]. It is based on the computation of the closed-
form dyadic Green’s function of the 1-D wave propagation
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problem. The propagation of voltage along a multiconductor
transmission line is described by a second order differential
equations which is found to be a self-adjoint problem [28].
As a consequence, the corresponding Green’s function can
be expanded in a series form of orthonormal basis functions
which is well suited for poles and residues identification and,
thus, for time-domain macromodeling purposes. The major ad-
vantage of such an approach over existing techniques consists
of the rational nature of the dyadic Green’s function which
is appropriate for time-domain macromodeling. Furthermore,
the use of orthonormal basis functions to expand the solution
allows to compute the poles and residues of the system
independently for each mode, and this reduce the complexity
of the system identification significantly.

Parametric macromodels are important for design space
exploration, design optimization, and sensitivity analysis. For
example, once the fabrication technology is decided, an opti-
mization step is required at the early design stages to select
the geometrical and material features of the structure, such
as length, height and width of conductors, dielectric permit-
tivity and metal conductivity, yielding the optimum electri-
cal performance, often under stringent signal integrity and
electromagnetic compatibility constraints. To make efficient
and feasible these design activities, parametric macromodeling
techniques that take into account design parameters in addition
to frequency (or time) are needed. Their realization by using
full electromagnetic simulations on the entire parameter space
is often computationally expensive. Some techniques for para-
metric macromodeling of MTLs were proposed in the frame-
work of model order reduction [29]- [30]. Recently, another
parametrization scheme based on the generalized method of
characteristics (MoC) was presented in [31]. We developed a
new parametric macromodeling technique, presented in this
paper, with the aim of realizing the previously cited design
activities efficiently, reducing the computational resources
required by extensive electromagnetic simulations. It is based
on the spectral approach presented in [27] for lossy and
dispersive MTLs, coupled with the Multivariate Orthonormal
Vector Fitting (MOVF) technique [32] to handle other design
parameters in addition to frequency. MOVF permits to build
rational parametric macromodels starting from multivariate
data samples in the parameter space and combines the use of
an iterative least squares estimator and orthonormal rational
functions, which are based on a prescribed set of poles. Based
on a fixed set of design parameters, the multivariate model can
easily be reduced to a univariate frequency-dependent model
in a rational form, that is suitable to generate a finite state-
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space representation and an equivalent SPICE circuit by using
standard realization [33] and circuit synthesis techniques [34].

This paper is structured as follows. First, an overview
of the spectral approach for MTLs and MOVF technique
is given in Sections II and III. Then, Section IV explains
how both the methods are coupled to build a parametric
representation of a MTL system, presenting different possible
flavors. Finally, some numerical examples are presented in
Sections V, validating the proposed technique.

II. SPECTRAL MODELING OF MULTICONDUCTOR

TRANSMISSIONL INES

Multiconductor transmission lines are described by the
following set of partial differential equations, known as Tele-
grapher’s equations, which, at the generic abscissaz, in the
Laplace domain, read [35]:

d

dz
V (z, s) = −[Rpul(s) + sLpul(s)]I(z, s)

= −Zpul(s)I(z, s) (1a)
d

dz
I(z, s) = −[Gpul(s) + sCpul(s)]V (z, s) + IS(z, s)

= −Y pul(s)V (z, s) + IS(z, s). (1b)

whereRpul(s), Lpul(s), Cpul(s) andGpul(s) are frequency-
dependent per-unit-length parameter matrices and are non-
negative definite symmetric matrices of orderN , N + 1 being
the number of the conductors [35], [36];IS(z, s) represents
a per-unit-length current source located at abscissaz, which,
since we assume that currents are injected into the system only
at abscissasz = 0, z = `, is given by

IS(z, s) = I0(s)δ(z) + I`(s)δ(z − `) (2)

VectorsV (z, s) andI (z, s) represent the voltage and current
vectors depending on Laplace variables and positionz along
the line.

Some trivial manipulations of (1) leads to

d2

dz2
V (z, s)− γ2(s)V (z, s) = −Zpul(s)IS (z, s) (3)

where γ2(s) = Zpul(s)Y pul(s). Since the port currents
are treated as per-unit-length sources, homogeneous boundary
conditions of the Neumann type can be adopted for the voltage
satisfying (3)

d

dz
V (z, s) |z=0 =

d

dz
V (z, s) |z=` = 0 (4)

The differential system of equations (3) with boundary con-
ditions problem (4) can be regarded as a Sturm-Liouville
problem with boundary conditions of the Neumann type.
The general solution for the voltage at abscissaz of the
multiconductor transmission line due to the port currents is
obtained in [27] and briefly reported here for completeness:

V (z, s) =
∫ `

0
GV (z, z′, s) (−Zpul(s)IS(z′, s)) dz′

= GV (z, 0, s) (−Zpul(s)I(0, s)) +

+ GV (z, `, s) (−Zpul(s)I(`, s)) . (5)

In [27] it has been found that the dyadic Green’s function
GV (z, z′, s) for the multiconductor transmission line problem
can be written as:

GV (z, z′, s) = −
∞∑

n=0

φn(s)A2
nψn(z)ψn(z′), (6)

where

φn(s) =

[
γ2(s) +

(nπ

`

)2
U

]−1

, (7a)

ψn(z) = cos
(nπ

`
z
)

, (7b)

and A0 =
√

1/`,An =
√

2/`, n = 1, · · · ,∞, U is the
unitary dyadic. Finally, the spectral representation of theZ
impedance matrix is generated as:

[
V (0, s)
V (`, s)

]
=

[
Z11 Z12

Z21 Z22

]
·
[

I (0, s)
I (`, s)

]

=
∞∑

n=0

[
Zn,11 Zn,12

Zn,21 Zn,22

]
·
[

I (0, s)
I (`, s)

]
, (8)

where

Z11 = Z22

=
∞∑

n=0

[
γ2(s) +

(nπ

`

)2
U

]−1

·A2
nZpul(s), (9a)

Z12 = Z21

=
∞∑

n=0

[
γ2(s) +

(nπ

`

)2
U

]−1

·A2
nZpul(s) (−1)n

.

(9b)

It is composed of an infinite number of modesZn. The poles
of (9) are those of the Green’s function (6) which can be
calculated as in [27]. A rational form can be obtained for (9) by
computing the corresponding residues by standard techniques
[37]. The series form of the dyadic Green’s function is very
general; it assumes that the multiconductor transmission line
supports the quasi-TEM mode and is uniform along thez-axis.
No hypothesis has been done regarding the nature of the per-
unit-length longitudinal impedanceZpul(s) and transversal
admittanceY pul(s) matrix and, as a consequence, on the
propagation constantγ2(s). Thus, the proposed model can be
used for transmission lines with either frequency-independent
or frequency-dependent per-unit-length parameters [27]. This
means that skin-effect and dielectric polarization losses can be
easily modeled and incorporated in transient analysis once the
frequency-dependent per-unit-length parameters are available.

III. M ULTIVARIATE ORTHONORMAL VECTORFITTING

TECHNIQUE

This section presents an overview of MOVF technique
that permits to build parametric macromodels, taking into
account other design parameters, such as geometrical layout
or substrate features, in addition to frequency. For ease of
notation, MOVF algorithm is only described for bivariate
systems. Of course, the full multivariate formulation can
be derived in a similar way. It proposes to represent the



F. FERRANTI et al.: PARAMETRIC MACROMODELING 3

parametric macromodel as the ratio of a bivariate numerator
and denominator

F (s, g) =
N(s, g)
D(s, g)

=

∑P
p=0

∑V
v=0 cpvφp(s)ϕv(g)

∑P
p=0

∑V
v=0 c̃pvφp(s)ϕv(g)

(10)

wheres is the complex frequency variable andg is a real de-
sign variable. The maximum order of the corresponding basis
functionsφp(s) andϕv(g) is denoted byP andV respectively.
Based on a set of data samples{(s, g)k,H(s, g)k}K

k=1, the
algorithm pursues the identification of the model coefficients
cpv andc̃pv of numerator and denominator in (10). A linear ap-
proximation to this nonlinear optimization problem is obtained
by using an iterative procedure explained in the next section.
In this work the MOVF technique is applied to matrices and
it is assumed that the different matrix entries share the same
poles, so the same denominatorD(s, g). In (10) the number
of coefficientscpv is equal to(P +1) ·(V +1) ·M whereM is
the maximum number of functions fitted with common poles
in the same least-squares matrix. The number of coefficients
c̃pv is equal to(P + 1) · (V + 1), the denominator term is
the same for all the functions fitted using common poles.
Increasing the number of ports and poles required for the
fitting, the memory requirement to obtain the model by MOVF
can be high, for this reason the authors advise to use the first
two parametric macromodeling strategies described in Sections
IV.A. and IV.B, which exploit the modal decomposition to
reduce the complexity of the modeling process significantly.

A. Iterative Algorithm

In the first iteration step of the algorithm (t = 0), Levi’s
cost function [38] is minimized to obtain an initial guess of
the coefficients. In successive iteration steps (t = 1, .., T ),
the Sanathanan-Koerner (SK) cost function is minimized [39],
which uses the inverse of the previously estimated denomina-
tor

(D(t−1)(s, g)k)−1 = w(t)(s, g)k (11)

as an explicit weight factor to the least-squares equations. A
relaxed non-triviality constraint is added as an additional row
in the system matrix [32], to avoid the trivial null solution and
improve the convergence of the algorithm. Each equation is
split in its real and imaginary parts, to ensure that the model
coefficientsc

(t)
pv , c̃

(t)
pv are real. Scaling each column to unity

length [40] is suitable to improve the numerical accuracy of
the results.

B. Choice of basis functions

In this section the choice of the basis functions for the
complex frequency variables and the real design variableg
is presented.

1) Frequency-dependent basis functions:Based on a pre-
scribed set of stable polesa = {−ap}P

p=1, a set of partial
fractions φp(s, a) is chosen, withφ0(s) = 1. These poles
are grouped as complex conjugate pole pairs, and are selected
such that they have small negative real parts and the imaginary
parts linearly spaced over the frequency range of interest [40].
In order to make the transfer function coefficients real-valued,

a linear combination ofφp(s, a) andφp+1(s,a) is formed as
follows

φp(s, a) = (s + ap)−1 + (s + ap+1)−1 (12)

φp+1(s, a) = j(s + ap)−1 − j(s + ap+1)−1 (13)

To improve the numerical stability of the modeling algorithm,
a set of orthonormal basis functions can be used, as shown
in [41]. The orthonormal basis functions can improve the
conditioning of the system equations and are less sensitive
to the choice of the initial poles.

2) Parameter-dependent basis functions:The parameter-
dependent basis functionsϕv(g, b) are also chosen in partial
fraction form as a function ofjg, hence in rational form.
The starting poles ofϕv(g, b) and ϕv+1(g, b) are chosen as
complex pairsbv+1 = −(bv)∗ which have small real parts of
opposite sign (−αv, αv), and their imaginary partsβv linearly
spaced over the parameter range of interest, such that

−bv = −αv + jβv,−bv+1 = αv + jβv (14)

{αv} = 0.01 {βv} (15)

while ϕ0(g) = 1. A linear combination of two fractions is
used to ensure thatϕv(g, b) andϕv+1(g, b) are real functions
[32]:

ϕv(g, b) = (jg + bv)−1 − (jg − (bv)∗)−1 (16)

ϕv+1(g, b) = j(jg + bv)−1 + j(jg − (bv)∗)−1 (17)

C. Additional weighting function

An additional least-squares weighting function can be added
to the parametric macromodeling algorithm, when the ele-
ments to fit have a high dynamic range. It improves the relative
accuracy where the elements to fit are small in their dynamic
range [42] and is chosen equal to the inverse of the element
magnitude:

wHi(s, g)k = |(Hi(s, g)k)−1| (18)

for i = 1, ..., M . The RMS-error is chosen to characterize
the model accuracy. It is weighted if the previous weighting
function is used during the modeling process.

RMS =

√√√√ 1
MK

M∑

i=1

K∑

k=1

∣∣∣Ri(s, g)k −Hi(s, g)k

∣∣∣
2

(19)

RMSweighted =

=

√√√√ 1
MK

M∑

i=1

K∑

k=1

∣∣∣wHi(s, g)k

(
Ri(s, g)k −Hi(s, g)k

)∣∣∣
2

(20)

IV. PARAMETRIC MACROMODELING STRATEGIES

In this section, we extend the spectral MTL modeling
approach coupling it with MOVF technique, to be able to
generate MTL parametric representation. Three different para-
metric macromodeling strategies are presented.
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A. Parametric macromodeling ofZpul(s, g) and Y pul(s, g)

The per-unit-length impedance and admittanceZpul(s, g)
andY pul(s, g) are modeled as functions of the frequency and
other design parameters. The length is not a parameter for this
approach.

Zpul(s, g) ' Z̃pul(s, g) =
NZpul

(s, g)

DZpul
(s, g)

=

∑PZpul

p=0

∑VZpul

v=0 cpv,Zpul
φp(s)ϕv(g)

∑PZpul

p=0

∑VZpul

v=0 c̃pv,Zpul
φp(s)ϕv(g)

(21)

Y pul(s, g) ' Ỹ pul(s, g) =
NYpul

(s, g)

DYpul
(s, g)

=

∑PYpul

p=0

∑VYpul

v=0 cpv,Ypul
φp(s)ϕv(g)

∑PYpul

p=0

∑VYpul

v=0 c̃pv,Ypul
φp(s)ϕv(g)

(22)

Once these per-unit-length parametric macromodels are built,
given a fixed set of values for the parameters, they can be
reduced to univariate frequency-dependent functions as in [32].
Since MOVF does not guarantee stability and passivity of the
parametric macromodel by construction, the stability of the
univariate model can be imposed in the reduction step using
pole flipping, and, subsequently, passivity can be enforced in
a post-processing step by means of standard techniques (see
[43] and [44]).

After these steps, a univariate rational model is obtained
for theZ matrix as shown in [27]. At this stage, the length of
the MTL system is chosen. This rational model is passive and
stable, if passivity and stability are imposed on the univariate
models of the per-unit-length impedance and admittance [27].
Finally, a state space representation and an equivalent SPICE
circuit can be realized for theZ matrix, by using standard
realization [33] and circuit synthesis techniques [34].

B. Parametric macromodeling of modal impedancesZn(s, g)

The spectral approach for multiconductor transmission lines
allows to decompose the impedance matrix entries in modal
impedances which have a rational form as shown in (9).
They can be modeled by a multivariate representation. In this
approach the length is also seen as a design parameter.

Zn(s, g) ' Z̃n(s, g) =
NZn(s, g)
DZn(s, g)

=

∑PZn
p=0

∑VZn
v=0 cpv,Znφp(s)ϕv(g)

∑PZn
p=0

∑VZn
v=0 c̃pv,Znφp(s)ϕv(g)

(23)

Once these modal parametric macromodels are built, given
a fixed set of values for the parameters, they are reduced
to univariate frequency-dependent functions. Their sum rep-
resents the final rational univariate model of the matrixZ.
The stability and passivity for theZ matrix model are ensured
by imposing these system properties on the univariate models
of the modes [27]. Finally, a state space representation and
an equivalent SPICE circuit can be realized for theZ matrix.
Concerning the first two parametric macromodeling strategies,
the parametric macromodeling of per-unit-length parameters

results, based on the experience of the authors, to be more
accurate and simple to accomplish. It only requires to model
the per-unit-length impedance and admittanceZpul(s, g) and
Y pul(s, g) as functions of the frequency and other design
parameters, instead of the entire set of modal impedances. On
the other hand, it is needed to have accurate and physically
meaningful per-unit-length parameters, otherwise an overfit-
ting may appear due to the attempts at accurately modeling not
physical effects. The possible overfitting present in the models
of the per-unit-length parameters leads to an overfitting of the
Z matrix model, which can be removed using a pole pruning
step to carry a model order reduction out.

C. Parametric macromodeling of impedancesZ(s, g)

The parametric macromodeling of theZ matrix, composed
of the sum of the modesZn(s, g), can be another macromod-
eling strategy.

Z(s, g) ' Z̃(s, g) =
NZ(s, g)
DZ(s, g)

=

∑PZ

p=0

∑VZ

v=0 cpv,Zφp(s)ϕv(g)
∑PZ

p=0

∑VZ

v=0 c̃pv,Zφp(s)ϕv(g)
(24)

The Z matrix contains the dynamics of all modes, thus the
complexity of this macromodeling process, in other terms
the number of poles required for a good model, increase in
comparison with the modal macromodeling. Increasing the
number of conductors and ports as well, this macromodeling
strategy with common poles might need too much memory
and it is not possible sometimes to satisfy such requirement.
Experiments show that this macromodeling strategy is not a
good option for complex MTLs with a large number of ports.

D. Mode selection

The infinite sum in (9) must be truncated in order to
obtain a finite rational representation of the multiconductor
transmission line. Two different strategies with a bottom-up
approach are followed and shown in the following algorithms,
to choose the number of modes in the macromodeling process.
They are based on the check of the dominant poles [45] of
the modal impedancesZn evaluated on the minimum, mean
and maximum values of each design parameter range. If for
a certain number moden all checks prove that the dominant
poles are out of a defined bandwidthξωmax (whereξ > 1),
the algorithms end and the number of modes is equal ton−1.
The algorithms are described for the bivariate case, but the full
multivariate formulation is similar.

V. NUMERICAL MODELING

A. Two-conductor transmission line with frequency-
independent per-unit-length parameters and linear
terminations

In the first example, a two-conductor transmission line,
shown in Fig. 1, has been considered.
The per-unit-length parameters areRpul = 39.78 Ω/m,
Lpul = 0.5269 µH/m, Gpul = 2.576 mS/m andCpul =
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Input : Parametric macromodels̃Zpul(s, g), Ỹ pul(s, g)
Output : Number of modesnmodes

Multivariate to Univariate [32] : Z̃pul(s, g), Ỹ pul(s, g) −→
Z̃pul(s, gi), Ỹ pul(s, gi), gi={gmin, gmean, gmax}.

convergence = false;
check pole = yes;
ξ > 1, 0 < ζ < 1;
n = 0;

while convergence = false do
%Pole check
foreach gi do

[polesn, residuesn] =
poles residues mode(Z̃pul(s, gi), Ỹ pul(s, gi), n) (
[27]);
foreach polen do

foreach residuen do
if |Im(polen)| < ξωmax ∩ |residuen| >
ζmax(|residuesn|) then

check pole = no
end

end
end
if check pole = no then

convergence = false;
n = n + 1;
check pole = yes.

else
convergence = true.

end

end
end

nmodes = n− 1.

Algorithm 1 : Mode selection for the first parametric macro-
modeling strategy.

R

R
LV

s

+

s

Fig. 1. Two-conductor transmission line with linear terminations.

50.58 pF/m. The length of the line is considered as parameter
in addition to frequency. Their respective ranges arefreq ∈
[100 − 109] Hz and ` ∈ [1 − 10] cm. In this example the
parametric macromodeling ofZpul(s, `) andY pul(s, `) is not
used, because the additional parameter is the length of the line.
The infinite series in (9) has been truncated tonmodes = 20
using the second algorithm for the selection ofnmodes. All 20
modal impedances have been computed over a reference grid
of 251 × 40 samples, respectively for frequency and length.
We have used6 × 6 samples of the previous grid and2
poles for both frequency and length, to model all modes. The
maximumRMSweighted error of the parametric macromodels
over the reference grid is equal to7 · 10−11. The magnitude
of the parametric macromodel ofZ11 is shown in Fig. 2 for

Input : DataZpul(s, gi), Y pul(s, gi), gi = {gmin, gmean, gmax}
Output : Number of modesnmodes

convergence = false;
check pole = yes;
ξ > 1, 0 < ζ < 1;
n = 0;

while convergence = false do
%Pole check
foreach gi do

Zn =
mode computation(Zpul(s, gi), Y pul(s, gi), n) (eq. 9);
[polesn, residuesn] = model(Zn) (by V ector F itting);
foreach polen do

foreach residuen do
if |Im(polen)| < ξωmax ∩ |residuen| >
ζmax(|residuesn|) then

check pole = no
end

end
end
if check pole = no then

convergence = false;
n = n + 1;
check pole = yes.

else
convergence = true.

end

end
end

nmodes = n− 1.

Algorithm 2 : Mode selection for the second parametric
macromodeling strategy.

TABLE I
DESIGN PARAMETERS OF THE TWO-CONDUCTOR TRANSMISSION LINE

STRUCTURE

Parameter Min Max
Frequency (freq) 100 Hz 10 GHz
Length (̀ ) 0.01 cm 0.1 cm

modesn = {0, 1, 8}. Next, these macromodels have been
reduced to univariate frequency-dependent functions for the
set of length values̀ = {1.46, 3.08, 4.69, 6.31, 7.92, 9.54}
cm. These points have not been used for the generation
of the macromodels. The magnitude and the phase ofZ12

and its univariate model are shown in Figs. 3-4 for modes
n = {0, 1, 8} and ` = 9.54 cm.
The macromodel of theZ matrix, composed of the sum
of 20 modes, can be built by using the macromodels of
the modal impedances. TheRMSweighted error between the
macromodel of theZ matrix and its computation from the
exact transmission line theory (TLT) [3] over the reference
grid is equal to2 · 10−8. The magnitude of the parametric
macromodel ofZ12 is shown in Fig. 5. The comparison is
also shown in magnitude and phase for` = 6.31 cm in Figs.
6-7.

The results confirm the high accuracy of the parametric
macromodeling strategy in frequency domain. The next step is
to show that the accuracy is kept in time-domain as well. The
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Fig. 2. Magnitude of the parametric macromodel of modal impedance
Zn,(11) (modesn = {0, 1, 8}).

0 2 4 6 8 10
10

−2

10
0

10
2

10
4

Frequency [GHz]

|Z
n,

(1
2)

| [
Ω

]

 

 

Macromodel (Z
n
)

DataMode 0

Mode 8
Mode 1

Fig. 3. Magnitude of the macromodel ofZn,(12) (modesn = {0, 1, 8},
` = 9.54 cm).
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Fig. 4. Phase of the macromodel ofZn,(12) (modesn = {0, 1, 8}, ` = 9.54
cm).

line has been excited by an impulsive voltage source with
amplitude2 V, rise/fall timesτr = τf = 500 ps and width
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2 ns. It has been terminated on a driver and load resistance
equal toRS = RL = 50 Ω. The port voltages have been
computed using the exact transmission line theory via Inverse
Fast Fourier transform (IFFT) and a state-space realization of
the frequency domain macromodel of theZ matrix. The time
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domain results are shown in Figs. 8-9 for the set of length
values` = {1.46, 3.08, 4.69, 6.31, 7.92, 9.54} cm.
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Fig. 8. Input voltage of the line terminated onRS = 50 Ω andRL = 50 Ω
(` = {1.46, 3.08, 4.69, 6.31, 7.92, 9.54} cm).
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Fig. 9. Output voltage of the line terminated onRS = 50 Ω andRL = 50 Ω
(` = {1.46, 3.08, 4.69, 6.31, 7.92, 9.54} cm).

As clearly seen, a very good agreement is obtained between
the proposed method and the inverse fast Fourier transform,
confirming the very high accuracy of the parametric macro-
modeling strategy in the time-domain as well.

B. Three coupled microstrips with frequency-dependent per-
unit-length parameters and linear terminations

In the second test, a four-conductor transmission line (length
` = 15 cm) with frequency-dependent per-unit-length parame-
ters has been modeled. It consists of three coplanar microstrips
over a ground plane. The cross sections is shown in Fig. 10.

w w wS S

t

h

Fig. 10. Cross section of the three coupled microstrips.

The conductors have widthw = 100 µm and thickness
t = 50 µm. The spacingS between the microstrips is con-
sidered as parameter in addition to frequency. The dielectric
is 300 µm thick and characterized by a dispersive and lossy
permittivity which has been modeled by the wideband Debye
model [46]. The frequency-dependent per-unit-length param-
eters have been evaluated using a commercial tool [47]. Both
the parametric macromodeling ofZpul(s, S), Y pul(s, S) and
the modal impedancesZn(s, S) are applied to this example.
The infinite series in (9) has been truncated tonmodes = 30.
Both the mode selection tests gave the same result. The ranges
of frequency and spacing arefreq ∈ [100− 15 · 109] Hz and
S ∈ [200− 400] µm.

TABLE II
DESIGN PARAMETERS OF THE THREE COUPLED MICROSTRIPS

STRUCTURE.

Parameter Min Max
Frequency (freq) 100 Hz 15 GHz
Spacing (S) 200 µm 400 µm

First, the parametric macromodeling ofZpul(s, S) and
Y pul(s, S) is treated. The frequency-dependent per-unit-
length parameters have been computed over a reference grid
of 251× 40 samples, respectively for frequency and spacing.
We have utilized30 × 10 samples of the previous grid and
set the number of poles equal to4 and 2, respectively for
frequency and spacing, to model these functions. The max-
imum RMSweighted error of the per-unit-length parametric
macromodels over the reference grid is equal to1 · 10−5. The
magnitude of the parametric macromodel ofZpul,(12) is shown
in Fig. 11.
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Subsequently, these parametric macromodels have been
reduced to univariate frequency-dependent functions for the
set of spacing valuesS = {231, 272, 313, 354} µm. These
points have not been used for the generation of the macro-
models. Then, the univariate models of the modal impedances
have been computed over this spacing points. Concerning the
parametric macromodeling ofZn(s, S), all 30 modes have
been computed on a grid of50 × 15 samples and these data
have been used in the macromodeling process. We have set the
number of poles equal to12 and2. Next, the modal paramet-
ric macromodels have been reduced to univariate frequency-
dependent functions for the previous set of spacing values.
The maximumRMSweighted error of all modal parametric
macromodels over the reference grid is equal to3 · 10−5.
The magnitude of the parametric macromodel ofZ15 built
by the second macromodeling strategy is shown in Fig. 12
for modesn = {0, 1, 10}. The magnitude and phase ofZ11

and its respective macromodels are shown in Figs. 13-14 for
modesn = {0, 1, 10}, S = 354 µm.
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Fig. 12. Magnitude of the parametric macromodel ofZn,(15) by the second
strategy (modesn = {0, 1, 10}).

The macromodel of theZ matrix, composed of the sum
of 30 modes, can be built by using the models of modal
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Fig. 14. Phase ofZn,(11) (modesn = {0, 1, 10}, S = 354 µm).

impedances, previously obtained. TheRMSweighted error
between the macromodel of theZ matrix and its computation
from TLT over the reference grid is equal to6 · 10−4 for
both the macromodeling strategies. The magnitude ofZ14

computed by TLT is shown in Fig. 15. The magnitude and
the phase of the macromodels ofZ14 are compared with the
results obtained from TLT in Figs. 16-17 forS = 272 µm.

The results confirm the high accuracy of the parametric
macromodeling strategies in frequency domain. As in the
previous example, the next step is to show that the accuracy is
kept in time-domain as well. The central line has been excited
by an impulsive voltage source with amplitude1 V, rise/fall
times τr = τf = 400 ps and width80 ps. The victim lines
have been terminated on the near and far-end byRNE = 50 Ω
andCFE = 1 pF, while the driven line has been terminated on
a driver and load impedance equal toRS = 50 Ω andCL = 1
pF (see Fig. 18). The port voltages have been computed using
the exact transmission line theory (via-IFFT) and a state-
space realization of the frequency domain macromodel of the
Z matrix for both the macromodeling strategies. Some time
domain results are shown in Figs. 19-20 for the set of spacing
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valuesS = {231, 354} µm. The port-voltages results confirm
that the frequency domain high accuracy of the macromodeling
strategies is also preserved in time domain simulations.
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Fig. 18. Three coupled microstrips with linear terminations.
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VI. CONCLUSIONS

Many second order effects, such as delay, coupling and
crosstalk, previously neglected in circuit and system simula-
tions of microwave devices, have become prominent because
of increased integration levels and signal speeds. Accurate
prediction of these interconnects effects is fundamental for
a successful design and requires solution of large systems
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of equations which are often prohibitively CPU expensive.
Design space exploration, design optimization and sensitivity
analysis are involved in the design framework in addition to
regular simulations. Their realization by using full electromag-
netic simulations on the entire parameter space is often com-
putationally expensive. Parametric macromodeling techniques
that take into account design parameters, such as layout and
substrate features, in addition to frequency (or time) are needed
to make efficient these design activities. We have presented
an innovative parametric macromodeling approach for lossy
and dispersive multiconductor transmission lines. It has been
found capable to generate accurate rational macromodels with
respect to physical and geometrical parameters. The use of
the spectral decomposition of the impedance matrixZ leads
a significant simplification of the identification process. Two
different macromodeling strategies have been investigated. The
numerical results have validated the proposed technique and
confirmed its accuracy and effectiveness in capturing second
order phenomena which are crucial in the analysis and design
of high-speed multiconductor transmission lines.
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Studi di Palermo, Palermo, Italy, in 2005 and the
M.S. degree in electronic engineering from the Uni-
versit̀a degli Studi dell’Aquila, L’Aquila, Italy, in
2007. Since February 2008, he has been pursuing
the Ph.D. in the Department of Information Technol-
ogy (INTEC) at Ghent University in Belgium. His
research interests include robust parametric macro-
modeling, rational least-squares approximation, sys-
tem identification and broadband macromodeling

techniques.

Giulio Antonini (M’94–SM’05) received the Laurea
degree (summa cum laude) in electrical engineer-
ing from the Universit̀a degli Studi dell’Aquila, in
1994, and the Ph.D. degree in electrical engineering
from the University of Rome ”La Sapienza,” in
1998. Since 1998, he has been with the UAq EMC
Laboratory, Department of Electrical Engineering,
University of L’Aquila, where he is currently As-
sociate Professor. His research interests focus on
EMC analysis, numerical modeling, and in the field
of signal integrity for high-speed digital systems.

He has authored or coauthored more than 180 technical papers and two
book chapters. Furthermore, he has given keynote lectures and chaired
several special sessions at international conferences. He holds one European
patent. Dr. Antonini was the recipient of the IEEE TRANSACTIONS ON
ELECTROMAGNETIC COMPATIBILITY Best Paper Award in 1997, the
CST University Publication Award in 2004, the IBM Shared University
Research Award in 2004, 2005, and 2006. In 2006, he received a Technical
Achievement Award from the IEEE EMC Society ”for innovative contributions
to computational electromagnetic on the Partial Element Equivalent Circuit
(PEEC) technique for EMC applications.” He also received the IET-SMT
Best Paper Award in 2008. He is vice-chairman of the dell’IEEE EMC Italy
Chapter, member of the TC-9 committee, and vice-chairman of the TC-10
Committee of the IEEE EMC Society. He serves as member of the editorial
board of IET Science, Measurements, and Technology. He serves as reviewer
in a number of IEEE journals.

Tom Dhaene was born in Deinze, Belgium, on
June 25, 1966. He received the Ph.D. degree in
electrotechnical engineering from the University of
Ghent, Ghent, Belgium, in 1993. From 1989 to
1993, he was Research Assistant at the University
of Ghent, in the Department of Information Technol-
ogy, where his research focused on different aspects
of full-wave electro-magnetic circuit modeling, tran-
sient simulation, and time-domain characterization
of high-frequency and high-speed interconnections.
In 1993, he joined the EDA company Alphabit (now

part of Agilent). He was one of the key developers of the planar EM
simulator ADS Momentum. Since September 2000, he has been a Professor
in the Department of Mathematics and Computer Science at the University
of Antwerp, Antwerp, Belgium. Since October 2007, he is a Full Professor
in the Department of Information Technology (INTEC) at Ghent University,
Ghent, Belgium. As author or co-author, he has contributed to more than 150
peer-reviewed papers and abstracts in international conference proceedings,
journals and books. He is the holder of 3 US patents.

Luc Knockaert received the M. Sc. Degree in phys-
ical engineering, the M. Sc. Degree in telecommu-
nications engineering and the Ph. D. Degree in elec-
trical engineering from Ghent University, Belgium,
in 1974, 1977 and 1987, respectively. From 1979
to 1984 and from 1988 to 1995 he was working in
North-South cooperation and development projects
at the Universities of the Democratic Republic of
the Congo and Burundi. He is presently affiliated
with the Interdisciplinary Institute for BroadBand
Technologies (www.ibbt.be) and a professor at the

Dept. of Information Technology, Ghent University (www.intec.ugent.be). His
current interests are the application of linear algebra and adaptive methods in
signal estimation, model order reduction and computational electromagnetics.
As author or co-author he has contributed to more than 100 international
journal and conference publications. He is a member of MAA, SIAM and a
senior member of IEEE.


