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Abstract 

An extensive field trial was set up in eight forest stands to examine the influence of soil texture (two stands 

on sand, four on loam to silt loam, two on clay), machine mass (light, heavy) and traffic intensity (1 and 5 

skidding cycles) (i.e. pass back and forth on the skid trail) on soil compaction after mechanized harvesting. 

Dry bulk density (BD), penetration resistance (PR), micro-topography and soil carbon dioxide (CO2) 

concentration were applied as response variables for soil compaction. Significant effects on BD were nearly 

absent (< 7% increase) and occurred occasionally for PR (60-70% increase, up to 150% on clay soils). 

Especially for loam to silt loam and clay soils, this was in contrast with the expectation. The negligible 

compaction degrees for loam to silt loam are attributed to high initial compaction levels that prevented 

further compaction, as was found by General Linear Modelling (GLM) for both BD as PR. For clay soils the 

small compaction degrees can be explained by the high water contents that result in plastic deformation 

instead of strong compaction degrees, as was confirmed by the micro-topographical measurements. GLM 

also revealed a significant impact of machine mass (BD) and soil water content (BD, PR) on the compaction 

degree. Soil texture, traffic intensity and position in relation to the wheel tracks generally turned out to 

have an insignificant influence. With regard to clear interactions the influence of traffic intensity depends 

on the position in relation to the wheel tracks and the machine that was used (PR). 

In contrast with BD and PR, soil CO2 concentration, measured in a forest stand on sand, showed significant 

increases within and between wheel tracks, even after one skidding cycle. Although soil compaction 

degrees were small to negligible, machine passes apparently had a strong negative impact on pore 

continuity. CO2 concentration seems to be a more sensitive and thus better indicator for soil compaction.  

 

Keywords: bulk density, penetration resistance, micro-topography, soil carbon dioxide 

  

                                                           
1
 Corresponding author: evy.ampoorter@ugent.be; Tel.: ++32(0)92649038; Fax: ++32(0)92649092 

 

mailto:evy.ampoorter@ugent.be


2 
 

1. Introduction 

In the last decades, manual felling and logging by animals or small tractors have given way 

to mechanized harvesting, using heavy tractors or specialized felling (harvester) and logging 

(skidder, forwarder) machines. Soil compaction, often accompanied by rutting, is typical processes 

that may appear as a result of inappropriate use of this heavy forest machinery. Rut formation 

may involve direct or indirect damage to the root system of trees (Stone and Elioff, 2000) and soil 

animals (Lindo and Visser, 2004), and altered soil and climatic conditions may increase plant 

diversity (Alban et al., 1994; Buckley et al., 2003). Soil compaction involves the compression of 

pores, which leads to a decreased porosity and pore continuity (Herbauts et al., 1996; Berli et al., 

2003; Teepe et al., 2004). As a result, there is often an increase in dry bulk density (BD) (e.g. Alban 

et al., 1994; Miller et al., 1996), defined as the dry mass of the soil to its volume. In addition, 

smaller pore sizes reduce hydraulic conductivity (Benthaus and Matthies, 1993), leading to a 

slower water infiltration (Dickerson, 1976) and increased runoff. In general, gas exchange is also 

hampered (Gaërtig et al., 2002), possibly affecting growth and activity of roots and soil organisms 

(Schumacher and Smucker, 1981; Bathke et al., 1992), and leading to an alteration of chemical 

processes (Herbauts et al., 1996; Woodward, 1996; Arocena, 2000; Ballard, 2000). As pores 

become smaller, soil strength increases (Shetron et al., 1988). Aust et al. (1998) and Nugent et al. 

(2003) found a 30-50% increase of the penetration resistance (PR), a measure for soil strength. As 

root tips have to overcome soil strength to be able to elongate, root growth may be hampered 

(Greacen and Sands, 1980; Heilman, 1981), depending on soil type, water regime and tree species 

(Jones, 1983; Heninger et al., 2002; Dexter, 2004). The species composition of the herb layer may 

also experience changes (Buckley et al., 2003), due to species dependent sensitivity to soil 

compaction (Zwaenepoel, 1989; Godefroid et al., 2004). In the case of soil fauna hindrance of 

movements, physical damage or altered food or oxygen supply may occur (Smeltzer et al., 1982; 

Radford et al., 2001; Battigelli et al., 2004).  

The degree to which a forest soil is compacted by mechanized harvesting, depends on 

several variables and characteristics, typical of the forest site (soil texture, soil organic matter 

content, slope), season (soil water content, soil temperature) or the harvesting activity itself 

(machine type, machine mass, number of trees to be felled, traffic intensity). This research 

examines how in situ compaction intensity is influenced by (1) soil texture, (2) machine mass and 

(3) traffic intensity: 

1) Soil texture: in general, it is assumed that soils with a clay or silt texture are more 

sensitive to soil compaction than sandy soils (Hillel, 1998; Fisher and Binkley, 2000). 

Gomez et al. (2002) stated that the highest BD and the lowest porosities after machine 

traffic were located on clay soils. Smith (2003) indicated that the clay content also has an 

important influence on the increase of PR after machine traffic. Brais and Camiré (1998) 

and Ampoorter et al. (2007) however, found that sandy soils may also be prone to 

compaction due to mechanized harvesting.  

2) Machine mass: in this respect, the mean soil contact pressure is of importance. This value 

is defined as the ratio of the machine mass to the contact area of the machine with the 

soil (Febo et al., 2000) and indicates the vertical pressure and consequently the potential 
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compaction. The higher the soil contact pressure, the higher the impact on the soil 

(McDonald et al., 1996). 

3) Traffic intensity (referring to the number of machine passes or skidding cycles): the first 

pass of a machine on a previously undisturbed forest soil may already induce a strong 

compression of the soil pores (Schäfer and Sohns, 1993; Williamson and Neilsen, 2000).  

Amongst others, Brais and Camiré (1998) and Seixas et al. (2003) found that the 

relationship between traffic intensity and BD increase is logarithmic. The cycle of half 

impact, defined as the number of passes at which half of the potential impact has been 

reached, is lower for fine-textured soils in comparison with coarse-textured soils (Brais 

and Camiré, 1998). 

 

Numerous studies have already focussed on forest soil compaction after mechanized harvesting. 

The added value of this research is that it had an extensive and integrated approach. It was 

executed in various forest stands, examining different factors (texture, machine mass, traffic 

intensity), looking at the impact on several soil variables. In this way, an overall view was obtained 

concerning the impact of mechanized harvesting on the soil ecosystem. It was therefore possible 

to assess the influence of each factor on the compaction degree. The aims of this study were: 

a) To measure the extent to which selected key variables (BD, PR, micro-topography, carbon 

dioxide concentration) are influenced by the treatments; 

b) To determine which factors (soil texture, machine mass, traffic intensity) contribute to 

this extent. 

 

2. Materials and methods 

2.1 Experimental design 

Eight forest stands, distributed over the Flemish region of Belgium, were selected for this 

field trial. Four are located in the Meerdael forest in Leuven on Luvisols (IUSS Working Group WRB, 

2006) with textures ranging from loam to silt loam, two are situated on Gleysols in Walem with 

(sandy) clay loam textures, and the two Podzols in Kapellen have sandy textures (Table 1). All 

forest stands were located on loose soils. Rocks or rocky substrates were absent. Small stony 

fragments were occasionally present but not at all to the extent that they could have buffered the 

impact of the machines nor that they would have influenced the measurements. Therefore, stony 

fragment content was not measured or taken into account to correct the measurements as this 

content was negligible. Mean temperature for the region (weather station Uccle) is 3.1°C in the 

coldest month (January) and  17.7°C for the warmest month (August) while mean annual 

precipitation is about 900mm. In all forest stands the previous mechanized harvesting dates back 

from at least 8 years ago. None of the selected stands has a history of permanent skid trails, so 

machines had access to the whole stand during past harvesting activities. 

In each forest stand eight straight trails of approximately 40m long and 5m wide were marked. 

These trails were used to examine the impact of machine mass and traffic intensity in a 2x2 design, 

replicated at two different points in time. Namely, the experiment was performed on half of the 

trails in summer conditions in September (September) on normally dry soils and on the other half 
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in winter conditions in February (February) when soils are normally wet but not frozen (Table 2). 

However, winter conditions were drier than expected so that the difference in soil water content 

(while performing the experiment) between the two points in time was rather small (Table 1). 

Moreover, in Walem, soils are capable of capillary rise of soil water, further decreasing the 

difference in soil water content between February and September. The two experiments were 

considered semi-replicates. Treatments were applied, using two machines: a New Holland TCE 50 

tractor, weighted with a winch (0.420 tons) to 1.88 tons to simulate typical Flemish small-scale fire 

wood harvest (light) (tyres front: 28cm wide, pressure 1.7 bar; tyres back: 36cm wide, tyre 

pressure 1.9 bar), and a John Deere grapple-skidder JD 640, loaded to 14.3 tons by using a 

concrete block (2.5 tons), hanging in the grapple, representative for Flemish machinery that is 

used to drag trees to forest roads (heavy) (tyres front and back: 77.47cm wide, tyre pressure 3.5 

bar). These machine types are also commonly used in other countries. Neither machine had 

information on soil contact pressure (ratio of machine mass to contact area) available in the 

brochure. However, roughly estimated, the soil contact pressure was around 65 kPa for the heavy 

machine and 40 kPa for the light machine. The two levels for traffic intensity (or number of 

skidding cycles) were one and five skidding cycles, with a skidding cycle defined as a pass back and 

forth on the skid trail. The first level mimics traffic intensity deeper in the forest stand. The second 

level represents intensity of machine traffic on the area close to the log landing. Machines drove 

at walking pace. Four of the eight trails were used per experiment (February and September), of 

which two were driven by the light machine and two by the heavy machine (first skid trail, one 

skidding cycle; second skid trail, 5 skidding cycles). Tree interdistance on the examined area was 

large enough to allow forest machines to follow the marked trails during the experiment without 

the necessity of cutting extra trees. The trail centre was marked with painted sticks to make sure 

the same wheel tracks were used as much as possible, while making the subsequent skidding 

cycles. 

2.2 Data collection 

Several soil variables were measured to quantify the impact of each machine on the forest 

soil. Bulk density (BD) was sampled using Kopecky soil cores (100cm³) from depth intervals 0-10, 

10-20 and 20-30cm. Namely, several study results showed that the strongest soil impacts appear 

in these upper soil layers (Greacen & Sands, 1980; Ampoorter et al., 2007) and this was also 

confirmed by the PR results in this research (see further).  Before treatments were applied, 

samples were taken on locations where future wheel tracks would approximately be situated (n = 

number of replicates = 6 per skid trail, thus n = 48 per stand). After applying treatments, they were 

taken within (n = 6 per skid trail) and between (n = 6 per skid trail) the two wheel tracks, close to 

the locations of the initial measurements. As samples had to be oven dried (105°C) for 48h prior to 

weighing, no conditions were attached to the soil water content while taking the samples. 

Penetration resistance (PR) was determined using a penetrologger (Eijkelkamp Agrisearch 

Equipment, the Netherlands), that measures to a maximum depth of 80cm in depth intervals of 

1cm. Cones have an apical angle of sixty degrees, a basal area surface of 1cm² and a nominal 

diameter of 11.28mm. Measurements of PR had to be carried out when soils were at or near field 

capacity, because of the soil moisture dependence of the measurements (Smith et al., 1997). 
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Table 1 Characteristics of forest stands in field trial. Laser diffraction was applied to determine amounts of sand, silt, clay in the upper 50cm (sand > 50µm, 50 > silt > 2µm, 2µm > clay; soils divided 

in soil types according to IUSS Working Group WRB (2006) and classified in texture groups according to the USDA soil classification system (Soil Survey Division Staff, 1993); SWC = gravimetric soil 

water content, averaged over all skid trails) 

Forest stand Leuven 1 Leuven 2 Leuven 3 Leuven 4 Kapellen 1 Kapellen 2 Walem 1 Walem 2 

Dominant tree 

species 

Fagus 

sylvatica 

Pinus sylvestris, 

Pinus nigra 

Pinus sylvestris, 

Pinus nigra 

Quercus robur, 

Acer 

pseudoplatanus 

Fagus sylvatica, 

Pinus sylvestris, 

Quercus rubra 

Fagus sylvatica, 

Pinus sylvestris 

Fraxinus excelsior, 

Quercus robur, Acer 

pseudoplatanus, 

Prunus avium 

Populus sp. 

Soil type (WRB) 

% sand 

% silt 

% clay 

Luvisol Luvisol Luvisol Luvisol Podzol Podzol Gleysol Gleysol 

31 18 19 7 90 84 36 62 

48 59 59 69 6 10 36 19 

21 23 22 24 4 6 28 19 

Texture (USDA) loam silt loam silt loam silt loam sand loamy sand clay loam sandy (clay) loam 

SWC September  

(10-20 cm, %) 
12.8 14.3 12.8 23.3 10.8 14.1 37.7 29.6 

SWC February  

(10-20cm, %) 
22.2 22.4 25.8 31.4 13.4 20.7 44.1 35.0 

 

Table 2 Dates when the treatments were applied and the measurements were carried out on trails of the experiment in February and September 

 Variable Trails February Trails September 

Before 

Bulk density January 2007 January 2007 

Penetration resistance February 2007 February 2007 

Micro-topography 14-16 February 2007 29 August 2007 

Experiment  19-20 February 2007 24-25 September 2007 

After 

Bulk density February-March 2007 November 2007 

Penetration resistance March 2007 March 2008 

Micro-topography 26-28 February 2007 10 October 2007 

CO2  June 2008  /  
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To ensure comparability, PR was measured only in very wet circumstances after a long 

period of rain and current soil water content was determined as a routine check each time 

measurements were made. Therefore, soil was sampled at about ten locations spread over the 

measurement area with a soil drill on depths 0-10, 10-20, 20-30,…, 60-70cm. The samples were 

weighed, then dried (100°C) for 48h and reweighed. Before treatments were applied, PR was 

determined on each skid trail (12 measurements on each trail, thus n = 96 per stand) and on the 

area between all the trails (n = 120 per stand). After applying treatments, measurements were 

made within (n = 12 per skid trail) and between the two wheel tracks (n = 12 per skid trail) again in 

the neighborhood of the initial measurements. BD and PR were measured in all eight forest 

stands. The ratio of the BD and PR values after applying treatments to the corresponding values 

before treatments were applied (semi-paired samples) indicated the soil compaction degree 

(further called ratio or compaction degree) at each measurement point. Average ratios per 

treatment (Table 3 and 4) were calculated by averaging the ratios of all measurement points for 

that specific treatment. In Figure 1 and 2 and Tables 3 and 4, treatment mean reference is an 

average of all values before applying treatments on all treatments for that specific stand.  

Sand and clay are contrasting texture groups concerning vulnerability to soil compaction 

(Hillel, 1998; Fisher and Binkley, 2000). Therefore, analysis of micro-topography was examined in 

Kapellen 1 (sand) and Walem 1 (clay). To quantify rut depth, a horizontal slat (4m wide) was 

placed across the skid trails before and after treatments were applied at exactly the same place 

and height (marks on the poles to which the slat was attached). The slat was centered over the 

skid trail in order to enclose the area between and within wheel tracks and a part of the area next 

to the wheel tracks, that was not driven by the machines. PR and the distance between soil and 

horizontal slat were measured at 10cm intervals. These measurements were taken before and 

after applying treatments on each skid trail for one clay loam (Walem 1) and one sand stand 

(Kapellen 1) (n = 1 per skid trail). As with the other penetrologger measurements, micro-

topography was measured in very wet periods and soil samples were collected to ensure 

comparable soil water content.  

Finally, carbon dioxide (CO2) concentration was measured 10cm beneath the soil surface, 

using a portable gas chromatograph (Anderbrügge and Kaesler, 1992). This analysis is based on the 

extraction of soil air through a perforated needle. The application of the device is not advisable in 

wet conditions or on fine-textured soils, as water or small soil particles may be sucked into the 

device, rendering it unserviceable. As the soils in Leuven (loam to silt loam) were too wet and the 

soils in Walem (clay) too wet and fine-textured, measurements were only performed in Kapellen 2, 

a forest stand on sandy soil. Measurements were conducted after applying treatments on the skid 

trails where the heavy machine made 1 and 5 skidding cycles during the experiment in February. 

Across both trails, two blocks of 5 parallel transects (30cm interspace, width 5m) were placed (n = 

5 per block). As with micro-topography, transects were centered over the skid trail, so that both 

wheel tracks and soil that was not driven were included in the measurement area. Along each 

transect, measurements of CO2 concentrations were carried out at 25cm intervals.  

In addition to these measurements, on the days of the experiment in February and 

September the water content in the soil profile was determined. Therefore, in each forest stand 

soil samples were taken on depths 0-10, 10-20, 20-30,…, 60-70cm with a soil drill at both ends of 



7 
 

each skid trail (n = 2 per skid trail) (soil water content). Soil water contents on the loam to silt loam 

soils and the sandy soils were clearly lower than in Walem on clay at these times (Table 1).  

Table 2 summarizes the dates when measurements were performed. Before applying 

treatments measurements were predominantly executed at the beginning of 2007. After applying 

treatments, most variables were quantified within two months after the experiment, except for 

CO2 (16 months) and penetration resistance after the September experiment (6 months). 

2.3 Data analysis 

Measurements made on the skid trails prior to the experiment or in the neighbourhood of 

the trails are considered as reference. As there was no tradition of permanent skid trails in any of 

the forest stands, previous harvesting activities may have influenced the forest soil in a way that 

the impact is still (partially) detectable. Thus the term ‘reference’ does not mean that the soil is 

totally undisturbed but that the soil was not driven by machines during the experiment, nor at 

least 8 years before the experiment. It indicates the initial compaction degree at the start of the 

experiment. 

 

For dry BD and PR, data analysis involved a comparison of the impact of every treatment 

within and between all forest stands. Depth intervals 0-10, 10-20 and 20-30cm for BD and depths 

5, 15 and 25cm for PR were analysed separately. Results of PR contained some extreme outliers 

(points beyond 3 times the interquartile range from percentile 25 or 75). There were in total 78, 

37 and 36 outliers for depths 5, 15 and 25cm respectively (< 5% of all measurements). As these 

values were due to roots, rare coarse fragments or other soil irregularities, they were omitted 

from the dataset. Outliers in BD were scarce, rather due to normal soil variability and were 

therefore retained. As mentioned above, due to the contrasting vulnerability to soil compaction, 

the relationship between depth and BD or PR was examined more closely for Kapellen 1 (sand) 

and Walem 1 (clay) in Figures 1 and 2. As BD and PR are both indicators of soil compaction, a 

Pearson correlation coefficient between the reference values of the two variables (measured at 

the same measurement points) was determined. 

 

Statistical analysis was started with a One-Way ANOVA comparison of the mean reference 

values between the textures. Further, for each forest stand differences in absolute BD and PR 

values between the treatments (combination of position in relation to the tracks, machine mass, 

traffic intensity, time) were analysed applying One-Way ANOVA. General Linear Modelling (GLM) 

was applied, based on the ratios of the values after applying treatments to the values before 

applying treatments. The aim of GLM was to explore in detail the contribution (alone or combined) 

of texture, machine mass, traffic intensity, forest stand, position in relation to the wheel tracks, 

time, soil water content and reference values to the soil impact. Texture (clay– loam to silt loam - 

sand), machine mass (light - heavy) and traffic intensity (1-5 skidding cycles) were considered as 

fixed factors, whereas forest stand (nested in texture), position (within wheel tracks - between 

wheel tracks) and time (February and September) were random factors. Soil water content (during 

the experiments) and reference values (values before applying treatments) were covariables in the 

model. The model has been limited to the main effects of all the factors and all two-way 

interactions between texture, machine mass, traffic intensity and position. As a normal distributed 
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dataset is a prerequisite for ANOVA and GLM, data of PR had to be log transformed prior to both 

analyses.  Data analyses were performed using SPSS 15.0.  

Concerning the results of the micro-topography, distance and resistance results were 

processed graphically using Surfer 7.0. This was examined for Kapellen 1 (sand) and Walem 1 (clay) 

in Figure 3. Data were not analyzed statistically, as there were no replicates. The CO2 

concentrations were also processed graphically. For the statistical analysis, a distinction was made 

between the measurements beside the wheel tracks, within the wheel tracks and between the 

wheel tracks. For each of these three zones, data were averaged over all 5 transects per block. 

Next, per block average values for the three zones were compared using One-Way ANOVA.  

3. Results 

a. Dry bulk density (BD) 

Mean BD values and ratios between density before and after applying treatments are 

summarized in Table 3. Mean BD values were higher for stands in Leuven (loam to silt loam) and 

Kapellen (sand) in comparison with Walem (clay), as well for the reference as for the treatments. 

One-Way ANOVA concerning the difference in reference values between the soil textures 

indicated significantly lower values for the forest stands on clay (p-values < 0.001 for all three 

depth intervals). However, looking at the ratios, the impact of the treatments was similar for all 

forest stands. Ratios were overall low and did not exceed 1.07, meaning that the BD increase was 

never higher than 7% of the initial value. Two thirds of all ratios did not differ significantly from 1, 

meaning that no significant effect took place. In some cases ratios were significantly lower than 1. 

There was no clear difference between the ratios between or within wheel tracks.  

The relationship between soil depth and BD within wheel tracks was examined more 

closely for Kapellen 1 (sand) and Walem 1 (clay) in Figure 1. Reference BD values for the sandy soil 

(1481 ± 74kg/m³, 10-20cm) were significantly higher (p < 0.001) than for the clay soil (1008 ± 

72kg/m³, 10-20cm) (Table 3). For Kapellen 1 (Fig. 1A), September treatments induced similar 

compaction degrees with the heavy and the light machine (0-7% in the first two depth intervals). 

In February, most BDs after applying treatments are somewhat lower than before applying 

treatments. For the heavy machine, the impact after five skidding cycles in February was higher 

than the impact after one skidding cycle (21%, 0-10cm). In Walem 1 (Fig.1B), values of all 

treatments were similar to the reference values (< 6% increase), except for the September values 

in the third interval that were smaller than the reference. 

Results of ANOVA for depth interval 10-20cm (Table 3) showed for all stands that almost no 

treatment induced a clear increase of BD with the mean reference, neither within wheel tracks, 

nor between wheel tracks. Although comparison with the mean reference showed no significant 

difference, L1S in Leuven 1 and Kapellen 1seemed to induce a significant increase, based on the 

ratio. In Walem 1, L5F induced a significant increase in BD. The remaining significant ratios were 

due to lower values after the treatments in comparison with the initial compaction degrees.
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Table 3 Mean bulk density (kg/m³, upper value) and mean bulk density ratios (mean of ratios of density after applying treatments to density before treatments were applied, lower value) (± 95% 
confidence interval) of soil interval 10-20cm as influenced by treatments: position Po (between/within wheel tracks), Time Ti (February/September), machine weight Ma (light/heavy), traffic 
intensity Tr (one/five skidding cycles). For each forest stand, means are compared against each other after ANOVA using Tukey’s test, p-values (significant when p < 0.05) are mentioned. Mean 
bulk density values within a column that differ significantly are marked with different letters (n = number of replications). Values for treatment Mean reference are obtained by averaging values 
before treatments were applied (reference values) on all treatments per forest stand. Ratios that differ significantly from 1 (thus indicating a significant effect) are marked in bold with * 

Treatments n Leuven 1 Leuven 2 Leuven 3 Leuven 4 Kapellen 1 Kapellen 2 Walem 1 Walem 2 

Po Ma Tr Ti  p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p = 0.017 p < 0.001 p < 0.001 
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1 

Sept 6 1440 ± 102 abc 
0.95 ±0.07 

1271 ± 155 abc 
0.89 ± 0.11 

1163 ± 87 abc 
0.91 ± 0.04* 

1203 ± 150 bcd 
0.89 ± 0.08* 

1453 ± 100 abc 
0.99 ± 0.06 

1183 ± 146 a 
0.91 ± 0.12 

924 ± 98 ab 
0.89 ± 0.06* 

1029 ± 50 ab 
0.95 ± 0.03* 

Febr 6 1304 ± 99 ab 
0.89 ± 0.09* 

1384 ± 76 abc 
0.94 ± 0.05* 

1253 ± 166 bc 
0.99 ± 0.13 

1198 ± 52 abcd 
0.97 ± 0.05 

1436 ± 114 abc 
1.00 ± 0.07 

1319 ± 66 a 
1.00 ± 0.10 

891 ± 77 ab 
0.89 ± 0.09* 

1046 ± 76 ab 
0.90 ± 0.09* 

5 

Sept 6 1304 ± 169 ab 
0.96 ± 0.10 

1206 ± 263 abc 
0.81 ± 0.16* 

1164 ± 149 abc 
0.85 ± 0.08* 

1076 ± 96 ab 
0.82 ± 0.09* 

1568 ± 71 c 
1.02 ± 0.05 

1168 ± 181 a 
0.84 ± 0.12* 

868 ± 112 a 
0.84 ± 0.10* 

1086 ± 41 ab 
0.96 ± 0.06 

Febr 6 1370 ± 124 abc 
0.92 ± 0.12 

1384 ± 158 abc 
0.93 ± 0.06* 

1276 ± 31 bc 
0.94 ± 0.06 

1209 ± 91 bcd 
0.92 ± 0.05* 

1378 ± 95 abc 
0.94 ± 0.06 

1116 ± 242 a 
0.87 ± 0.16 

932 ± 88 ab 
0.95 ± 0.07 

1108 ± 90 ab 
0.92 ± 0.11 

H
e

av
y 

1 

Sept 6 1335 ± 152 abc 
0.92 ± 0.07* 

1220 ± 174 abc 
0.83 ± 0.10* 

1188 ± 147 abc 
0.91 ± 0.09 

1353 ± 61 cd 
1.00 ± 0.03 

1517 ± 68 bc 
1.02 ± 0.04 

1253 ± 162 a 
0.99 ± 0.13 

913 ± 68 ab 
0.89 ± 0.07* 

1118 ± 111 ab 
0.98 ± 0.13 

Febr 6 1384 ± 82 abc 
0.95 ± 0.03* 

1271 ± 89 abc 
0.87 ± 0.07* 

1335 ± 96 c 
1.00 ± 0.05 

1204 ±140 bcd 
0.96 ± 0.08 

1343 ± 199 ab 
0.91 ± 0.11 

1310 ± 56 a 
1.04 ± 0.09 

983 ± 47 ab 
1.01 ± 0.07 

1004 ± 114 ab 
1.03 ± 0.09 

5 

Sept 6 1352 ± 96 abc 
0.88 ± 0.06* 

1144 ± 283 ab 
0.83 ± 0.17 

1061 ± 126 ab 
0.76 ± 0.10* 

1354 ± 139 cd 
1.00 ± 0.17 

1506 ± 149 bc 
1.02 ± 0.10 

1272 ± 81 a 
0.99 ± 0.08 

870 ± 123 a 
0.88 ± 0.15 

1037 ± 38 ab 
0.89 ± 0.03* 

Febr 6 1352 ± 60 abc 
0.95 ± 0.02* 

1463 ± 93 bc 
0.97 ± 0.05 

1414 ± 81 c 
0.99 ± 0.07 

1176 ± 99 abc 
0.94 ± 0.07 

1412 ± 124 abc 
0.96 ± 0.11 

1272 ± 69 a 
0.96 ± 0.04 

916 ± 98 ab 
0.92 ± 0.07* 

929 ± 82 a 
0.97 ± 0.12 

W
it

h
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 w
h

e
e

l t
ra
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t 

1 

Sept 6 1596 ± 129 c 
1.05 ±0.03* 

1308 ± 163 abc 
0.91 ± 0.05* 

1188 ± 178 abc 
0.94 ± 0.12 

1150 ± 161 abc 
0.86 ± 0.12* 

1571 ± 44 c 
1.07 ± 0.05* 

1106 ± 301 a 
0.88 ± 0.20 

964 ± 86 ab 
0.93 ± 0.06* 

968 ± 134 ab 
0.89 ± 0.08* 

Febr 6 1399 ± 121 abc 
0.97 ± 0.11 

1324 ± 47 abc 
0.88 ± 0.02* 

1279 ± 128 bc 
1.01 ± 0.10 

955 ± 113 a 
0.78 ± 0.06* 

1473 ± 89 abc 
1.03 ± 0.03 

1380 ± 65 a 
1.00 ± 0.04 

991 ± 83 ab 
1.01 ± 0.10 

1149 ± 37 ab 
0.99 ± 0.08 

5 

Sept 6 1320 ± 57 abc 
0.96 ± 0.06 

1070 ± 189 a 
0.71 ± 0.12* 

1193 ± 223 abc 
0.87 ± 0.12* 

1215 ± 159 bcd 
0.92 ± 0.09 

1538 ± 35 bc 
1.01 ± 0.03 

1164 ± 208 a 
0.84 ± 0.14* 

1013 ± 86 ab 
0.98 ± 0.08 

1103 ± 75 ab 
0.98 ± 0.08 

Febr 6 1265 ± 103 a 
0.85 ± 0.05* 

1371 ± 80 abc 
0.93 ± 0.11 

1361 ± 104 c 
0.98 ± 0.08 

1210 ± 124 bcd 
0.90 ± 0.07* 

1357 ± 120 abc 
0.92 ± 0.06* 

1223 ± 71 a 
0.96 ± 0.05 

1041 ± 20 ab 
1.06 ± 0.05* 

1132 ± 83 ab 
0.93 ± 0.05* 

H
e

av
y 

1 

Sept 6 1358 ± 49 abc 
0.95 ± 0.04* 

1305 ± 291 abc 
0.88 ± 0.13 

1014 ± 229 ab 
0.78 ± 0.11* 

1298 ± 105 bcd 
0.98 ± 0.06 

1536 ± 88 bc 
1.03 ± 0.05 

1257 ± 179 a 
0.98 ± 0.05 

1021 ± 118 ab 
1.00 ± 0.10 

1155 ± 56 b 
1.01 ± 0.12 

Febr 6 1401 ± 130 abc 
0.97 ± 0.08 

1146 ± 500 abc 
0.94 ± 0.14 

1300 ± 70 bc 
0.98 ± 0.09 

1205 ± 60 bcd 
0.96 ± 0.07 

1239 ± 361 a 
0.86 ± 0.21 

1281 ± 78 a 
1.02 ± 0.12 

1028 ± 77 ab 
1.05 ± 0.09 

906 ± 119 a 
0.94 ± 0.04* 

5 

Sept 6 1395 ± 163 abc 
0.93 ± 0.10 

1235 ± 269 abc 
0.90 ± 0.17 

938 ± 228 a 
0.66 ± 0.11* 

1426 ± 79 d 
1.00 ± 0.11 

1537 ± 28 bc 
1.04 ± 0.06 

1217 ± 108 a 
0.95 ± 0.05 

897 ± 191 ab 
0.89 ± 0.11 

1119 ± 68 ab 
0.96 ± 0.03* 

Febr 6 1418 ± 157 abc 
1.10 ± 0.19 

1383 ± 303 abc 
0.92 ± 0.18 

1409 ± 89 c 
0.99 ± 0.08 

1328 ± 21 cd 
1.05 ± 0.07 

1355 ± 126 abc 
0.93 ± 0.04* 

1289 ± 131 a 
0.96 ± 0.04 

1038 ± 83 ab 
1.06 ± 0.11 

1020 ± 82 ab 
1.06 ± 0.15 

Mean reference 48 1463 ± 93 bc 1471 ± 104 c 1346 ± 98 c 1308 ± 99 cd 1481 ± 74 bc 1312 ± 116 a 1008 ± 72 b 1111 ± 126 b 
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 1 

Figure 1 Treatment effect on bulk density within wheel tracks, as a function of depth in Kapellen 1 (A) on sand and 2 

Walem 1 (B) on clay (mean ref = reference values for all treatments averaged, L.. = light machine, H.. = heavy 3 

machine, .1. = one skidding cycle, .5. = five skidding cycles, ..S = September, ..F = February). Number of replications 4 

(n) equal to 6, except for mean reference where n = 48. 5 

Results of the GLM analysis are summarized in Table 5. According to these results, machine 6 

mass had a significant influence in the second (p < 0.001) and third (p = 0.036) depth interval. 7 

Higher BD values were recorded using the heavy machine compared to the light machine. 8 

Compaction degrees depended only in the first depth interval on the traffic intensity (p = 0.018). 9 

The higher the traffic intensity, the more severe the compaction was. Two other factors 10 

determining the compaction degree considerably in all three soil intervals were forest stand (p < 11 

0.001 for all intervals) and time (p = 0.019, p < 0.001 and p = 0.004 respectively at intervals 0-10, 12 

10-20 and 20-30cm). Therefore, forest stands within the same texture group and the results of the 13 

two experiments (replicated in time) should not be seen as pure replicates. Reference values (or 14 

BDs before applying treatments) also influenced vulnerability of the soil to compaction to a great 15 
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extent (p < 0.001 for all soil intervals). Pearson correlation coefficients between reference values 16 

and BD ratios were -0.414, -0.253 and -0.276 for the first, second and third depth interval 17 

respectively, with all three corresponding p-values < 0.001. As the coefficients are negative, it 18 

seems that the higher BD before applying treatments was the lower the compaction degree was. 19 

Soil water content had also in the second depth interval a significant influence on BD ratios (p < 20 

0.001). Pearson correlation coefficients between soil water contents and BD ratios (all three 21 

texture groups and the two positions analysed together) were 0.002, 0.108 and 0.063 for the first, 22 

second and third depth interval respectively, with only the second corresponding p-value being 23 

significant (p = 0.004). It appeared that the ratio or compaction degree increased with increasing 24 

soil water content. Looking at this relationship only for the results within tracks of each texture 25 

group separately, it shows that most of the correlation coefficients are negative but insignificant. 26 

Texture and position in relation to the wheel tracks did not influence BD in a significant way. Apart 27 

from a small significant interaction between texture and position in the first (p = 0.050) and 28 

second (p = 0.035) depth interval, no strong significant interactions could be discerned for BD.  29 

b.  Penetration resistance (PR) 30 

Table 4 summarizes mean PR values and ratios between PR after and before applying 31 

treatments. As with BD, one-way ANOVA analysis indicated significantly lower mean reference 32 

values for clay compared to the other soil textures (p < 0.001 for all three depth intervals). Based 33 

on the absolute PR values after applying treatments, it was not possible to distinguish among the 34 

different soil textures.  35 

As with BD, Figure 2 illustrates the relationship between PR and depth for the treatments 36 

in Kapellen 1 and Walem 1. Only the first 50cm of the soil profile is shown, as this interval is most 37 

important to plant roots and animals and the impact is maximal in the upper soil layer. Reference 38 

values were lower for clay than for sand, as was already concluded from the results in Table 4. At 39 

Kapellen 1 (Figure 2A), treatments executed in September (somewhat drier soils), especially L5S 40 

and H5S, led to an increase of PR values with 60-70%,, and this is similar to the increase of BD. In 41 

February conditions, five skidding cycles of the heavy machine (H5F) induced a steep increase in 42 

PR around 25cm depth. However, the impact of the other February treatments, especially L1F, was 43 

negligible. From Figure 2A, it can be deduced for the February treatments that the light machine 44 

had a smaller impact than the heavy machine. Additionally, both February and September 45 

treatments showed that both machines induced higher compaction degrees after 5 skidding cycles 46 

than after one skidding cycle. At Walem 1 (Figure 2B), all treatments increased PR values to a 47 

certain extent. The September treatment H5S yielded a circa 90% increase of PR at 15cm depth 48 

and reached the highest values for the whole depth range. In the upper 20cm, the impacts of the 49 

other September treatments were similar (70-100% increase at 15cm) and exceeded the results of 50 

the February treatments to a small extent. Below 20cm, results of the February treatments H1F 51 

and H5F (heavy machine) kept increasing and exceeded the impact of the September treatments 52 

L1S, L5S and H1S. The other two February treatments with the light machine (L1F and L5F) had a 53 

negligible effect. The results of the February treatments thus showed that the light machine had a 54 

smaller impact than the heavy machine. The results of the September treatments showed that the 55 

impact of 5 skidding cycles of the heavy machine was most severe. 56 
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Table 4 Mean penetration resistance values (MPa, first value) and mean resistance ratios (mean of ratios of resistance after applying treatments to resistance before treatments were applied, 
second value) (± 95% confidence interval) of soil depth 15cm as influenced by treatments: position Po (between/within wheel tracks), Time (February/September), machine weight Ma 
(light/heavy), traffic intensity Tr (one/five skidding cycles). For each forest stand, means are compared against each other after ANOVA using Tukey’s test, p-values (significant when p < 0.05) are 
mentioned. Mean penetration resistance values within a column that differ significantly are marked with different letters (n = number of replications). Values for treatment Mean reference are 
obtained by averaging values before treatments were applied (reference values) on all treatments per forest stand. Ratios that differ significantly from 1 (thus indicating a significant effect) are 
marked in bold with * 

Treatments n Leuven 1 Leuven 2 Leuven 3 Leuven 4 Kapellen 1 Kapellen 2 Walem 1 Walem 2 

Po Ma Tr Ti  p < 0.001 p = 0.002 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 

B
e

tw
e

e
n

 w
h

e
e

l t
ra

ck
s 

Li
gh

t 

1 

Sept 12 1.83 ± 0.84 abc 
0.76 ± 0.27 

1.35 ± 0.32 ab 
1.50 ± 0.76 

1.45 ± 0.41 abc 
1.35 ± 0.52 

1.16 ± 0.42 abc 
0.92 ± 0.25 

1.74 ± 0.60 abcd 
1.89 ± 0.66* 

1.59 ± 0.25 bcde 
1.31 ± 0.20* 

1.42 ± 0.28 cdef 
2.00 ± 0.50* 

1.51 ± 0.24 de 
1.96 ± 0.35* 

Febr 12 1.66 ± 0.54 ab 
1.32 ± 0.29* 

1.67 ± 1.34 ab 
1.27 ± 0.56 

1.22 ± 0.60 abc 
1.10 ± 0.25 

1.39 ± 0.75 ab 
1.64 ± 0.74 

1.23 ± 0.33 ab 
1.34 ± 0.33* 

1.12 ± 0.32 ab 
1.01 ± 0.35 

0.90 ± 0.37 a 
1.03 ± 0.35 

0.76 ± 0.35 ab 
1.27 ± 0.38 

5 

Sept 12 1.64 ± 1.15 ab 
1.20 ± 0.31 

1.76 ± 0.58 ab 
1.04 ± 0.22 

1.33 ± 0.60 abc 
1.35 ± 0.80 

1.24 ± 0.50 abcd 
1.79 ± 0.75* 

2.33 ± 0.57 cd 
1.06 ± 0.13 

1.36 ± 0.48 abcd 
1.20 ± 0.27 

1.31 ± 0.35 abcdef 
1.84 ± 0.55* 

1.40 ± 0.21 cde 
2.21 ± 0.37* 

Febr 12 2.20 ± 1.12 bc 
1.44 ± 0.61 

1.52 ±1.18 ab 
0.82 ± 0.35 

1.74 ± 0.66 abc 
1.08 ± 0.39 

0.88 ± 0.25 abcde 
1.35 ± 0.45 

1.78 ± 0.67 abcd 
1.34 ± 0.35 

1.12 ± 0.27 ab 
0.96 ± 0.14 

0.90 ± 0.19 abc 
1.17 ± 0.33 

0.76 ± 0.24 ab 
1.53 ± 0.73 

H
e

av
y 

1 

Sept 12 1.70 ± 0.65 ab 
1.57 ± 0.73 

1.60 ± 0.61 ab 
1.36 ± 0.54 

1.35 ± 0.35 abc 
0.95 ± 0.17 

2.36 ± 1.30 bcde 
0.92 ± 0.26 

1.62 ± 0.49 abcd 
1.19 ± 029 

1.43 ± 0.57 bcd 
1.63 ± 0.56* 

1.47 ± 0.23 def 
1.77 ± 0.32* 

1.64 ± 0.37 e 
2.16 ± 0.49* 

Febr 12 1.37 ± 0.44 ab 
0.90 ± 0.28 

2.10 ± 0.85 b 
1.28 ± 0.32 

1.20 ±0.41 abc 
0.61 ± 0.18* 

0.87 ± 0.26 abc 
0.96 ± 0.31 

1.54 ± 0.40 abcd 
0.96 ± 0.23 

1.25 ± 0.47 abc 
1.05 ± 0.29 

0.89 ±0.26 abc 
1.19 ± 0.30 

0.94 ± 0.44 abc 
1.71 ± 0.72 

5 

Sept 12 1.56 ± 0.74 ab 
0.68 ± 0.30* 

1.60 ± 0.72 ab 
1.44 ± 0.49 

1.94 ± 1.31 abc 
1.65 ± 0.55* 

0.82 ± 0.21 de 
1.24 ± 0.34 

2.29 ± 0.57 cd 
1.40 ± 0.28* 

2.14 ± 1.12 de 
1.95 ± 0.66* 

1.79 ± 0.31 ef 
1.57 ± 0.25* 

1.25 ± 0.46 bcde 
1.45 ± 0.26* 

Febr 12 1.53 ± 0.55 ab 
1.08 ± 0.33 

2.11 ± 0.83 b 
1.00 ± 0.23 

3.02 ± 1.80 c 
1.30 ± 0.41 

0.87 ± 0.26 abc 
0.84 ± 0.27 

1.99 ± 0.72 abcd 
1.05 ± 0.36 

0.88 ± 0.32 a 
1.03 ± 0.31 

0.88 ± 0.34 a 
1.49 ± 0.74 

0.74 ± 0.33 a 
1.00 ± 0.35 

W
it

h
in

 w
h

e
e

l t
ra

ck
s Li
gh

t 

1 

Sept 12 2.34 ± 1.17 bc 
0.96 ± 0.29 

2.14 ± 0.81 b 
1.66 ± 0.44* 

1.40 ± 0.50 abc 
1.24 ± 0.38 

0.99 ± 0.36 abc 
0.80 ± 0.20 

2.39 ± 0.51 abcd 
1.80 ± 0.58* 

1.82 ± 0.42 cde 
1.50 ± 0.26* 

1.54 ± 0.51 def 
2.12 ± 0.49* 

1.51 ± 0.36 de 
2.04 ± 0.52* 

Febr 12 2.13 ± 0.81 bc 
1.74 ± 0.57* 

1.64 ± 0.86 ab 
1.28 ± 0.36 

1.03 ± 0.42 a 
0.94 ± 0.25 

0.79 ± 0.31 a 
1.23 ± 0.45 

1.20 ± 0.27 a 
1.29 ± 0.28* 

1.19 ± 0.37 e 
1.03 ± 0.31 

0.88 ± 0.33  ab 
1.00 ± 0.39 

0.94 ± 026 abcd 
1.51 ± 0.31* 

5 

Sept 12 1.34 ± 0.59 ab 
1.16 ± 0.48 

2.18 ± 0.91 b 
1.41 ± 0.45 

1.57 ± 0.88 abc 
1.17 ± 0.50 

1.29 ± 0.50 abcd 
1.44 ± 0.42* 

1.68 ± 0.42 cd 
1.14 ± 0.27 

1.60 ± 0.39 bcde 
1.43 ± 0.17* 

1.43 ± 0.23 def 
2.11 ± 0.56 

1.70 ± 0.27 e 
2.65 ± 0.33* 

Febr 12 1.96 ± 0.82 bc 
1.36 ± 0.53 

1.54 ± 1.25 ab 
1.03 ± 0.37 

1.52 ± 0.54 abc 
0.97 ± 0.23 

1.13 ± 0.44 abc 
1.04 ± 0.30 

1.53 ± 0.21 abcd 
1.16 ± 0.16 

1.25 ± 0.24 abc 
1.32 ± 0.41 

0.97 ± 0.15 abcd 
1.25 ± 0.32 

0.94 ± 0.25 abcd 
1.50 ± 0.55 

H
e

av
y 

1 

Sept 12 1.87 ± 0.81 abc 
1.13 ± 0.35 

1.74 ± 0.61 ab 
1.56 ± 0.60 

1.28 ± 0.33 abc 
0.87 ± 0.14 

1.87 ± 0.54 cde 
1.03 ± 0.29 

1.76 ± 0.68 abcd 
1.40 ± 0.49 

1.70 ± 0.45 bcde 
1.90 ± 0.52* 

1.36 ± 0.36 bcdef 
1.62 ± 0.36* 

1.36 ± 0.34 cde 
1.83 ± 0.42* 

Febr 12 1.12 ± 0.43 a 
0.74 ± 0.30 

1.58 ± 0.54 ab 
0.93 ± 0.18 

1.62 ± 0.39 abc 
0.79 ± 0.10* 

0.85 ± 0.20 ab 
1.08 ± 0.26 

1.54 ± 0.51 abc 
0.98 ± 0.26 

1.29 ± 0.16 abcd 
1.10 ± 0.19 

1.22 ± 0.32 abcde 
1.65 ± 0.44* 

0.89 ± 0.33 abc 
1.42 ± 0.33* 

5 

Sept 12 3.28 ± 0.98 c 
1.41 ± 0.47 

1.95 ± 0.80 ab 
1.71 ± 0.66* 

2.26 ± 0.75 bc 
1.75 ± 0.49 

2.45 ± 0.51 e 
1.22 ± 0.25 

2.44 ± 0.35 d 
1.48 ± 0.24* 

2.44 ± 0.38 bcde 
2.18 ± 0.33* 

2.07 ± 0.58 f 
1.87 ± 0.49* 

1.77 ± 0.55 e 
2.52 ± 0.70* 

Febr 12 1.67 ± 0.5 ab 
1.20 ± 0.35 

0.98 ± 0.25 a 
0.50 ± 0.15* 

2.38 ± 0.78 c 
1.03 ± 0.25 

0.99 ± 0.38 abc 
1.03 ± 0.32 

2.00 ± 0.47 bcd 
1.06 ± 0.28 

1.70 ± 0.27 abcd 
1.94 ± 0.30* 

1.13 ± 0.26 abcde 
1.67 ± 0.47* 

0.89 ± 0.15 abc 
1.14 ± 0.26 

Mean reference 216 1.82 ± 0.89 bc 1.75 ± 0.84 ab 1.46 ± 0.64 abc 1.28 ± 0.73 abc 1.55 ± 0.56 abcd 1.17 ± 0.47 ab 0.85 ± 0.31 ab 0.73 ± 0.28 ab 
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Figure 2 Treatment effect on penetration resistance within wheel tracks, as a function of depth in Kapellen 1 (A) 

and Walem 1 (B) (mean ref = reference values for all treatments and area between trails averaged, L.. = light 

machine, H.. = heavy machine, .1. = one skidding cycle, .5. = five skidding cycles, ..S = September, ..F = February). 

Number of replications (n) equal to 12, except for mean reference where n = 216. 

Results of ANOVA for soil depth 15cm (Table 4) showed almost no significant differences 

between the absolute values of the treatments and the reference for the forest stands on loam to 

silt loam (Leuven) and sand (Kapellen). Concerning the ratios, only the forest stands growing on 

sand and clay showed several ratios that were significantly higher than 1. The highest ratios were 

found on clay soils. For Walem 1 and 2 on clay, both within and between tracks after application of 

almost all September treatments, PR differed significantly from the mean reference values. 

Moreover, in Walem 1, treatment H5S compacted soil significantly more than all February 

treatments.  For all stands, compaction degrees between wheel tracks were as high as within 

wheel tracks. Ratios of September treatments are also predominantly higher than ratios of 

February treatments. 

 

Results of GLM (Table 5) showed no significant influences of texture, machine, traffic 

intensity and position in relation to the wheel tracks. As with BD, forest stand and time have a 

strong significant impact on the PR results (p < 0.001). Results of the different forest stands per 

texture group and the two different experiments should thus not be considered as pure replicates. 
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Water content has a significant impact in the second and third depth interval. Pearson correlation 

coefficients for the relationship between PR ratios (all texture groups and positions analysed 

together) and soil water content (when treatments were applied) are 0.107 (p < 0.001) at 5cm 

depth, 0.094 (p < 0.001) at 15cm depth and -0.036 (p = 0.180) at 25cm depth. This relationship 

indicates that ratios increase as soil water content increases, as was already indicated by BD. 

However, looking closer at this relationship for the results within tracks of each texture group 

separately, it shows significant p-values for sand (p = 0.011) and clay (p = 0.013) at 5cm, loam (p = 

0.021) and clay (p = 0.007) at 15cm and for loam (p = 0.001) and sand (p = 0.010) at 25cm. 

Moreover, each of these significant relationships is negative, meaning that compaction degree 

decreases at increasing soil water content. At last, the reference values again determined the 

compaction degree to a large extent in a negative way. Namely, analysis of the correlation 

between PR ratios and reference values resulted in significant Pearson correlation coefficients of -

0.576, -0.598 and –0.579 at 5, 15 and 25cm depth respectively (p-values < 0.001). The impact of 

traffic intensity seemed to depend on the machine mass for depths 15 and 25cm (p = 0.005 and p 

= 0.003 respectively). For the light machine, compaction degrees after one or five skidding cycles 

were similar, whereas the heavy machine induced a clearly higher impact after five skidding cycles 

in comparison with one skidding cycle. Position in relation to the wheel tracks was another term 

interacting with the impact of traffic intensity at 15 (p = 0.020) and 25cm (p < 0.001) depth. 

Between wheel tracks the compaction ratios after one and five skidding cycles were rather small. 

However, within wheel tracks the impact after five skidding cycles was significantly higher in 

comparison with one skidding cycle. As with BD, a small significant interaction existed between 

texture and position in relation to the wheel tracks for the first (p = 0.032) depth interval.  

Table 5 Bulk density and penetration resistance as influenced by texture (Te), machine weight (Ma), traffic intensity (Tr), forest 
stand (St, nested in Texture), position in relation to the wheel tracks (Po), Time (Ti), soil water content (Wa) and reference values 
(Re): sources of variation, degrees of freedom (df) and p-value for analysis of variance (GLM). Significant values (p < 0.05) are 
depicted in bold 

 Bulk density Penetration resistance 

Source df p-value for depth interval (cm) p-value for depth (cm) 

  0-10 10-20 20-30 5 15 25 

Te 2 0.164 0.095 0.156 0.586 0.236 0.105 
Ma 1 0.290 < 0.001 0.036 0.773 0.059 0.241 
Tr 1 0.018 0.762 0.965 0.159 0.304 0.424 
St(Te) 5 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 
Po 1 0.351 0.446  0.229 0.311 0.479 
Ti  0.019 < 0.001 0.004 < 0.001 < 0.001 < 0.001 
Wa 1 0.362 < 0.001 0.369 0.683 < 0.001 0.018 
Re 1 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 
Te*Ma 2 0.135 0.744 0.564 < 0.001 0.629 0.321 
Te*Tr 2 0.171 0.918 0.654 0.283 0.020 0.018 
Te*Po 2 0.050 0.035 0.921 0.032 0.111 0.354 
Ma*Tr 1 0.237 0.261 0.548 0.820 0.005 0.003 
Ma*Po 1 0.567 0.849 0.521 0.411 0.390 0.003 
Tr*Po 1 0.668 0.394 0.936 0.206 0.020 < 0.001 

 

c. Correlation between bulk density and penetration resistance 

BD and PR are both indicators for the extent to which a soil is compacted. A positive 

relationship existed between these two variables, although the shape (e.g. linear, logarithmic) of 
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the relationship was not clear. Pearson correlation coefficients were 0.469 (p < 0.001) at soil depth 

0-10cm, 0.391 (p = 0.001) at soil depth 10-20cm and 0.226 (p = 0.073) at depth 20-30cm. As 

coefficients were significant for the first and second depth interval, we can conclude for these 

depths that PR reaches higher values as BD increases. 

 
Figure 3 Microrelief (rut depth and penetration resistance) on a sand (A) (Kapellen 1) and clay (B) (Walem 1) 
texture, before (above) and after (below) five skidding cycles of the heavy machine in the experiment in February (n 
= 1).  The legend indicates values of the penetration resistance, the dotted line shows the isolines for 2MPa, the full 
line shows the isoline for 3MPa. The black arrows indicate the position of the wheel tracks after traffic.  

d. Micro-topography 

The micro-topography before and after 5 skidding cycles of the heavy machine in February 

is shown in Figure 3 for Kapellen 1 (Fig 3A) and Walem 1 (Fig. 3B). It shows a vertical section of the 

soil, perpendicular to the direction of the skid trail. For Kapellen 1, in several parts of the soil PR 

before applying treatments already exceeded 2MPa, or even 3MPa. However, the load exerted by 
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the machines did not enlarge these areas and rut formation was very restricted. In Walem, before 

treatments were executed, the soil was very loose, with very few areas where PR was larger than 

2 MPa. After the treatment, there was a clear formation of deep ruts with bulges on the edges. PR 

also showed a clear increase under the wheel tracks. Large areas could be detected where values 

exceeded 2MPa, but they remained for the major part below 3MPa. 

e. Carbon dioxide (CO2) concentration  

Soil CO2 concentration was measured in one forest stand on sandy texture (Figure 4). 

Blocks A and B were located on skid trails where the heavy machine made one skidding cycle in 

February. From the results of block A, the location of the wheel tracks could not be deduced as 

values were generally high (about 3%). These results contrast with block B where values were 

around 1%. Here, it was easy to discriminate between wheel tracks and the area that was not 

driven, as values had clearly increased within tracks (30 to 100%). The area between wheel tracks 

also showed a slight increase of CO2 concentration. After 5 skidding cycles of the heavy machine in 

February, the results were more pronounced. Both block C and D showed strong increases of CO2 

concentration within wheel tracks and a somewhat smaller increase between wheel tracks for 

block C. Traffic intensity obviously had a great influence on the increase of the CO2 concentration.  

 

Figure 4 Mean CO2-concentration in a sandy soil (Kapellen 2) after 1 (above) and 5 (below) skidding cycles of the 
heavy machine in the experiment in February (blocks A and B as replications for one skidding cycle, blocks C and D 
as replications for five skidding cycles) (within each block n = 5). The black horizontal arrows indicate the position of 
the wheel tracks after traffic.  Error bars represent the 95% percent confidence interval. 

Carbon dioxide concentrations also clearly differed according to the position in relation to 

the wheel tracks. In contrast with BD and PR, differences between the locations (area beside 

wheel tracks that has not been driven, area within wheel tracks and area between wheel tracks) 

were much more pronounced. This conclusion could be deduced from the results of the ANOVA-
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analysis (Table 6). The area beside tracks always had the smallest CO2-concentrations, mostly 

followed by the area between wheel tracks. The carbon dioxide concentration of the area 

between wheel tracks did not always differ significantly from the area beside tracks and was still 

significantly lower than the area within wheel tracks. Apart from these measurements along the 

transects, a few extra measurements have been performed on an area between trees that were 

standing very close to each other (< 2m). This area has certainly not been disturbed by machines 

since at least five decades and therefore these measurements can be seen as a true reference for 

an undisturbed situation. The mean carbon dioxide concentration here was 0.54%. All blocks 

showed significantly higher values (except for block B), not only within and between wheel tracks, 

but also on the area next to the wheel tracks. 

 
Table 6 CO2 concentration in a sandy soil (Kapellen 2) as influenced by the position in relation to the wheel tracks (Kapellen 2) 
(One-Way ANOVA). Significant results (p < 0.05) are depicted in bold. Positions with significantly different CO2 concentrations 
are marked with different letters 

Block Treatment p-value  

A  One skidding cycle < 0.001 Beside tracks
a
 < within tracks

b
 < between tracks

b 

B  One skidding cycle < 0.001 Beside tracks
a
 < between tracks

a
 < within tracks

b 

C  Five skidding cycles < 0.001 Beside tracks
a
 < between tracks

b
 < within tracks

c 

D  Five skidding cycles < 0.001 Beside tracks
a
 < between tracks

a
 < within tracks

b 

 

4. Discussion 

Characteristics dominating the impact of traffic on bulk density, penetration resistance and 

micro-topography 

Clay and silt to loam textures are considered to be more vulnerable to compaction than 

sand textures (Hillel, 1998; Fisher and Binkley, 2000). The small compaction degrees for sand are 

therefore not surprising, especially at these soil water contents (Hartmann and De Boodt, 1974). 

Initial BD values for sand are high but rather normal for this texture class. However, texture did 

not influence the compaction degree significantly and in contrast with the expectations, 

compaction degrees for loam to silt loam and clay soils were almost as low as for sand. A possible 

explanation for the rather low ratios of loam to silt loam soils follows from the initial BDs in Table 

3. Ampoorter et al. (2008) compared the initial BDs of many forest stands in Flanders (110 forest 

stands measured on 10-20cm depth). They concluded that the initial BDs of the forest stands on 

loam to silt loam of this field experiment (especially Leuven 1 and 2) are higher than elsewhere in 

Flanders and thus too high for forest topsoil horizons in a natural state. It suggests an underlying 

compaction, due to uncontrolled machine traffic during past harvesting activities. Moreover, GLM 

and Pearson correlations showed a significant negative influence of the reference conditions on 

the compaction degrees, as was also stated by Powers et al. (2005). Loose soils contain an 

abundance of macropores that are easy to compact. However, the resulting smaller pores exert a 

higher resistance to compaction (Shetron et al., 1988; Hillel, 1998; Berli et al., 2003). An extra 

machine pass on an already compacted soil thus results in a very limited additional impact (Incerti 

et al. 1987; Williamson and Neilsen, 2000; Page-Dumroese et al., 2006). If the initial soil status of 

the examined forest stands would have been less compacted, the soil impact due to the 

treatments would probably have been much higher and significant. The fact that the values after 

applying treatments were sometimes significantly lower than before applying treatments, 
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especially for BD, does not mean that the soil was loosened up by traffic. A high spatial variation in 

the topsoil, amongst others of organic matter that has a strong influence on BD (Ruehlmann and 

Korschens, 2009), may have skewed the results. Taking a much higher number of replicates would 

be time consuming but could in part be a solution to solve these problems. The rather low 

compaction degrees on clay soils are not due to high initial compaction degrees but can be 

explained by means of the soil water content. Forces exerted by the machine are converted into a 

combination of soil compaction and plastic deformation, in the form of rutting (Abeels, 1989). The 

proportion between the two processes depends on the soil water content. McNabb and Boersma 

(1993) declared that fine-textured forest soils are less vulnerable to soil compaction in dry 

conditions, as a result of higher cohesion and aggregation of particles. Aust et al. (1998) 

mentioned that loading a moist-to-saturated fine-textured soil results in a combination of 

compaction and soil deformation. Hillel (1998) showed a graph for a medium to fine textured soil 

such as the soils in Walem, relating soil water content to the obtained BD when applying a certain 

force. Howard et al. (1981) and Williamson and Neilsen (2000) came to the same conclusion. The 

pore volume of a medium- to fine-textured soil consists mainly of meso- and micropores that 

easily hold water against gravitational forces. So in a saturated state, all pores are filled with water 

that cannot be compressed (Froehlich and McNabb, 1984). However, cohesion between particles 

is minimal (Al-Shayea, 2001) and the soil has only a very small ability to withstand machine forces. 

Therefore plastic deformation is the dominant process (Howard et al., 1981; Williamson and 

Neilsen, 2000). Ruts may be deep and show bulges at the edges that more or less compensate for 

the loss of soil within the ruts (rut type 1). In a very dry, fine to medium textured soil, the cohesion 

between the particles is maximal, limiting the compaction degree and more or less preventing 

plastic deformation (McNabb and Boersma, 1993). BD increases to an intermediate extent and 

small ruts are formed, without bulges at the edges (rut type 3). At intermediate soil water 

contents (around 16%, the optimum water content), the cohesion between the soil particles is 

smaller, making the soil more sensitive and a combination of compaction and plastic deformation 

takes place (Berli et al., 2003). BD increase may be large and intermediate ruts are formed with 

small bulges at the edge that do not entirely compensate for soil loss in the ruts (Howard et al., 

1981; Williamson and Neilsen, 2000) (rut type 2). It should be remarked that especially fine 

textured soils can exhibit a high biological activity that leads to a second pore system (earthworm 

tunnels, root canals) with wide soil pores that are easy to compact. This makes the soils more 

prone to compaction than already mentioned above. Water contents in Walem were always above 

the optimum water content (Table 1) leading to plastic deformation (rut type 1) and small 

compaction degrees as was shown by Tables 2 and 3 and Figure 3.  

 

Looking at all three texture groups together, Pearson correlations showed that compaction 

degrees seemed to increase with increasing soil water content. Compaction degrees were overall 

limited and GLM did not show a significant influence of texture. However these significant 

correlations may be due to the fact that the forest stands in Walem show somewhat higher 

compaction degrees compared to the other two soil texture groups, combined with much higher 

soil water contents. Looking at the correlations for each texture group separately, most of the 

relationships were negative. For loam and clay this can again be explained using the theory of 

Hillel (1998) for medium to fine textured soils. Soil water contents of Walem were much higher 
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than the optimum soil water content.  In Leuven, soil water contents in September were lower 

than the optimum soil water content and in February clearly higher than the optimum leading to 

higher compaction degrees in September (drier) than in February (wetter). Hillel’s theory (1998) 

cannot be used for sandy soils as this soil texture behaves totally different in relation to soil water 

content (Hartmann and De Boodt, 1974). A coarse textured soil has minimal particle cohesion in 

dry conditions, leading to rut type 1 or in some cases rut type 2 with small compaction degrees. 

When soil water content increases (towards the critical soil water content of 12%), cohesion and 

aggregation reach a maximal value. Capillary forces interfere in such a way that the particles are 

interconnected and are so unable to fall into the closest packing when traffic is applied. As a 

result, compaction degrees are minimal and rut formation is restricted (rut type 1). At higher soil 

water contents (over 12%) (Table 1), the aggregation decreases again. The particles are no longer 

stable in the open packing and fall into a very close arrangement, leading to increasing compaction 

degrees and limited rut formation (Table 3) (rut type 2). Compaction is still possible at high water 

contents in contrast with fine textured soils. Namely, this soil texture contains a lot of macropores 

that cannot hold water against gravitational forces, even at very high soil water contents, and 

these are thus filled with air that can be compacted (Fisher and Binkley, 2000). In Kapellen, soil 

water contents were generally situated around the critical soil water content, except for the 

February experiment in Kapellen 2, where soil water content was over 20%. As an insignificant or 

positive relationship is rather expected, the negative correlation between PR and soil water 

content for the sandy soils could not be explained.  

 

Compaction degrees are positively influenced by the machine mass, or rather the soil 

contact pressure. The estimation of the soil contact pressure showed that the heavy machine 

induced a higher pressure than the light machine and that soil compaction would thus be more 

severe (McDonald et al., 1996). Several machine characteristics can be changed to increase the 

contact area and thus to lower the soil contact pressure: number of tyres (Alakukku et al., 2003), 

tyre dimensions (Benthaus and Matthies, 1993), tyre pressure (Abu-Hamdeh et al., 2000), use of 

tracks (Murosky and Hassan, 1991). However, one should keep in mind that the real exerted 

pressure can be much higher than the static pressure due to vibration or weight of processed tree 

(Kairiukstis and Sakunas, 1989; Chancellor, 1994; Athanassiadis, 1997; Wehner, 2003). 

 

The main effect of traffic intensity was generally insignificant but it showed a significant 

interaction with machine mass that is rather evident. GLM already showed that the impact of the 

heavy machine was higher than the impact of the light machine at every skidding cycle. The 

cumulative effect after five skidding cycles with the heavy machine was thus clearly higher than 

for the light machine where the difference with the effect after one skidding cycle was negligible. 

For the heavy machine, compaction degree is thus positively related to the traffic intensity. 

Normally, this relationship is logarithmic with smaller compaction degrees approaching zero at 

higher traffic intensities. At low traffic intensities pores are compressed and exert higher soil 

strength, protecting the soil from further compaction (Brais and Camiré, 1998; Seixas et al., 2003). 

However, due to a low number of traffic intensity levels, this logarithmic relationship could not be 

stated here.  
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When a machine makes a pass, not only is the soil immediately under the tyres influenced, 

but also partially the soil around it (both between and next to the wheel tracks). Compaction 

between the tyres can be attributed to the lateral movement of soil from beneath the wheel 

tracks (Wronski, 1984) and the compaction degree between wheel tracks is normally lower than 

within wheel tracks, as this area is only influenced indirectly. According to GLM (Table 5) of BD and 

PR, no significant influence arises from the position in relation to the wheel tracks. This is not 

surprising as the compaction degree after most of the treatments was already negligible within 

wheel tracks (Tables 2 and 3). As a consequence, compaction degrees on the two locations were 

not very different from each other. However, GLM showed a significant interaction between 

position and traffic intensity. After one skidding cycle, the direct effect within tracks did not differ 

very much from the indirect effect between tracks. However, after five skidding cycles, the 

cumulated direct effect showed a significant difference with the cumulated indirect effect.  

 

Within one texture group, compaction degrees seemed to differ significantly between the 

forest stands (Table 5), likely due to differences in organic matter content (Sands et al., 1979), 

initial compaction status (Powers et al., 2005), soil water content (Hillel, 1998) or bioturbation. 

Moreover, the experiment was executed in the same stands and in the same way in February 

(wetter winter conditions) and September (drier summer conditions), resulting in different soil 

water contents. Due to the close relationship between compaction degree and soil water content, 

this may have lead to small differences in compaction ratios, explaining the significant impact of 

time.  

 

Relationship between bulk density and penetration resistance 

A positive relationship could be observed between the reference values of BD and PR. 

Namely, as BD increases, the pore space is reduced and becomes insufficient to accommodate the 

soil particles that are displaced by the intruding penetrologger cone. Significant soil particle 

rearrangement hence becomes problematic (Whalley et al., 2005) and the friction experienced by 

the penetrologger cone increases rapidly. Henderson et al. (1988), Vaz et al. (2001) and Ampoorter 

et al. (2007) also stated this positive relationship, and reported a logarithmic shape.  Although BD 

remains more or less constant at higher values, PR may still increase. The shape of the relationship 

between BD and PR in this study was not clear because of high variation. Moreover, reference BDs 

at Leuven and Kapellen were probably already too high to be able to detect the logarithmic shape 

of the curve. 

 

Impact of mechanized harvesting on soil carbon dioxide concentration 

The natural carbon dioxide concentration in the atmosphere is about 0.03-0.04%. The 

mean concentration in the superficial layer of a loose soil that has not been driven is already more 

than tenfold higher due to decomposition of organic matter and respiration by fauna and flora 

(Ameryckx et al., 1995). Moreover, carbon dioxide concentration shows an increasing trend with 

depth due to slower and more difficult gas exchange (Hashimoto et al., 2004; Jassal et al., 2005). In 

contrast to BD and PR that showed small to negligible impacts, carbon dioxide concentration was 
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significantly increased by the skidding cycles of the heavy machine. The impact increased with 

increasing traffic intensity, as was also found by Brais and Camiré (1998) and by Seixas et al. (2003) 

for other soil variables, due to increasing soil strength at higher compaction degrees. CO2 

concentrations within tracks were significantly higher than the soil beside the wheel tracks and 

reached concentration levels over 4%, whereas between tracks, values were lower but also clearly 

increased. Namely, as with compression of soil pores destruction of pore continuity is largely 

realized by direct contact between soil and tyres at the soil surface. The area between wheel 

tracks is only indirectly influenced by machine traffic and therefore the impact on CO2 

concentration between tracks remained smaller than within tracks. Results of BD and PR showed 

that compaction degrees were small to negligible. The impact on CO2 concentration was thus not a 

consequence of pore compression, but rather due to destruction of pore continuity and thus air 

conductivity leading to an alteration of CO2 exchange between the free soil and the atmosphere 

(Gebhardt et al., 2009). The efflux of CO2 from the soil was hampered and carbon dioxide, 

produced by soil organisms and chemical processes, accumulated in the sealed pores. Ponder 

(2005), studying the carbon dioxide efflux after soil compaction, concluded that the efflux was 

smaller after compaction in comparison with the undisturbed control. Conlin and van den 

Driessche (2000) showed that the altered gas exchange after soil compaction resulted in higher 

mean carbon dioxide concentrations and lower oxygen concentrations in the soil. This may cause 

problems at higher compaction degrees as root growth of seedlings is reduced when the oxygen 

concentration drops beneath the 6 to 10% range (Schumacher and Smucker, 1981; Grant, 1993; 

Fisher and Binkley, 2000). 

5. Conclusions and recommendations for forest management 

Although loam to silt loam and clay soils were expected to be sensitive to soil compaction, 

impact of machine traffic on BD and PR was small to negligible for all three soil textures. For sand, 

this was in accordance with the expectation that sandy soils are less sensitive to soil compaction. 

However, in the forest stands on silt loam to loam this was probably due to high initial soil 

compaction degrees that may have been caused by uncontrolled machine traffic during past 

harvesting activities. GLM indicated a very important influence of the initial compaction degrees. 

At the high initial PR and BD values present in the examined forest stands, the high soil strength 

prevented further compaction. Dominance of plastic deformation over compaction at high soil 

water contents may have restricted the compaction degrees in the forest stands on clay textures. 

GLM indicated that the soil water content at the moment that treatments were applied was of 

great importance to the resulting compaction degree and rut formation.  

In contrast with the results of BD and PR, measurements of in situ CO2 concentration 

showed a clear increase, even after one skidding cycle, due to the destruction of the pore 

continuity. So, although the compaction degree itself was negligible due to high initial compaction 

degrees and high soil water content, the soil was still clearly influenced by the machine traffic. 

Thus, in soils with initially elevated compaction levels, BD and PR are no reliable compaction 

indicators. CO2 concentration seems to be a better, more sensitive indicator of soil damage. More 

research is needed to evaluate the usefulness and efficiency of this variable in detecting and 

quantifying soil compaction.  
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A good soil pore system is vital to soil biota, tree roots and ground vegetation. Recovery of 

a compacted soil is a long-term process that is largely based on freezing and melting of soil water 

(Alban et al. 1994; Startsev and McNabb, 2000), swelling and shrinking of clay particles (Cornelis et 

al., 2006) and biological activity of roots and soil animals that break up the soil (Jordan et al., 1999; 

Ponder et al., 2000). Literature shows that it can take at least 20 to 30 years before recovery is 

complete, depending on the soil type (Croke et al., 2001; Rab, 2004). Schäffer (2005) even showed 

that 30 to 40 years were not sufficient to allow complete recovery of gas diffusion and fine root 

densities under wheel tracks. High compaction degrees should thus be prevented.  

Results showed that a smaller impact can be achieved by lowering the soil contact 

pressure, such as by using lighter machines. As Brais and Camiré (1998) and da Silva et al. (2008) 

state that the relationship between traffic intensity and compaction degree is logarithmic, with 

the highest impact in the first passages, this speaks in favour of permanent skid trails. In this way, 

only a small portion of the forest stand is damaged, while protecting the rest from soil 

compaction. By restricting machine traffic to designated skid trails in already compacted stands, 

the soil between the trails is left undisturbed and can recover from the compacted status. Proper 

soil moisture conditions are also a prerequisite for avoiding severe soil compaction during 

harvesting. Small-scale mechanical loosening (ploughing, milling) or stimulating bioturbation by 

liming compacted soils to enhance the recovery process could be considered.   
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