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Abstract: Several definitions of an atom in a molecule (AIM) in three-dimensional (3D) space, including both fuzzy
and disjoint domains, are used to calculate electron sharing indices (ESI) and related electronic aromaticity measures,
namely, Iring and multicenter indices (MCI), for a wide set of cyclic planar aromatic and nonaromatic molecules of
different ring size. The results obtained using the recent iterative Hirshfeld scheme are compared with those derived
from the classical Hirshfeld method and from Bader’s quantum theory of atoms in molecules. For bonded atoms, all
methods yield ESI values in very good agreement, especially for C–C interactions. In the case of nonbonded interactions,
there are relevant deviations, particularly between fuzzy and QTAIM schemes. These discrepancies directly translate
into significant differences in the values and the trends of the aromaticity indices. In particular, the chemically expected
trends are more consistently found when using disjoint domains. Careful examination of the underlying effects reveals
the different reasons why the aromaticity indices investigated give the expected results for binary divisions of 3D space.
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Introduction

From a genuine chemical point of view, a molecule is conceived
as a system built up from interacting atoms, the elementary units
in chemistry. Chemical information such as partial atomic charge,
bonding interactions, steric repulsion, functional group, etc. rely
entirely on the concept of an atom in a molecule (AIM). Accord-
ing to quantum mechanics, all physical information on a system is
contained in the wavefunction, and well-defined observables can be
obtained via the expectation values using the appropriate operator.
Unfortunately, the AIM is not an observable. One may argue that
because only observables have physical meaning one should restrict
oneself to their study. However, one can not dismiss the vast chemi-
cal knowledge gathered over almost hundred years since the advent
of Quantum Mechanics.1

There is a growing interest in devising analysis tools that per-
mit connecting the results of an ab initio calculation with classical
chemical concepts. Clearly, the definition of an AIM is at the heart of
any of these analyzes. One can distinguish two main types of atomic
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definitions that lead to the partitioning of global quantities into their
corresponding atomic contributions. The atoms can be identified
with the nucleus and the subspace of basis functions centered on (or
assigned to) that nucleus. This is often called Hilbert-space analy-
sis, and obviously can be applied only if one-electron atom-centered
basis functions have been used in the ab initio calculation. Classi-
cal methods like Mulliken population analysis2–5 or Mayer-Wiberg
bond orders6, 7 are based on this atomic partitioning. An alternative
that has recently gained more interest is to decompose the three-
dimensional space into atomic regions, also called atomic domains.
In the latter case, the atomic contribution to a global quantity like
the expected value of an operator is obtained by integrating over the
corresponding atomic domain.

Within this group, one can further distinguish two main lines
of thought. First, there are several partitioning schemes present-
ing sharp boundaries between the atomic domains, such as Voronoi
cells,8 Daudel loges,9 or the electron localization function (ELF)
basins,10–12 but the most widely used in the literature is that derived
from Bader’s quantum theory of atoms-in-molecules (QTAIM),13

where the atomic boundaries are determined from the zero-flux sur-
face condition of the gradient of the one-electron density. Second, in
a more general framework, the atomic domains can be represented
by assigning non-negative atomic weight functions wA(�r) to each
atom A with the requirement

∑
A

wA(�r) = 1 (1)

for each point of the physical space. This representation permits
to treat the most different atomic partition schemes with a common
formalism. In this sense, the QTAIM is a special case where wA(�r) =
1 within the atomic domain of atom A or zero otherwise.

In the case of so-called fuzzy atoms, the value of the atomic
weight function wA(�r) is close to unity in the vicinity of the atom A
and gradually decreases to zero. Hence, the atoms in a molecule are
allowed to share the 3D-space to some extent, which permits the def-
inition of overlap populations in the spirit of the classical Mulliken
analysis. The numerical integrations over QTAIM atomic basins are
sometimes cumbersome due to the rather complicated shapes they
may exhibit. In the case of fuzzy atoms, they are much more straight-
forward and accurate, which makes these methods more appealing
for wider applications.

The fuzzy atoms were first introduced by Hirshfeld14 in his land-
mark stockholder’s scheme. In the Hirshfeld method, the weight or
share of an atom is identified with the ratio of its isolated atomic
density ρ0

A(�r) and the promolecular density
∑

A ρ0
A(�r), obtained by

simple superposition of isolated atomic densities

wA(�r) = ρ0
A(�r)∑

A ρ0
A(�r) (2)

The promolecular density is built for exactly the same geometry
as the actual molecule and typically using spherically averaged
densities of the ground state of the isolated atoms.

One of the main uses of the Hirshfeld method lies in the popu-
lation analysis. Atomic populations can be obtained by integration
of the atomic density of the AIM

NA =
∫

ρA(�r)d�r =
∫

wA(�r)ρ(�r)d�r (3)

The main criticism to the classical Hirshfeld method is that
the choice of the electronic state of the isolated atoms can seri-
ously influence the resulting atomic population. This is particularly
evident when using ionic atomic densities.15–18

This drawback has been recently overcome by Bultinck et al.
with the so-called Iterative Hirshfeld approach or Hirshfeld-I.18, 19

The essence of the method is that the density of the isolated atoms
must integrate to the same population of the atom in the actual
molecule, that is

NA =
∫

ρ0
A(�r)d�r =

∫
ρA(�r)d�r. (4)

This is accomplished in an iterative manner by constructing the
isolated atomic densities by interpolation between the densities of
the isolated atoms computed with different number of electrons. In
particular, Bultinck et al. used the expression

ρ
0,NA
A (�r) = (uint(NA) − NA)ρ

0,lint(NA)
A (�r)
− (lint(NA) − NA)ρ

0,uint(NA)
A (�r), (5)

where lint(NA) and uint(NA) represent the lower and upper inte-
ger values of the actual fractional population of the AIM. For an
exact theory, this yields exact atomic electron densities for fractional
numbers of electrons. The interpolated isolated atomic densities are
superposed to build the new promolecular density and to compute
the new atomic weight functions. The process is iterated until eq. (4)
is fulfilled for each atom within a given numerical threshold. The
Hirshfeld-I scheme has been shown to converge to a unique solu-
tion and exhibit only very small basis set dependence,20 whereas at
the same time giving atomic charges that reproduce very well the
molecular electrostatic potential.21

A fundamental difference between Hirshfeld and Hirshfeld-I par-
titionings is that, in the former, the same type of atoms are treated
in the same fashion irrespective of the chemical environment. The
same isolated atomic density of a hydrogen atom would be used
to obtain the atomic weights of all H atoms of a given ring in a
molecule, irrespective of more proton or hydride character. That is,
the partial ionic nature of the atoms may not be properly described.
This is also the case of other fuzzy atom schemes such as Becke’s
fuzzy Voronoi polyhedra, where the shape of the atoms is controlled
by a set of empiric atomic radii.22 It is important to note that this
is not the case of Hirshfeld-I or QTAIM schemes where the atoms
corresponding to the same element are treated on different foot-
ing according to either their partial atomic charges (Hirshfeld-I) or
roughly the position of their zero-flux boundaries (QTAIM).

AIM partitions are used in a plethora of situations in quantum
chemistry because to assign atomic contributions to physical prop-
erties, we should decide first the AIM to use. Because many AIMs
have been put forward, an analysis of the performance of the AIMs
is timely and could be of immense importance to reveal the limita-
tions and characteristics of the AIMs. This is particularly important
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for recently designed AIMs, such as the Hirshfeld-I, which should
be analyzed throughout. In this article, we focus on the perfor-
mance of several AIM partitionings in three-dimensional space for
the calculation of electronic sharing indices (ESI) and related elec-
tronic aromaticity measures. The purpose is not to introduce new
or compare existing aromaticity indices as such, but to examine
the influence of the choice of the AIM method used for the cal-
culation of the indices. Although this appears only a secondary
choice after picking a certain index, we will show that it has a major
influence and so this choice must be made judiciously. We will con-
sider both AIM models presenting sharp boundaries such as Bader’s
QTAIM,13 and several fuzzy atom definitions including Hirshfeld,14

the recently introduced Hirshfeld-I,18, 19 and Becke’s fuzzy Voronoi
cells.23 First, we discuss the performance of the methods based on an
extensive comparision of numerical values obtained for a large set of
molecules. Afterward, we make a deeper analysis for the discrepan-
cies found and show the reasons for these disagreements. This will
put forward an important limitation of AIMs for their application in
aromaticity calculations.

Theory

Borrowing Fulton’s terminology,24 the ESI aim to quantify the
extent electrons are shared by two (or more) atoms. The classical
chemical analog is the concept of bond order. There is a myriad of
ESI definitions in the literature derived from ab initio calculations,
especially for correlated wave functions.25 However, in the case of a
closed-shell single-determinant wave function, it is quite established
that the ESI originate from the spinless exchange density

ρx(�r, �r′) = 1

2
ρ(�r, �r′)ρ(�r′, �r), (6)

where ρ(�r, �r′) stands for the off-diagonal part of the spinless first-
order density matrix. The exchange density originates from the
antisymmetry requirement of the wave function and describes the
Fermi hole. Its normalization

∫∫
ρx(�r, �r′)d�rd�r′ = N (7)

yields N , the total number of electrons of the system. By inserting
the identity

∑
A wA(�r) = 1 twice in the equation above, one obtains

2N =
∫∫ (∑

A

wA(�r)
)

ρ(�r, �r′)

(∑
B

wB(�r′)

)
ρ(�r′, �r))d�rd�r′

=
∑

A

∑
B

∫∫
wA(�r)ρ(�r, �r′)wB(�r′)ρ(�r′, �r))d�rd�r′

=
∑

A

BAA + 1

2

∑
A

∑
B �=A

B(AB) (8)

a decomposition of the number of electrons pairs in terms of
monoatomic (BAA) and diatomic (BAB) contributions. The quantity
BAB is identified as the covalent bond order or delocalization index

between atoms A and B,26, 27 whereas the monoatomic counterpart
accounts for electron localization. Substituting in the bond-order
expression the expansion of the first-order density in terms of the set
of doubly occupied orbitals, we obtain after trivial rearrangements

BAB = 4
occ∑
i,j

(∫
wA(�r)φ∗

i (�r)φj(�r)d�r
) (∫

wB(�r′)φ∗
j (�r′)φi(�r′)d�r′

)

= 4
occ∑
i,j

SA
ij S

B
ji , (9)

where

SA
ij =

∫
wA(�r)φ∗

i (�r)φj(�r)d�r, (10)

are the elements of the so-called atomic overlap matrix over the
molecular orbitals.

It is worth noting that the expression 9 holds for any AIM based
on the partitioning of the 3D-space; the differences in the ESI values
among the several fuzzy atom definitions and QTAIM arise only
from the shape of the respective atomic weight functions.28

Aromaticity is usually claimed to be a multifold property,29–33

because of its different manifestations that range from purely
energy-based to structural ones. Furthermore, even the use of dif-
ferent aromaticity measures based on the same manifestation is
recommended because, as some of us have recently shown,34, 35 no
aromaticity index is infallible. Lately, aromaticity measures based
on the electronic structure of molecules are becoming popular, and
several research groups have contributed to the issue by providing
new aromaticity indices. Among others, we can mention the Iring of
Giambiagi et al.,36 the six center index (SCI) of Bultinck et al.,37

the θ of Matta and Hernández-Trujillo38 the PDI of Poater et al.39 or
the FLU of Matito et al.40, 41; for recent reviews see refs. 42 and 43.

We are concerned with the calculation of the local aromaticity
of a given molecule with at least one ring structure. Let us suppose
such ring structure consists of n atoms, represented by the following
string A = {A1, A2, . . . , An}, whose elements are ordered according
to the connectivity of the atoms in the ring. For such system, we can
calculate the following electronic aromaticity indices.

A Multicenter Based Index: Iring

Based on the multicenter index,44 which accounts for the simulta-
neous electron sharing of various centers, Giambiagi and coworkers
proposed Iring as a measure of aromaticity.36 The formula reads as
follows:

Iring(A) =
occ∑

i1,i2,...,in

Si1i2 (A1)Si2i3(A2) . . . Sini1(An) (11)

where Sij(A) is the overlap of molecular orbitals i and j in the atom
A. The larger Iring (larger simultaneous electron sharing of all atoms
in the ring), the more aromatic the ring.
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The Multicenter Index (MCI)

Bultinck et al.,37 with the aim to improve Iring, suggested to sum the
contributions from all possible structures generated by permuting
the position of all the atoms in the ring (not only the Kekulé structure
as Iring does). Such possibility was already discussed by Ponec and
Mayer and Ponec and Uhlik45, 46 among others.47 The formula thus
reads:

MCI(A) =
∑
P(A)

Iring(A)

=
∑
P(A)

occ∑
i1,i2,...,in

Si1i2 (A1)Si2i3(A2) . . . Sini1(An) (12)

where P(A) stands for n! permutations of the elements in the string
A. The original proposal of MCI differs from this one by a numeri-
cal factor. In the present article, this factor is skipped for the reasons
given in ref. 48. As Iring, MCI produces large numbers for aromatic
species, and the authors claim negative numbers are indicative of
antiaromaticity.49 The original definitions of MCI and Iring are ring-
size dependent, that is to say the number of overlaps multiplying in
eqs. (11) and (12) depends on the number of member rings. Thus,
it is expected a reduction of the values of Iring and MCI as the size
of the ring increases. As a consequence, the values of the indices
for rings of different sizes cannot be compared.48 Recently, some
of us48, 50 have proposed normalized versions of Iring and MCI that
avoid this ring-size dependence, yielding values close to the topo-
logical resonance energies per π -electron.51 In this work, the focus
is on the differences between atomic partitions, for which we have
chosen the (unnormalized) original indices, so that the differences
among the different partitions used are easier to notice.

The Para-Delocalization Index (PDI)

Fulton,24 using Hückel theory, and Bader et al.52 using QTAIM,
showed—at those levels of theory and using those AIM
definitions—that benzene has larger para-related atoms electron
sharing than meta-related one. Based on this finding, Poater et al.39

suggested the para-related atoms electron sharing (PDI) as a measure
of aromaticity in six-membered rings:

PDI(A) = δ(A1, A4) + δ(A2, A5) + δ(A3, A6)

3
(13)

Let us briefly analyze here the differences between these three
aromaticity measures. Iring uses the overlap between orbitals inte-
grated in atoms that are formally bonded, so we may say Iring

recovers the connected-atoms interactions in a given ring. This is
tightly linked with the intuitive definition of aromaticity that defines
it is a measurable degree of cyclic delocalization of a π -electron
system.53 On the other hand, MCI adds to Iring the values of the
products of overlaps between orbitals integrated in atoms noncon-
nected in the ring. Thus, it is expected that the nonconnected-atoms
interactions may be recognized by comparing MCI with Iring val-
ues for a given ring. Finally, PDI involves the overlaps of orbitals
integrated in atoms in para-position. Some of us already recognized
that atomic partitions behave differently for connected and non-
connected interactions, and even between the nonconnected atoms

Figure 1. The set of molecules considered in this study.

one may distinguish particular interactions as para-related posi-
tions in six-membered rings.54, 55 It is thus particularly interesting
to compare Iring, MCI and PDI to analyze the performance of atomic
partitions on different kinds of interactions, relevant to account for
aromaticity.

Computational Details

The training set of molecules is a collection of three-, four-, five-, and
six-membered rings (n-MR) molecules (see Fig. 1). All calculations
have been performed with Gaussian 03,56 at the HF level of theory
with the 6-311++G(d,p) basis set,57, 58 restricting the symmetry of
the systems to the Cs point group. Calculation of the atomic overlap
matrices in the framework of Becke’s fuzzy-atom has been carried
out with a modified version of the AFUZZY program,59 to deal with
both the Hirshfeld and Hirshfeld-Iterative methods. For numerical
integrations, we have used a combination of 70 radial and 434 angu-
lar points. Details of the implementation can be found elsewhere.23

The set of covalent radii by Suresh and Koga,60 combined with a
stiffness parameter22 of k = 3, has been used in the case of the
simplest Becke atoms. For both Hirshfeld and Hirshfeld-Iterative
models, spherically averaged atomic promolecular densities, com-
puted for each atom at the same level of theory and basis set as the
corresponding molecular calculation, have been used. Open-shell
species have been computed at the ROHF level of theory. In the
case of the QTAIM model, the atomic overlap matrices have been
obtained with the AIMPAC set of programs.61 Calculation of atomic
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charges and ESI have been carried out with both AFUZZY59 and
ESI-3D programs.62 The latter has been also used to compute all
electronic aromaticity indices included in this work.

Results

For the sake of clarity, we will refer to the molecules as n-X;Y with
n = 3 − 5 or as 6-X;Y;Z, where n is the number of members in
the ring, and X, Y, and Z are the substituents, according to Figure 1.
4-MRs, which may have one or two double-bonds, will be explicitly
distinguished in the text.

Electron Sharing Indices

First, we briefly examine the behavior of the atomic charges obtained
with the different AIM definitions, specially in the case of Hirshfeld-
I scheme. The set of molecules of Figure 1 contains 559 atoms,
including 210 C, 252 H, 42 N, 9 O, 42 P, and 4 S atoms. The atomic
populations are quite dependent on the AIM definition (see Support-
ing Information Tables S1–S3). In short, QTAIM charges show the
widest range of values, even resulting in charges exceeding 2.0 for P
atoms. Classical Hirshfeld and Becke atoms yield a lesser degree of
polarization and atomic charges rarely exceed 0.5 in absolute value.
Hirshfeld-I values lie somewhat in between QTAIM and Hirshfeld,
with largest and smallest values of 1.27 and −1.13, respectively.
The fact that Hirshfeld-I charges are significantly larger compared
with the classical Hirshfeld ones is in line with previous findings by
Bultinck et al.18

Figure 2 shows the comparison of Hirshfeld-I charges with both
QTAIM and Hirshfeld. The largest differences between Hirshfeld-
I and QTAIM are found for P atoms (filled triangles in Fig. 2).
Hirshfeld-I charges range from −0.30 to 1.10, whereas for QTAIM
they are almost in all cases greater than 1.0 and positive. Quite
large discrepancies are also found for negatively charged C atoms

Figure 2. Hirshfeld and QTAIM partial atomic charges versus
Hirshfeld-I. Filled triangles correspond to QTAIM values for phospho-
rus atoms (see text). Units are electrons.

Figure 3. Comparison between Hirshfeld-I and QTAIM ESI values for
the more relevant types of bonded interactions. Units are electrons.

in the anionic species, where QTAIM charges are around −1.7 and
Hirshfeld-I yields values around −0.7, in better agreement with
chemical intuition. The slope of the correlation is 2.0 and the R2

value is 0.67.
The data is much less scattered when comparing Hirshfeld-I and

Hirshfeld values. The slope and R2 values of the correlation are
0.32 and 0.75, respectively. The individual correlations for different
atoms are poor. Bultinck et al.18 reported a somewhat better correla-
tion (R2 = 0.82) and a larger slope for the correlation of Hirshfeld
with Hirshfeld-I (3.09 vs. 2.33∗) for a larger set of molecules con-
taining C, H, N, O, F, and Cl atoms. However, the conclusion remains
that the Hirshfeld-I charges are significantly larger than Hirshfeld
ones.

ESI are typically less dependent on the AIM definition than the
electron populations, especially for bonded atoms.54 However, for
nonbonded pairs of atoms significant differences can be observed
between nonoverlapping AIM models, such as QTAIM, and fuzzy
ones like Hirshfeld or Becke. In general, ESI values between
nonbonded atoms tend to be larger when using fuzzy atoms.

For clarity, to compare the behavior of the Hirshfeld-I method
with respect to the other fuzzy atom definitions and QTAIM, we will
consider three different sets of ESI data, namely, between bonded
atoms, nonbonded atoms of the ring, and nonbonded atoms involv-
ing H atoms. The latter is not relevant for this study and will not be
discussed. The first and second type of ESI are those that explicitly
or implicitly occur in the expression of the electronic aromaticity
indices and our findings are described next.

For bonded atoms, the ESI values obtained with Hirshfeld-I are
in excellent agreement with both the Hirshfeld and Becke methods,
with R2 values of 0.98 and slopes very close to unity (1.06 and 1.07,
respectively). When comparing with QTAIM values, the agreement
is somewhat worse and the correlation coefficient drops to 0.83.
In Figure 3, we show the comparison of Hirshfeld-I and QTAIM

∗This is the value of the slope for the reverse correlation, Hirshfeld vs.
Hirshfeld-I.
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ESI values including C–C, C–N, C–P, C–S, and bonds involving H
atoms. Almost in all cases, the Hirshfeld-I values are larger than the
QTAIM ones. The trends are similar for each type of bond between
the two AIM methods and for the C–C interactions even the differ-
ences between the two AIM definitions are small. It is striking to
see that the large differences observed between both methods for
the partial charges of the P atoms (including sign change) are barely
transferred to the corresponding ESI values. Because the H atoms
are not part of the rings, their ESI values are not relevant as far as
the aromaticity is concerned. Nevertheless, it is worth mentioning
that the ESI involving H atoms are precisely the ones that show
larger discrepancies between Hirshfeld-I and QTAIM. The values
are characteristic of a single-bond, ranging from 0.75 to 1.1, but the
correlation between both AIM methods is very poor (R2 = 0.37).

The comparison of Hirshfeld-I with Hirshfeld and QTAIM values
for ESI between nonbonded atoms of the ring system is displayed in
Figure 4. The data set includes 237 values. The agreement between
the different AIM definitions is clearly poorer for the nonbonded
interactions. QTAIM values are almost in all cases smaller than
those obtained with Hirshfeld-I and their correlation coefficient
drops to 0.46. Both Hirshfeld methods are in much better agree-
ment (R2 = 0.81). One can also separate the nonbonded ESI values
by type of atoms involved, as shown in Figure 5. Among all atom
pairs, the nonbonded C–C interactions are the ones that show the
worst agreement between the corresponding ESI values, showing
virtually no correlation. The data corresponding to the interactions
involving a C atom and a heteroatom is somewhat less disperse but
the agreement is still rather poor. Finally, the best agreement is found
for ESI associated to interactions between heteroatoms, mainly N
and P.

Concerning the rest of AIM schemes, Hirshfeld and Becke values
exhibit again very good agreement, the former being systematically
larger. This suggests that there are two main factors that influence

Figure 4. Hirshfeld and QTAIM ESI values for nonbonded interactions
versus Hirshfeld-I. Units are electrons.

Figure 5. Comparison between Hirshfeld-I and QTAIM ESI values for
selected types of nonbonded interactions. Units are electrons.

the values of the ESI for nonbonded interactions. First, the use of
disjoint domains, such as in the case of QTAIM, versus fuzzy atom
approaches. The ESI values are systematically smaller for the for-
mer, in many cases for roughly a factor of two. Second, whether the
AIM scheme accounts for the partial ionic character of the atoms,
such as for Hirshfeld-I. When the size of the atoms is fixed, either
by a single promolecular density (Hirshfeld) or by the atomic radius
(Becke), the ESI values are very similar.

Electronic Aromaticity Indices

This subsection is devoted to the performance of the Hirshfeld-
I atomic partition to calculate several aromaticity indices. To this
aim, we have computed the Iring, MCI and PDI indices with different
atomic partitions of the molecular space: QTAIM, Becke, Hirshfeld,
and Hirshfeld-I. The values have been scaled with respect to their
minimum and maximum value. Notice that values are relative to the
maximum/minimum value within a given group, and thus, the most
aromatic molecule in a given group is not necessarily an aromatic
molecule. Namely, as we shall see, cyclobutene and cyclobutadi-
ene are among the most aromatic molecules in the 4-MRs taken
into study, whereas it is accepted that they belong to nonaromatic
and antiaromatic species, respectively. Therefore, one should bear
mind that in these species the indices measure the degree of electron
delocalization as it concerns to its aromatic character.

The values in Tables 1–6 have also been classified in three
groups according to the percentile they belong: 33th percentile
in regular font, values higher than 33th percentile but lower than
67th percentile are underlined, and those with higher values are
boldfaced.

Table 1 contains Iring values for 3-MRs. Interestingly, the three
most aromatic and the four least aromatic molecules are recognized
by all partitions; values lying in between change from partition to
partition. In general, the agreement is fair among Becke, Hirshfeld-
I, and Hirshfeld partitions, with the only exceptions anions that have
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Table 1. Iring Valuesa for Three-Membered Rings.

AIM BECKE HIRSH HIRSH-I

CH+; N 88 100 100 100
CH+; CH 100 97 97 99
CH+; P 81 99 96 98
CH−; P 44 62 68 74
PH; CH 48 72 71 74
CH−; N 37 58 68 72
CH−; CH 40 57 67 71
NH; CH 53 58 62 67
CH2; CH 51 63 65 66
CH2; N 47 65 66 65
S; CH 52 69 65 65
CH2; P 53 62 62 64
S; P 49 64 60 59
S; N 42 67 61 59
O; CH 53 60 59 58
PH; P 42 71 55 47
PH; N 58 67 53 46
NH; P 9 25 16 10
NH; N 0 0 2 7
O; P 9 18 9 2
O; N 3 0 0 0

aValues scaled according to the formula xnorm = (x−xmin)
(xmax−xmin)

· 100.

lower values for Becke and 3-PH;X (X=P,N) molecules, which have
greater values for Becke than the other partitions. QTAIM, on the
other hand, gives systematically smaller values of aromaticity in all
cases.

Table 2 displays Iring values for 4-MRs with one double bond. The
first three entries in the table give similar values of Iring regardless the
partition used. All partitions but QTAIM agree also on the three least
aromatic species in the group. However, QTAIM assigns a promi-
nent aromatic character to two of these species, 4-O;P and 4-NH;P.

There is also a fair agreement between the range of Iring values given
for the rest of molecules in the table according to all partitions but
QTAIM, which gives sensibly larger values. We may also analyze the
effect of non-bonding interactions by comparing Iring values to MCI
ones. Most molecules show no important changes upon summation
of these extra terms [cf. eq. (12)]. This is reminiscent of the case of
polyaromatic hydrocarbons.37 Notwithstanding, the least aromatic
molecules (4-PH;P and 4-NH;P) and 4-PH;N (for all partitions but
QTAIM) are more aromatic according to MCI, at the expense of O;N
that substantially reduces its aromaticity. In the group of two-double
bond 4MRs molecules (Table 3), there is a very good agreement
among the different atomic partitions. The only exception being 4-
N;P, which gives a quite large QTAIM Iring value in spite of being
among the two least aromatic molecules. The inclusion of nonbond-
ing terms in this group produces two drastic changes. 4-N;N, the
most aromatic molecule according to Iring values irrespectively of the
partition, is now among the least aromatic molecules for all methods.
All the partitions also agree on 4-CH;CH being the most aromatic
molecule. On the other hand, 4-CH;P increases its aromaticity when
adding nonbonding interactions.

Table 4 shows the Iring and MCI values for 5-MRs. The values do
not predict the same order of aromaticity, although it is worth noting
that all partitions agree fairly well on which molecules should be in
each group. There are some exceptions in the case of QTAIM, the
most noticeable being 5-NH;P and O;P that give lower values for
QTAIM than for the other partitions. We appreciate no change in
the percentile classification of 5-MRs when we examine the MCI
values against the Iring ones.

6-MRs Iring and MCI values are collected in Table 5. It is sur-
prising that according to both Hirshfeld-I and Hirshfeld, benzene is
the least aromatic molecule among those in this group. Following
chemical intuition, benzene should be the most aromatic species.
This is indeed obtained with the QTAIM and Becke viewpoints.
This naturally raises concerns to the extent that the Hirshfeld and
Hirshfeld-I partitions are appropriate for the study of aromaticity
using the presently described indices or alternatively, to what extent

Table 2. Scaled Iring and MCI Valuesa for Four-Membered Rings with One Double-Bond.

Iring MCI

AIM BECKE HIRSH HIRSH-I AIM BECKE HIRSH HIRSH-I

CH2; CH 97 100 100 100 94 98 100 100
CH2; N 91 95 95 94 82 84 89 90
CH2; P 88 78 70 73 85 81 64 70
PH; CH 59 62 69 69 42 78 74 77
S; CH 76 79 71 67 65 89 73 72
NH; N 80 35 50 58 69 31 43 55
NH; CH 88 34 51 57 86 53 57 66
S; N 80 86 61 52 54 84 53 48
O; N 83 37 48 49 66 0 19 26
O; CH 90 43 50 48 81 42 43 45
PH; N 68 59 52 38 46 100 72 60
S; P 66 53 39 35 54 63 33 36
PH; P 0 22 19 9 0 47 27 33
O; P 100 25 11 5 100 36 0 0
NH; P 85 0 0 0 95 41 12 18

aValues scaled according to the formula xnorm = (x−xmin)
(xmax−xmin)

· 100.
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Table 3. Scaled Iring and MCI Valuesa for Four-Membered Rings with Two Double-Bonds.

Iring MCI

AIM BECKE HIRSH HIRSH-I AIM BECKE HIRSH HIRSH-I

N ; N 100 100 100 100 49 0 3 32
CH; CH 69 91 98 93 100 100 100 100
CH; N 75 94 96 91 71 72 72 78
P; P 61 84 62 70 75 84 47 62
CH; P 0 0 2 10 26 74 44 48
N ; P 34 11 0 0 0 49 0 0

aValues scaled according to the formula xnorm = (x−xmin)
(xmax−xmin)

· 100.

Table 4. Scaled Iring and MCI Valuesa for Five-Membered Rings.

Iring MCI

AIM BECKE HIRSH HIRSH-I AIM BECKE HIRSH HIRSH-I

NH; N 63 86 100 100 75 86 89 90
CH−; CH 100 100 97 91 100 100 100 100
PH; P 54 58 81 90 68 77 89 94
CH−; N 72 86 89 84 80 89 91 90
NH; P 27 64 77 77 43 77 81 81
CH−; P 71 68 82 75 78 79 88 83
PH; N 59 52 64 75 72 65 75 78
O; P 9 44 57 62 24 58 59 56
PH; CH 61 43 47 56 68 58 65 68
S; P 32 31 48 55 40 51 58 54
O; N 17 43 51 55 38 53 53 51
NH; CH 31 59 55 52 43 69 67 65
CH+; N 11 10 36 49 12 3 0 4
S; N 40 27 39 46 54 44 51 47
O; CH 14 40 41 44 26 52 51 48
CH+; P 4 5 29 43 9 0 0 0
CH+; CH 3 6 29 39 0 9 15 13
S; CH 37 19 24 29 43 36 43 38
CH2; P 0 2 7 8 15 25 20 9
CH2; N 2 1 2 1 17 22 19 7
CH2; CH 2 0 0 0 15 21 18 6

aValues scaled according to the formula xnorm = (x−xmin)
(xmax−xmin)

· 100.

Table 5. Scaleda Iring and MCI Values for Six-Membered Rings.

Iring MCI

AIM BECKE HIRSH HIRSH-I AIM BECKE HIRSH HIRSH-I

P; P; N 27 85 100 100 36 92 100 100
P; P; P 14 0 62 89 23 0 62 94
P; P; CH 47 39 53 62 55 43 56 74
N ; N ; P 19 73 71 57 22 61 58 51
CH; P; N 48 79 58 53 50 77 57 60
CH; CH; P 76 56 28 30 79 55 30 46
N ; N ; CH 33 62 27 14 32 45 16 19
CH; CH; N 66 79 20 12 64 73 19 28
N ; N ; N 0 30 25 7 0 0 0 0
CH; CH; CH 100 100 0 0 100 100 0 19

aValues scaled according to the formula xnorm = (x−xmin)
(xmax−xmin)

· 100.
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Table 6. PDI valuesa for Six-Membered Rings.

AIM BECKE HIRSH HIRSH-I

P; P; N 100 100 100 100
CH; P; N 93 80 79 79
CH; CH; N 85 49 58 69
CH; CH; P 95 57 44 68
P; P; CH 83 47 39 68
CH; CH; CH 97 61 28 57
N ; N ; P 69 67 84 52
N ; N ; CH 53 35 68 46
P; P; P 48 0 0 35
N ; N ; N 0 6 68 0

aValues scaled according to the formula xnorm = (x−xmin)
(xmax−xmin)

· 100.

aromaticity indices like the MCI or Iring can be applied universally
(see discussion in the next section). The addition of nonbonding
interactions does not change this situation, it only helps in finding
agreement on which should be the least aromatic species, triazine.

Finally, PDI is evaluated with the different partitions in Table 6.
All partitions agree on the surprising fact that 6-P;P;N is the most
aromatic molecule in this group, more than benzene. Indeed, except
for QTAIM, benzene is considered far less aromatic than several
other molecules. This is partially due to the fact that the PDI mea-
sures the para-related ESI, which is substantial for molecules with
larger atoms, such as N or P (see also discussion below). It has
been previously observed that PDI is atom-size dependent and, e.g.,
attributes larger aromaticity to N6 chair structure than to benzene
itself.35

All the aromaticity indices are shown to be dependent on the
atomic partition used, especially Iring and MCI for 6MRs. In partic-
ular, the performance of Hirshfeld-I and Hirshfeld in the latter case
is most surprising and, therefore, merits closer examination.

Discussion and Conclusions

To shed more light on the reasons why the Hirshfeld and Hirshfeld-I
methods do not perform as expected, different further calculations
were performed on benzene. For the sake of simplicity, we focus on
the relative values of the nonbonded ESI between two carbon atoms
in meta- and in para-position.

According to the work of Fulton,24 using Hückel theory, the two
atoms in para position have a larger ESI than those in meta-position.
In fact, the meta-ESI is exactly zero at the Hückel level of theory,
and almost zero for the CNDO case. Later work by Bader et al.26

has shown that using QTAIM the same is true at ab initio level. This
is no longer the case using the Hirshfeld and Hirshfeld-I methods.
Given that the QTAIM method does give the expected result, it
could be suggested that the mere use of a set of isolated atomic
densities lies at the basis of the disputable results. Recently, a new
kind of iterative stockholder approach, known under the acronym
ISA,63, 64 has appeared in which a Hirshfeld-like idea is applied
but where no reference is made to an isolated atomic density.19

However, calculation of the ESI between the carbon atoms using the
ISA method revealed that still the atoms in meta-position (0.191)
have a larger ESI than those in para position (0.122).

It is worth noting that the same effect was already found when
using the simpler Becke atoms at both Hartree-Fock55 and post-
Hartree-Fock25 levels of theory. One can easily tune the shape of the
Becke atoms with two parameters, namely, the set of atomic radii
and the stiffness of the atomic weight function (k, in the original
Becke paper22). Increasing the value of k decreases the overlap of
the atomic Voronoi cells. Furthermore, the partial ionic nature of
atoms can be recovered with Becke atoms simply by adjusting the
relative size of each pair of atoms according to the position of the
minimum of the electron density along the internuclear axis.23 Such
scheme was referred as Becke-rho in ref. 25 and has also been used
by Francisco et al.65

In Table 7, we provide meta- and para-ESI values for benzene
using regular Becke and Becke-rho schemes and several stiffness
values. The Becke-rho scheme tends to QTAIM for increasing val-
ues of the stiffness parameter k. In fact, one can almost reproduce
QTAIM values with the combination Becke-rho and k = 5, even
though the Voronoi cells still exhibit significant overlap. Starting
from the results using Becke with the conventional stiffness value
k = 3, both changing only the atomic size (Becke-rho, k = 3) and
only the stiffness (Becke, k = 4) induce a reduction of the value of
the meta-ESI. On the contrary, changing only the stiffness to k = 4
does not substantially affect the para-ESI value (PDI). This is a clear
indicator that the PDI is not governed by overlap (it is just necessary
to recall that a CNDO calculation also yields a significant Mayer
bond order for C atoms in para-position).

The PDI does change with the change of atomic size, which for
symmetry reasons in the case of benzene is entirely due to the effect
of the H atoms. This effect can be quantified to be roughly of 0.007.
On the contrary, the meta-ESI is more affected by overlap, as the
C atoms are close enough. Decreasing the extent of overlap does
the same job as adjusting the atomic size. The global effect is to go
from 0.108 for Becke k = 3 to 0.079 for Becke-rho k = 5. Being
roughly 0.007 the effect of the C–H interaction, the overlap effects
account for the remaining 0.022.

A similar analysis can be extended to the case of Hirshfeld-I in
the following manner. After the standard Hirshfeld-I run, at every
point in space the weight functions of all atoms are compared. The
weight function of the atom with the largest weight function is then
set to 1 and that for all other atoms reset to zero. This method, based

Table 7. HF/6-311++G** ESI Values (Meta-ESI and PDI) for Benzene
calculated Using Different Atomic Partitions (see text).

meta-ESI PDI

QTAIM 0.074 0.098
Becke k = 3 0.108 0.101
Becke k = 4 0.093 0.101
Becke k = 5 0.084 0.102
Becke-rho k = 3 0.093 0.092
Becke-rho k = 4 0.085 0.094
Becke-rho k = 5 0.079 0.095
ISA 0.191 0.122
Hirshfeld 0.192 0.114
Hirshfeld-I 0.203 0.120
Hirshfeld-ID 0.076 0.103
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on letting the atom with the highest Hirshfeld-I weight dominate,
will be abbreviated Hirshfeld-ID. Using Hirshfeld-ID (see Table 7)
to compute the atomic overlap matrices and ESI it is found that the
PDI is now larger than the meta-ESI.

The unexpected trends of the Iring and MCI indices are more
difficult to analyze because of the many small contributions. From
the analysis above, one can safely expect that the overlap effects
must play a much more important role for these indices than for the
PDI, which remains almost invariant in spite of the changes made
to the atomic partition. Indices such as Iring and MCI used with
overlapping atomic domains give completely unexpected results.
This, therefore, leads to the conclusion that these indices should
only be used with AIM methods with minimal or zero overlap of
atomic domains.
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32. Krygowski, T. M.; Cyrański, M. K. Chem Rev 2001, 101, 1385.
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