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We present a quantitative study of the role played by different components characterizing the nucleon-
nucleon interaction in the evolution of the nuclear shell structure. It is based on the spin-tensor
decomposition of an effective two-body shell-model interaction and the subsequent study of effective
single-particle energy variations in a series of isotopes or isotones. The technique allows to separate
unambiguously contributions of the central, vector and tensor components of the realistic effective

interaction. We show that while the global variation of the single-particle energies is due to the central
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component of the effective interaction, the characteristic behavior of spin-orbit partners, noticed recently,
is mainly due to its tensor part. Based on the analysis of a well-fitted realistic interaction in the sdpf
shell-model space, we analyze in detail the role played by the different terms in the formation and/or
disappearance of N =16, N =20 and N = 28 shell gaps in neutron-rich nuclei.

© 2010 Elsevier B.V. All rights reserved.

The shell structure is a common feature of finite quantum sys-
tems. Amongst them, atomic nuclei represent unique objects char-
acterized by the appearance of a specific shell structure. In partic-
ular, the magic numbers which correspond to the shell closures,
will change depending on the N/Z ratio, i.e. when we move from
nuclei in the vicinity of the B-stability line towards the particle
driplines. This has attracted a lot of attention nowadays because an
increasing number of nuclei far from stability have become acces-
sible experimentally (e.g., [1] and references therein). The hope to
reach even more exotic nuclei demands for an improved modeliza-
tion, i.e. in the context of nuclear astrophysics. Since the underly-
ing shell structure determines nuclear properties in a major way,
changes of nuclear shell closures and the mechanisms responsible
for that should be much better understood.

Recently, the role of different components of the nucleon-
nucleon (NN) interaction in the evolution of the shell structure has
been actively discussed. Based on the analysis of the origin of a
shell closure at N = 16, Otsuka et al. [2] have suggested that a
central spin-isospin-exchange term, f(r)(G - 6)(T - T) of the NN
interaction plays a decisive role in the shell formation.

However, from a systematic analysis of heavier nuclei, another
conjecture has been put forward, namely, the dominant role played
by the tensor force [3]. The evidence is based on the compari-
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son of the position of experimental one-particle or one-hole states
in nuclei adjacent to semi-magic configurations with the so-called
effective single-particle energies (ESPE’s). Within the shell-model
framework, the latter ESPE’s are defined [4] as one-nucleon sepa-
ration energies for an occupied orbital (or extra binding gained by
the addition of a nucleon to an unoccupied orbital) evaluated from
a Hamiltonian containing nucleon single-particle energies (the bare
single-particle energies with respect to a closed-shell core) plus
the monopole part of the two-body residual interaction [5,6], i.e.
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where j denotes a set of single-particle quantum numbers (nlj)
and p refers to a proton () or to a neutron (v), ﬁ’; are particle-

number operators. Vﬁf " are centroids of the two-body interaction

defined as [5-7]
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where the total angular momentum of a two-body state | runs
over all possible values.
The monopole Hamiltonian represents a spherical mean field
extracted from the interacting shell model. Its spherical single-
particle states, or ESPE’s, provide an important ingredient for the
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formation of shells and interplay between spherical configura-
tions and deformation in nuclei. Large shell gaps obtained from
a monopole Hamiltonian are a prerequisite to obtain certain magic
numbers. A reduction of the spherical shell gaps may lead to for-
mation of a deformed ground state, if the correlation energy of a
given excited configuration and a decrease in the monopole part
are large enough to make such an intruder excitation energetically
favorable.

For example, the ESPE of the v0f7,, orbital at Z =28, N =20
is the difference between total energy obtained, using Eq. (1), for
280 in its ground state and 2°0 with an extra neutron in the
0f7/> state assuming normal filling of the orbitals (normal filling
is used throughout this work). Considering a series of isotopes or
isotones, it is clear that ESPE’s will experience a shift provided by
the monopole part of the proton-neutron matrix elements, mainly.
The bigger the overlap of the proton and neutron radial wave func-
tions and the higher the j-values of the orbitals considered will
lead, in general, to more drastic changes. In the present study
we take into account the mass dependence of the two-body ma-
trix elements of the effective interaction according to the rule:
V(A) = (Acore/ A)' PV (Acore)-

From the analysis of the experimental data and the ESPE’s it
has been noticed [3,8] that systematically
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where j. =1+ 1/2 and j. =1— 1/2 are proton orbitals and
j.=1I'4+1/2 and j_ =I'—1/2 are neutron orbitals. Thus, an extra
attraction is manifested between generalized spin-orbit partners
(proton j =1+ 1/2 and neutron j’ =1 —1/2 with [ #1 or vice
versa).

This remarkable property is in line with the analytic relation
valid for a pure tensor force [3], i.e. using the above notation,
2j> +1)V;7>"j, +Q2j< +1)V;7<"j, = 0. To strengthen this idea, Otsuka
et al. [3] have compared changes of the ESPE’s in Ca, Ni and Sb iso-
topes, as due to the tensor force only and estimating its strength
as resulting from a (7 + p)-exchange potential with a cut-off at
0.7 fm, with available experimental data.

This work has stimulated a large number of investigations using
mean-field approaches [9-23]. It is worth noting that phenomeno-
logical interactions, such as Skyrme and Gogny force, most fre-
quently used in mean-field calculations, did not include a tensor
term [24]. Provided its importance, a tensor term should be in-
troduced and the parameters re-adjusted, what up to now, is not
satisfactorily reached yet (see, e.g. Refs. [23,25]).

However, importance of the tensor force within the shell
model [3,8] is mainly demonstrated in an empirical way. It is
evident, that the choice of the particular cut-off that was used
to fix the strength of the tensor force component plays a cru-
cial role in obtaining quantitative result for shifts in the ES-
PE’'s as presented in Fig. 4 of Ref. [3]. It is also well known
that the NN interaction is subjected to a strong renormalization
before it can be handled as an effective interaction in many-
body calculations within a restricted model space [26]. It is not
straightforward to trace how the tensor component will become
renormalized amongst the other terms contributing to the NN in-
teraction. Moreover, many shell-model interactions having high
descriptive and predictive power were obtained by a x2-fit of
two-body matrix elements to reproduce known experimental lev-
els for a wide range of nuclei studied within a given model
space (e.g. [27,28]). Even the effective interactions, maximally
preserving their microscopic origin (based on a G-matrix), need
further phenomenological correction (see e.g., [6,29]). There is
strong indication that inclusion of three-nucleon forces can heal
the microscopically derived effective interaction, in particular, im-
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prove its monopole part (see Ref. [30] and references therein for
ab-initio studies). However, there are still no systematic calcula-
tions available up to date for many-nucleon systems either within
the shell model, or within the density-functional approach. This
is why the present study of the two-nucleon case is of inter-
est.

In spite of the indirect evidence at a two-body level [3], up
to now, the role played by the tensor force is not well determined.
For example, recent shell-model studies based on large-scale calcu-
lations using a realistic effective interaction in the heavy Sn nuclei
region [31] conclude on the absence of a characteristic effect ex-
pected to result from a tensor force component.

In this Letter we present a quantitative study of the role played
by different components of the effective interaction. It is based on
the spin-tensor decomposition of the two-body interaction, which
involves tensors of rank 0, 1 and 2 in spin and configuration space.
The procedure allows to separate the central, vector and tensor
parts of the effective interaction. The monopole properties of each
component can be studied separately, elucidating unambiguously
its role in the shell evolution. The method has already been ap-
plied in a similar context [32,33], however, the authors used dif-
ferent effective interactions in smaller model spaces, concluding on
a second-order tensor effect only. Contrary to these results, we put
into evidence an important first-order tensor effect in the present
study.

A spin-tensor decomposition of the two-particle interaction has
been known for many years [34-40]. In a given model space, a
complete set of two-body matrix elements determines the prop-
erties of nuclei ranging within this space. For spin 1/2 fermions
(nucleons), one can construct from their spin operators a complete
set of linear operators in a two-particle spin space:

sO=1, sP=[o1x0]?, SV =01+0,

2 1 1
S‘(‘)=[O1 XO'2](2), Sé)=[0'1 XO'2](1), 5é)=01 — 03.

By coupling the spin tensor operators with the corresponding rank
tensors in the configuration space one can construct scalar inter-
action terms. The most general two-body interaction can then be
written as

v,y=v= Y (sW.q®)= Y v® (4)

k=0,1,2 k=0,1,2

Here, V(@ and V® represent the central and tensor parts of
the effective NN interaction. The V*=1 term contains the so-
called symmetric (551:)3) and antisymmetric (5102)5’6) spin-orbit op-
erators [37], which we will denote as LS and ALS, respectively. To
obtain the matrix elements for the different multipole components
in jj coupling, first, one transforms two-body matrix elements be-
tween normalized and antisymmetrized states from jj coupling to
LS coupling in the standard way. The LS-coupled matrix elements
of V® can be calculated from the LS coupled matrix elements of
V as

(@@b): LS, IMTM7|V®|(cd): L'S', JMTMr)
=(2k+1)(—1)1{L 5 ]}

S Lk
ey L)
]!
x ((@ab) : LS, 'MTMr|V|(cd): L'S’, ]’ MTMr), (5)

where a = (ng, l;). Finally, starting from the LS coupled matrix el-
ements of V®, for each k, we arrive at a set of jj coupled matrix
elements to be used for further investigation. It is important to
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Fig. 1. Variation of the neutron ESPE’s in N = 20 isotones from O to Ca calculated
using the realistic interaction [29] and its components separately.

note that for a given set of quantum numbers of two-body states,
the matrix elements of V are a sum of the matrix elements of its
three components V®,

In addition, using projection operators, one can select different
components of the effective interaction that connect two-nucleon
states with specific values of the total spin S, isospin T and parity
(—1DL. Thus, based on the selection rules in LS-coupling, we can
separate triplet-even (TE), triplet-odd (TO), singlet-even (SE) and
singlet-odd (SO) channels of the central part, as well as the even
and odd channels of the symmetric spin-orbit and tensor part.

Next, we propose to study the evolution of the ESPE’s in series
of isotopes and/or isotones induced by a given effective interaction
and of its different multipole components. The decomposition de-
scribed above is applicable only when the model space contains all
spin-orbit partners within a given oscillator shell. This limits the
region of applicability to the lighter nuclei. However, many inter-
esting observations can still be extracted.

In the present Letter, we explore the effective interaction in
1s0d1p0f shell-model space that reproduces very well the prop-
erties of stable as well as nuclei further away from stability [29].
We start with the “classical” case of the N = 20 isotones, going
from O to Ca. In Fig. 1(a), we show the evolution of the neutron
ESPE’s using the realistic interaction [29], relative to the energy of
the 0ds,, orbital. When protons fill the 0ds /> orbital (from O to Si),
the splitting between neutron 0f7,2 and Ofs/; orbitals decreases.
The opposite effect is observed when protons fill the 0ds3/, orbital
(from S to Ca) i.e. the corresponding splitting increases. A similar
but less pronounced behavior is noticed for the neutron 1p3/; and
1p1/2 orbitals. In Fig. 1(b)-(d), we show the variation of the same
ESPE’s, this time caused by the k=0, 1 and 2 multipole compo-
nents of the full interaction. We remark that the summed shift of
the energy for the various orbitals, produced by each two-body
component, equals the total shift as produced by the two-body
part of a full effective interaction, thus demonstrating the addi-
tivity. We included in each figure the bare single-particle energies
for visibility.

From Fig. 1 one concludes that the central part of the effective
interaction barely produces any relative displacement of spin-orbit
partners (Fig. 1(b)). A not very pronounced and often opposite ef-
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Fig. 2. Two-body contribution to the binding energy of 270, 33si, 3°S and 3°Ca in the
lowest state (one hole in the 0ds/; single-particle orbital), relative to the binding
energy of 1°0 (N = 20 isotones) using the realistic interaction [29] and its compo-
nents, separately.

fect is induced by the k =1 part (Fig. 1(c)). It is indeed the tensor
part which is responsible for the variation of spin-orbit partners,
in line with the observation made in Ref. [3]. In Table 1 we sum-
marize contributions of the central, vector and tensor terms in
the spatial even and odd channels, separately. This elucidates the
origin of the evolution of a given single-particle energy splitting.
The decrease of the splitting between €(v0d3,2) and €(v1s1/2) by
2.57 MeV, going from 280 to 34Si (Table 1, column 2), turns out
to result from the combined effect of the central part (1.87 MeV),
in particular, in its triplet-even channel, and the tensor part of the
nuclear interaction (1.06 MeV).

Similarly, the increase of the gap between the neutron 0ds/;
and 0f7/, orbitals when going from 280 to 34Si and onwards from
365 to 40Ca (columns 3 and 4 of Table 1) is a joint effect of the
central and tensor component of the effective interaction. This is
an important manifestation of the tensor force in this region. Due
to the fact that at N =20 the above two neutron orbitals have
(i) the same radial quantum number, and, (ii) a different spin-
to-orbital orientation, a large and negative tensor contribution of
—1.93 MeV results for the variation of the gap between the 0d3/»
and 0f7/, orbitals when filling the Ods /> orbital with protons (from
365 to 40Ca). This large tensor shift, however, is almost fully can-
celled by the central contribution of 1.99 MeV. The combined effect
results in only a slight overall decrease of the N =20 shell gap
from “°Ca to 3%S and 34Si, thereby preserving the semi-magic na-
ture of the latter nuclei. At the same time, while filling the 0ds,
orbital with protons (from 280 to 34Si), due to the change in the
spin-to-orbital orientation with respect the proton 0ds/; orbital,
the tensor contribution remains large but changes its sign (1.96
MeV). This enforces the central contribution (2.17 MeV) and re-
sults in a rapid decrease of the N = 20 shell gap below 34Si which
is at the origin of the so-called ‘island of inversion’ around 32Mg
(deformed ground state).

The position of the 0ds/; orbital and the possible shell gaps
between this orbital and either the 1s1,3, or 0f7,2 orbital, plays an
important role in the formation of N =16 as a magic number at
Z = 8. This was formerly ascribed to result from the spin-isospin-
exchange part of the central force component [2] and sometime
later to be due to mainly a pure tensor force [41]. The present
results support the important role of both a central part (in its
spin-isospin-exchange channel) and a tensor part in changing the
shell structure between O and Si.

In Fig. 2, we show the two-body contribution to the binding
energy from the monopole part of the realistic interaction and
its different components. For the analysis we choose the N =19
isotones 270, 33Si, 3°S and 3°Ca with a neutron hole (relative to
N =20) in the 0ds/,; state. As is seen, the global shift is due to
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Table 1
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Contribution of different spin-tensor operators to the energy splitting variations A(j, j') = €; — € in different regions: N =20 (columns 2-4), Ca-isotopes (columns 5-6),
N =28 isotones (columns 7-8).

Energy (v0d3/2, V1s1/2) (v0f7/2,v0d3/2) (v0f7/2,v0d3/2) (7r0d3/2, 7 0ds/2) (7r0d3 )2, w151/2) (v1p3/2,v0f7/2) (v1p3/2,v0f7/2)
gap MeV MeV MeV MeV MeV MeV MeV
Filling 7'[0d5/2 ﬂ0d5/2 ﬂ0d3/2 U0f7/2 U0f7/2 ﬂods/z ﬂ0d3/2
orbital 280 — 34gj 280 — 34gj 365 —» 40Ca 40ca — 8Ca 40ca — 8Ca 360 — 42gj 44g _, 480y
Total —2.57 3.68 0.21 —-2.33 —3.156 1.60 1.81
Central —1.87 217 1.99 —0.21 —1.58 2.03 1.31
TE —1.58 2.23 2.48 0.62 —-1.19 2.03 1.02
TO —0.68 —0.31 —0.11 —0.03 0.25 —0.25 —0.14
SE 0.71 —0.45 0.01 —0.50 —0.57 —0.02 0.18
SO —0.32 0.70 —-0.39 —0.30 —0.07 0.28 0.25
Vector 0.36 —0.45 0.15 0.61 0.06 023 —0.18
LS —0.05 —0.10 —0.16 0.09 —0.15 0.11 0.15
even —-0.12 —0.06 0.25 0.60 0.25 0.22 —0.27
odd 0.07 —0.04 —0.41 —0.51 —0.40 —0.11 0.41
ALS 0.41 —-0.35 0.31 0.52 0.21 0.12 —0.33
Tensor —1.06 1.96 —-1.93 —-2.73 —1.64 —0.67 0.68
even —0.78 1.31 —1.28 —1.59 —0.96 —0.43 0.43
odd —0.28 0.66 —0.65 —-1.14 —0.68 —0.24 0.26
-15 10
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Fig. 3. Variation of proton single-hole states in Ca-isotopes using the realistic inter-
action [29].

the central part of the effective interaction when adding up to 12
protons to the 160 core. This contrasts with the results, presented
before, in which we studied the local relative variations in the
single-particle energy in which the tensor force component plays
a major role.

More evidence results from the single-proton holes in Ca-
isotopes i.e. studying the K isotopes. There is a crossing of the
1s1/2 and the Ods;, orbitals when approaching “8Ca and, in ad-
dition, a lowering of the energy gap between the 0ds3,; and the
0ds;> orbitals when going from 4°Ca to “8Ca, confirmed experi-
mentally [1,42,43]. In Fig. 3, we show the variation of the proton
ESPE’s in Ca-isotopes obtained from the same effective interac-
tion, while in Table 1 we present a detailed analysis of the role
of different components in the evolution of the gaps. It is seen
(columns 5) that the lowering of the gap between proton 0ds/;
and 0ds/; orbitals as neutrons fill the 0f7,, orbital is mainly due
to the tensor force. However, it is the central part, combined with
the contribution from the tensor force, which reduces the gap
between proton 0ds3;; and 1s1,, orbitals when approaching 48Ca
(column 6).

Finally, we explore evolution of neutron ESPE’s in N = 28 iso-
tones, from O to Ca, as a function of proton number. The character-
istic trends of spin-orbit partners, generic for a pure tensor force,
are well manifested when using the same realistic interaction (see

Proton number

Fig. 4. Variation of neutron single-particle states in N = 28 isotones using the real-
istic interaction [29].

Fig. 4): approaching neutron 0f7,, and 0fs,; spin-orbit partners,
and likewise for the 1p3,2 and 1py,2 spin-orbit partners, when
filling the proton Ods,, orbital. An opposite effect results when
filling the 0ds;, orbital and fingerprints the contribution from a
tensor term.

In Table 1 (columns 7 and 8), we analyze in detail the reduction
of the N =28 shell gap, i.e. the change in the neutron 1p3,2-0f7,2
energy difference from “8Ca to the lighter isotones. To start with,
these two orbitals have different radial quantum numbers. There-

. S i s
fore, the radial overlap contributing to the V0d3/20 fi centroid is

larger than the radial overlap contributing to the V(’;j‘;/zlpg/z cen-
troid. As can be seen from the table, the contributions from the
central and tensor terms are dominating. Since both the 0f7,,
and 1ps3/; orbital are ‘spin-up’ oriented (j- =1+ 1/2), the tensor
term contributes in a similar way to the energy shift when protons

fill the 0ds/; orbital (Véﬁ;igg/z and Véﬁi;’;:ﬂ are both positive).
V(k=2)ﬂv

The same happens when protons fill the Ods,, orbital ( 0ds20f7/2

and V¥ are both negative). The overall difference in sign
0ds/21p32

is due to the different relative spin to orbital orientation of the
neutron orbitals (both (j.” =1V + 1/2) relative to the proton or-
bitals (j* =IT £+ 1/2)). Due to the difference in absolute value
of the centroids, in particular, due to different radial overlaps for
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V0 f-m0d versus v1p-m0d, the positive and negative tensor con-
tributions to the energy centroid do not cancel. They result in a
shift of 0.68 MeV and —0.67 MeV filling the 0d3;, or Ods/; or-
bital, respectively. Adding this tensor energy shift to the central
plus vector energy shift results in a reduction of the N =28 shell
gap going from #8Ca to #4S and from 42Si to 360. This situation
contrasts the N = 20 shell gap evolution discussed before.

These examples illustrate that in the discussion of shell gap
evolution, it is mandatory to take into account what particular or-
bitals are considered. Both the central and tensor term represent
important ingredients, together with the magnitude of the radial
overlaps involved.

To summarize, we have proposed a quantitative study of the
shell structure evolution in series of isotopes or isotones, based
on a spin-tensor decomposition of the two-body matrix elements.
The method has allowed us to clarify the role played by the dif-
ferent terms of the effective interaction in the variation of the
single-particle energy of different orbitals.

Based on the analysis of the best realistic interaction in the
1s0d1p0f shell-model space [29], we show that the evolution of
the N =16, N =20 and N = 28 shell gaps is a combined ef-
fect of different spin-tensor terms, of which the central term in
its triplet-even channel and the tensor term are of overwhelm-
ing importance. This conclusion partially supports the results of
Refs. [32,33] regarding the importance of the triplet even chan-
nel but evidences the crucial role of the first-order tensor term
as conjectured in Refs. [3,8]. The tensor term plays a dominant
role, with increasing role of the vector term in the single-particle
energy difference for spin-orbit partners. However, from the ex-
amples discussed here, one cannot assign unambiguously a dom-
inating role to the tensor mechanism in cases when no explicit
spin-orbit partners are considered. For example, the increase in
energy splitting between proton Ohyi;; and 0g7,> when filling
neutron Ohi1/z in heavy Sb isotopes, or in the energy splitting
between neutron Ohi1; and 0g7,, when filling proton 0gg/2 in
N = 51 isotones, discussed in Ref. [3], may be a result of dif-
ferent parts of the effective interaction. To clarify the observed
situation, a corresponding quantitative analysis should be per-
formed.

The decomposition is a suitable tool only for the model spaces
when all spin-orbit partners are present. This does not allow, at
the present moment, to analyze heavier nuclei and check the hy-
pothesis of the tensor force action in heavy systems, until a real-
istic determination of the position of relevant spin-orbit partners
is established. As can be seen from the present work, the vector
term of the effective interaction typically counter-acts the tensor
term. The increasing role of the vector term could form a plausible
scenario for a reduction of the tensor effect in heavy nuclei and
explain the results obtained from shell-model studies of Ref. [31].
This requires more data on key heavy nuclei and the availability of
extremely large-scale shell-model calculations.

Note added

The authors have noticed that just recently Otsuka et al. [44] have come to very
much the same conclusions as presented in our paper with respect to the need

of considering both a central and tensor force to describe the variation in shell
structure in a correct and consistent way.
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