
Extending boolean regulatory network models with Answer Set Programming

Timur Fayruzov∗, Jeroen Janssen†, Chris Cornelis∗, Dirk Vermeir† and Martine De Cock∗
∗Dept. of Applied Mathematics and Computer Science, Ghent University, Krijgslaan 281 (S9), 9000 Ghent, Belgium

Email: {timur.fayruzov, martine.decock, chris.cornelis}@ugent.be
†Department of Computer Science, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium

Email: dvermeir@tinf.vub.ac.be, jeroen.janssen@vub.ac.be

Abstract—Because of their simplicity, boolean networks are
a popular formalism to model gene regulatory networks.
However, they have their limitations, including their inability
to formally and unambiguously define network behaviour, and
their lack of the possibility to model meta interactions, i.e.,
interactions that target other interactions. In this paper we
develop an answer set programming (ASP) framework that
supports threshold boolean network semantics and extends it
with the capability to model meta interactions. The framework
is easy to use but sufficiently flexible to express intricate
interactions that go beyond threshold network semantics as we
illustrate with an example of a Mammalian cell cycle network.
Moreover, readily available answer set solvers can be used to
find the steady states of the network.

I. INTRODUCTION

Boolean networks are a very simple yet popular formalism
to model gene regulatory networks. Two recent examples
applying these formalisms are [2] and [3], where they
are used to model cell cycle processes of fission yeast,
resp. mammals.

Although they are popular, the current boolean networks
formalisms have several drawbacks. First, although the
aforementioned applications are presented using boolean
networks, a detailed analysis shows that they use differ-
ent formalisms. In [3] the authors use standard boolean
networks, while in [2] the authors use threshold boolean
networks with different semantics. This difference is not
evident from the surface, but makes a crucial difference in
the way the networks behave.

Another issue is that the boolean network in [3] makes
some assumptions about the ‘default’ state and behaviour of
the nodes in the network, i.e., only the node activation rules
are given, and it is implicitly assumed that if an activation
rule is not satisfied then the node should be inhibited. This
assumption is only stated in the plain text in [3].

Yet another problem is that the boolean formalism does
not allow some facts about the network in [3] to be stated
explicitly. In particular, statements of the form ‘a inhibits
the binding of b to c’ that express a meta reaction with a
binding interaction as its target, cannot be expressed directly.

Jeroen Janssen is funded by a research project of the Research Foundation
– Flanders.

Chris Cornelis is a postdoctoral fellow of the Research Foundation –
Flanders.

In this paper we propose a new approach to model regu-
latory networks that solves these problems. In particular, we
propose to represent gene and protein regulatory networks
by answer set programs, as an extension of our previous
work presented in [4]. We extend this framework with new
functionalities and provide a more efficient implementation
that allows to
• express boolean networks in a uniform way
• formally and unambiguously define network behaviour
• describe meta interactions that are not allowed in

traditional boolean networks, which allows to express
regulation networks more intuitively.

To study the applicability of our framework we provide a
case study of the boolean model of mammalian cell cycle
first described in [3].

The paper is structured as follows. First, we present
the necessary background on answer set programming and
boolean networks in Section II, then we proceed with the
framework description in Section III. Next, we provide a
case study of our framework on the mammalian cell cycle
model in Section IV and we conclude in Section V.

II. PRELIMINARIES

A. Answer Set Programming
Answer set programming [6] is a declarative formalism

that allows to express relations propositions with rules of
the form

L0 ← L1, . . . , Lm, not Lm+1, . . . , not Ln

in which L0, L1, . . . , Ln are called literals. The left-
hand (resp. right-hand) side of a rule is called the head
(resp. body). A rule with an empty head (resp. body) is
called a constraint (resp. fact). A rule intuitively states that
whenever the literals in the body hold true, the head should
be true as well. A literal can be negated; then it is preceded
by the symbol ¬ and is called a negative literal. Another
form of negation that represents a special feature of ASP, is
negation-as-failure (naf) denoted by not.

An answer set program is a set of rules. The set of all
literals of a program P is denoted by LitP . An interpretation
of P is any consistent1 subset S ⊆ LitP . S is said to

1A set of literals is said to be consistent if it does not contain a literal l
and its negated literal ¬l simultaneously

satisfy a rule with a nonempty head, if {L1, . . . , Lm} ⊆ S
and {Lm+1, . . . , Ln} ∩ S = ∅ implies that L0 ∈ S. When
the head is empty, then S is said to satisfy the rule if
{L1, . . . , Lm} 6⊆ S or {Lm+1, . . . , Ln} ∩ S 6= ∅.

An interpretation that satisfies all rules of a program P
is called a model of P . Answer sets are special kinds of
models. First of all, for a program P without naf, an answer
set of P is a minimal model of P , i.e., S is called an answer
set of P iff S is a model of P and there is no model K
such that K ⊂ S.
Example 1 The models of the program that contains only
rule a← b are {a, b}, {a} and ∅. The minimal model is ∅.

The concept of an answer set is extended for a program P
containing negation-as-failure as described below. Suppose
that S is a model of P , and our hypothesis is that S is an
answer set of P . In order to check if S is an answer set
of P , we build a reduct program P ′ by 1) removing from
P all rules that contain a naf-literal not L, with L ∈ S; 2)
removing all the naf-literals from the bodies of the remaining
rules. If the minimal model S′ of the naf-free program P ′

coincides with S, then S is an answer set of the original
program P .
Example 2 A program with negation-as-failure can have
more than one answer set. Suppose that we have one seat
and two persons a and b, and we want to assign the seat to
one of them. We can model this by the following program

seat(a) ← not seat(b)
seat(b) ← not seat(a)

It has two answer sets {seat(a)} and {seat(b)}.

B. Boolean networks

A boolean network captures interactions between genes
and proteins (further referred to as ‘compounds’) in the form
of a directed graph G = (V,E) with V a set of nodes and
E a set of edges. The nodes represent compounds while the
edges represent the influence of one compound on another.
At any time, a node is in one of two states: either it is
active (1), or it is not active (0) (hence, the name boolean
networks). The state of a gene regulation network at any
given time is defined in terms of the states of its nodes.

Definition 1 (Network state): Let G = (V,E) be a graph
representing a gene regulation network. Then a mapping S :
V → {0, 1}, that maps every node in V to a state in {0, 1},
is called a network state.

Every node has input nodes that are determined by
inbound edges, and output nodes that are determined by
the outbound edges of the node. For every node in the
network a deterministic transition function (TF) can be
defined that determines the next state of the node depending
on the node’s inputs. The network can switch from one
state to another by applying the TF to its nodes. The TF
can be represented as a boolean function although different

representations are also possible as discussed further. For
the purpose of this work we consider a network TF that is
a combination of TFs on the nodes.

Definition 2 (Transition function): A function f that
maps a network state S to another network state f(S) = S′

is called a transition function.
In threshold boolean networks the TF for a node is defined

as the sum of input signals for the node. To define these
networks we introduce the notion of network marking.

Definition 3 (Network marking): Let G = (V,E) be a
graph representing a gene regulation network. Then a map-
ping M : V 2 → {−1, 0, 1}, that maps every pair of nodes
to {−1, 0, 1}, is called a network marking.

Intuitively, given the pair of nodes 〈v1, v2〉, a negative
marking denotes the existence of the suppression edge
between v1 and v2, a positive marking denotes an activation
edge between v1 and v2 and 0 denotes the absence of an
edge. The TF for node vi can then be defined as follows

St+1(vi) =

1 if

∑|V |
j=1 M(vj , vi)St(vj) + h > 0,

0 if
∑|V |

j=1 M(vj , vi)St(vj) + h < 0,

St(vi) if
∑|V |

j=1 M(vj , vi)St(vj) + h = 0,
(1)

where St+1(vi) and St(vj) are states of node vi at time
point t + 1, and of node vj at time point t correspondingly,
and h is a threshold parameter. By setting h = 0 we obtain
an intuitive interpretation of a regulatory network where a
gene is activated if it receives a positive input and inhibited
if it receives a negative input.

For dynamics analysis of (threshold) boolean networks,
discrete time is usually considered, i.e., there is an external
‘clock’ that iterates over the values 1, 2, . . . At every time
step, a TF is applied to the network which causes a change
of the network state at the next time step. The network
evolution over time is called a trajectory.

Definition 4 (Trajectory): A sequence T of network
states S, f(S), f(f(S)) . . . is called a trajectory of the
network.

Due to the deterministic nature of the network, after at
most 2|V | steps the network will visit a previously visited
state and either will stay in this state, or start to loop through
a set of visited states. Such states are called steady states
and are defined below.

Definition 5 (Steady state, steady cycle): A state S of a
network is called a steady state if f(S) = S. A subsequence
Sm . . . Sn(m < n) of a trajectory is called a steady cycle
if f(Sn) = Sm. The set of trajectories that lead to a given
steady state or cycle is called a basin of attraction.
Example 3 Assume that in Figure 1a protein a is active
and b is inhibited, then the initial network state is 〈1, 0〉.
The TF is defined as in (1) with h = 0. By applying this
function to the initial state, we can go to the next network
state 〈1, 1〉. If we apply the TF once again, we move to

Figure 1. Examples of regulation networks. Arrows denote activation and
blunt edges denote inhibition.

the state 〈0, 1〉, and after that the state does not change any
more, no matter how many times we apply the TF. This
means that the network has reached a steady state. The
corresponding trajectory is 〈1, 0〉, 〈1, 1〉,〈0, 1〉.

III. ASP FRAMEWORK

Several researchers applied ASP to model different as-
pects of biological systems ([1], [5]). In this section we
provide an ASP framework that models the behaviour of
threshold boolean networks, and on top of that allows to deal
with meta interactions. The network model is presented as
an ASP program that consists of two parts: the framework
and the structure description. The framework contains the
rules that describe how the network works (further referred
to as G-rules). These rules are independent of any specific
network. The structure description part contains the rules
that describe the structure of a particular network that we
want to model (further referred to as S-rules).

A. Structure description

We start building the regulation network by describing
the S-rules. The set of S-rules for the network in Figure 1a
consists of the following facts

protein(a). protein(b).
activates(a, b). inhibits(b, a).

Here in the first line we declare that we have two nodes a and
b, while the second line describes the interactions between
them. Note that we define the type of a as protein. For the
sake of the example, any type of biological entity can be
defined in the model (gene, enzyme, etc.). By themselves
these rules do not model anything; although they define the
connection between genes and proteins, they do not describe
the influence of these connections on the proteins at the
different time steps – this is the task of the G-rules as
described below.

B. Framework essentials

The rules that set up the environment for our framework
are shown in Figure 2. Rule G1 is merely a shorthand for
the facts time(0)., . . . , time(T). where T is a constant that
defines how many time steps in our modelling process we
would like to consider. Rules G2 and G3 declare that the
inhibition and activation reactions that we define as S-rules
(described above) are of type interaction. Rules G4 and G5

G1 : time(0..T).
G2 : interaction(activates(X, Y)) ← activates(X, Y),

protein(X), entity(Y).
G3 : interaction(inhibits(X, Y)) ← inhibits(X, Y),

protein(X), entity(Y).
G4 : entity(X) ← interaction(X).
G5 : entity(X) ← protein(X).

Figure 2. Basic framework rules

declare that both proteins and interactions are of type entity.

Next, we define what it means for one protein to activate
or inhibit another entity. The threshold boolean network
semantics defined in Section II-B can be captured by the
rule

G6 : int(0..# of ent).

and by the rules G7, G8 described in Figure 3. In these
rules int(A) and int(I) are defined to be integers from 0
to the number of entities defined in the model as stated
in rule G6. Indeed, the number of incoming edges to any
given node cannot be more than the number of nodes in the
network, thus this is a reasonable limitation. The rules G7
and G8 implement the idea behind the threshold network:
we count the number of activation and inhibition links for
every instance and make the decision based on this count.
The counting happens in literals # act(Y,A, T − 1) and
inh(Y, I, T−1) which store the count in variables A and
I correspondingly. Note that when the number of incoming
activation and inhibition links is equal, none of the rules
G7 or G8 are applicable, because neither A − I > 0 nor
I − A > 0 is satisfied, thus the entity Y should remain
in the same state as before. This is implemented with the
following inertia rules

G9 : act(X, T) ← act(X, T − 1), not inh(X, T), T > 0.
G10 : inh(X, T) ← inh(X, T − 1), not act(X, T), T > 0.

Intuitively rule G9 says that that if X was active at T−1 and
there is no evidence that it is inhibited at T then it remains
active. A similar reasoning holds for G10.

Returning back to rules G7 and G8, how do we define
which activation and inhibition links affect the state of Y ,
in other words, how do we define counting predicates # act
and # inh? The answer to this question is straightforward
in the case of threshold network semantics: count the links
that have active triggers.
Example 4 In the network in Figure 1b a is active and c is
not. In this case only the inhibition link to b will be counted,
as the activation link has no effect in the given network state.

However, the threshold boolean semantics does not take
into account the fact that interactions themselves can be
influenced by other entities (meta interactions). Examples
of such interactions are presented in Figure 4a-d. Before

G7 : act(Y, T) ← # act(Y, A, T − 1), # inh(Y, I, T − 1), A− I > 0, T > 0, int(A), int(I).
G8 : inh(Y, T) ← # act(Y, A, T − 1), # inh(Y, I, T − 1), I −A > 0, T > 0, int(A), int(I).

G71 : act(Y, T) ← # act(Y, A, T − 1), # inh(Y, I, T − 1), act th(Y, Th), A− I > Th, T > 0, int(A), int(I).
G81 : inh(Y, T) ← # act(Y, A, T − 1), # inh(Y, I, T − 1), inh th(Y, Th), I −A > Th, T > 0, int(A), int(I).
G72 : act(Y, T) ← # act(Y, A, T − 1), # inh(Y, I, T − 1), act th(Y, Th), not abn(Y, T − 1), A− I > Th, T > 0, int(A), int(I).
G82 : inh(Y, T) ← # act(Y, A, T − 1), # inh(Y, I, T − 1), inh th(Y, Th), not abn(Y, T − 1), I −A > Th, T > 0, int(A), int(I).

Figure 3. The evolution of the definition of rules G7 and G8.

Figure 4. Examples of meta interactions

explaining how this is implemented in our framework, let
us discuss the semantics of these interactions.

In the cases when c inhibits the interaction (activa-
tion/inhibition) between a and b, as in Figure 4b,d, we want
to disregard the interaction between a and b when c is active,
and consider it as usual when c is inactive. In the cases when
c activates the interaction (activation/inhibition) between a
and b, as in Figure 4a,c, the situation is slightly different.
When we say that c activates the interaction between a and
b we implicitly assume that this interaction is not functional
without c, because if it were, there is no point to add c in
the model. Thus, according to this reasoning the interaction
between a and b in this case is taken into account only when
c is active.

Keeping these semantics in mind we can start crafting
the rules that define the predicates # act and # inh as
presented in Figure 5. The following explanation will be
focused on rule G11, but it applies equally to G12 as well.
In G11 # potential act is the number of activation links
that enter node Y . This is a structural property of the model,
thus time is not an argument of this predicate. However, not
all of these links are active at a given network state at time T ,
because interaction triggers may be inhibited or because the
interaction itself may be inhibited as we discussed above.
This is captured by the construct I{inh act(X, Y, T) :
activates(X, Y) : protein(X)}I for activation links. We do
not go into the technical details of this construct due to space
restrictions, but the intuition is that it takes all activation
links activates(X, Y) where X is a protein and Y is an
entity, counts only those for which the inh act predicate
holds and stores this count in I . In other words, I counts
the number of inactive activation links that enter Y . Thus,
A − I represents the actual number of activation links that

influence node Y in the current network state.
Rules G11.1-3 and G12.1-3 from Figure 5 help to count

these numbers. Before explaining them in more detail, let
us define the cases when an interaction can be deactivated.
An interaction does not influence its target if

1) the interaction trigger is not active
2) there is an interaction that inhibits this interaction and

its trigger is active (Figure 4b,d where c is active)
3) there is an interaction that activates this interaction

and its trigger is not active (Figure 4a,c where c is not
active)

The first case is handled by rules G11.1 and G12.1.
The second case is handled by rules G11.2 and G12.2.

In G11.2 we have an interaction between X and Y , but
also we have Z that inhibits this interaction. The interaction
will be inhibited if Z is active. Note also the recursive
condition not inh inh(Z, activates(X, Y), T) that says that
the inhibition interaction that is triggered by Z should not
be inhibited itself (as in Figure 4e). Rule G12.2 acts in a
similar way.

The third case is handled by rules G11.3 and G12.3. Rule
G11.3 makes use of the previously defined rules G11.1 and
G11.2. The interaction between X and Y will be considered
inactive if Z is not active, or, even if Z is active, if there is
some other interaction that restricts the influence of Z (as
in Figure 4f).

C. Sensitivity thresholds

Some features still cannot be expressed in this framework.
For example, in reality proteins can become active when
their inhibitors are not active, even without an external
activation input. Another example is that some proteins
can have a certain ‘tolerance’ to an inhibition/activation
influence. For example, a protein can become inhibited
only if two or more proteins that suppress it are active,
otherwise it is not affected. To address these issues we
introduce the notion of inhibition and activation thresholds.
This can be implemented in the system by introducing
inhibition/activation thresholds as shown in Figure 6.

We update rules G7 and G8 by G71 and G81 so that
now they take into account the possible presence of a
threshold. Rules G13 and G14 set the activation and in-
hibition threshold of every protein to 0 in case it was
not set explicitly by a special predicate mod act th or
mod inh th, which is checked by rules G13.1 and G14.1.

G11 : # act(Y, A− I, T) ← # potential act(Y, A), I{inh act(X, Y, T) : activates(X, Y) : protein(X)}I, A >= I, int(A), int(I).
G12 : # inh(Y, A− I, T) ← # potential inh(Y, A), I{inh inh(X, Y, T) : inhibits(X, Y) : protein(X)}I, A >= I, int(A), int(I).

G11.1 : inh act(Y,A) ← not act(X, T), activates(X, Y).
G12.1 : inh inh(Y, I) ← not act(X, T), inhibits(X, Y).
G11.2 : inh act(X, Y, T) ← act(Z, T), protein(Z), inhibits(Z, activates(X, Y)), not inh inh(Z, activates(X, Y), T).
G12.2 : inh inh(X, Y, T) ← act(Z, T), protein(Z), inhibits(Z, inhibits(X, Y)), not inh inh(Z, inhibits(X, Y), T).
G11.3 : inh act(X, Y, T) ← activates(Z, activates(X, Y)), inh act(Z, activates(X, Y), T), protein(Z).
G12.3 : inh inh(X, Y, T) ← activates(Z, inhibits(X, Y)), inh act(Z, inhibits(X, Y), T), protein(Z).

Figure 5. A set of rules that define the way interactions are counted. Predicates protein(X) and entity(Y) are omitted from every rule for clarity

G13 : act th(X, 0) ← not mod act th(X).
G13.1 : mod act th(X) ← act th(X, Th), h 6= 0.

G14 : inh th(X, 0) ← not mod inh th(X).
G14.1 : mod inh th(X) ← inh th(X, Th), h 6= 0.

Figure 6. Sensitivity rules

Having both inhibiting and activating thresholds instead
of one threshold is not redundant, since these thresholds
characterize not the ‘on/off’ level of the protein, but rather
an effort that is needed to change its state. Positive values
make the protein more tolerant and negative ones make it
less tolerant. Example 5 describes how thresholds can be
used in a network.

D. Exception handling

It may be the case that certain interactions in a biological
network model do not conform with the threshold network
assumptions and thus cannot be represented within the
framework semantics we have provided above. In order to
allow for modelling arbitrary behaviour in the framework we
introduce the notion of ‘abnormal situation’, or exception.
This notion can be introduced by using rules G72 and G82

instead of G71 and G81 from Figure 3.
The modification allows to include the exceptional be-

haviour in the framework by means of predicate abn/2. Now
the state of a gene or protein Y tagged with predicate abn/2
will not be governed by the framework semantics, and can
be redefined according to the user needs. The example below
illustrates the use of the exception mechanism.
Example 5 Let us construct the answer set program P
consisting of general rules G1 (with upper limit T = 2), G2,
G3, G4, G5, G6, G72, G82, G9, G10, G11, G11.1, G11.2,
G11.3, G12, G12.1, G12.2, G12.3, G13, G13.1, G14, G14.1
and the specific rules

S1 : protein(a). S5 : act(b, 0).
S2 : protein(b). S6 : act(c, 0).
S3 : protein(c). S7 : inhibits(a, b).
S4 : act(a, 0). S8 : activates(c, b).

The activation and inhibition thresholds of a and b are
not explicitly defined; hence they are automatically set
to the default value. The answer set of this program is
{act(a, 0), act(b, 0), act(c, 0) act(a, 1), act(b, 1), act(c, 1),
act(a, 2), act(b, 2), act(c, 2)}. The state of protein b does
not change over time since its inhibiting and activating

inputs are equal, and its thresholds for activation and
inhibition are both 0. From the answer set we retrieve that
the steady state is {act(a), act(b), act(c)}.

To illustrate the use of the thresholds let us set
the inhibition threshold of b to −1 to indicate that
this protein is susceptible to inhibition by adding the
rule inh th(b,−1). The answer set of this program is
{act(a, 0), act(b, 0), act(c, 0) act(a, 1), inh(b, 1), act(c, 1),
act(a, 2), inh(b, 2), act(c, 2)}. The steady state in this case
is {act(a), inh(b), act(c)}.

To illustrate the use of exceptions let us use the same
framework P and model the network presented in Figure
1c. Moreover, let us define the semantics of this network as
follows: b is inhibited only when both a and c are active,
and is not affected by these nodes otherwise. This behaviour
is beyond the threshold boolean network semantics, thus we
may use exceptions to model it. The set of S-rules is then
presented as follows

S1 : protein(a). S4 : act(a, 0).
S2 : protein(b). S5 : act(b, 0).
S3 : protein(c). S6 : act(c, 0).
S7 : abn(b, T) ← both act(a, c, T).
S8 : inh(b, T) ← both act(a, c, T − 1), T > 0.
S9 : both act(a, c, T) ← act(a, T), act(c, T), T > 0.

Rule S7 says that b should be processed in an exceptional
way in case both a and c are active (as defined in rule S9).
Rule S8 defines how b should be processed, i.e., that it
should be inhibited in this case. Note that since the facts
inhibits(a, b, T) and inhibits(c, b, T) are not present in the
program, nothing happens with b when only one of the
agents a or c is active.

IV. CASE STUDY: MAMMALIAN CELL CYCLE

In [3] a boolean model of the mammalian cell cycle
network is presented. We argue that this model suffers from
the constraints imposed by the boolean network formalism,
which leads to some unintuitive modelling choices.

Let us first focus on the relationship between a cyclin-
dependent kinase inhibitor p27/Kip1 (denoted as p27 in the
model) and cdk2/Cyclin A (denoted as CycA). When both
p27 and CycA are active, p27 forms a complex with CycA
and blocks activity of CycA. However, the cyclin remains
present, and to model this fact, rather than drawing an
inhibiting edge from p27 to CycA, the blocking effect of

CycD

Rb

CycE

p27

E2F

CycA

UbcH10

Cdc20

Cdh1

CycB

Figure 7. The mammalian cell cycle network model represented with the
updated framework. Updated edges are shown dashed.

p27 is presented in [3] with edges from p27 to the targets
of CycA, but with opposite signs, i.e., if CycA activates
E2F then there is also an inhibiting edge between p27
and E2F. Apparently, this is a workaround because boolean
networks cannot express an interaction between a node and
an edge. This problem arises in modelling interactions of
p27 with CycA and CycE but also in modelling the activity
of Anaphase Promoting Complex (APC).

APC is responsible for the progression and proper fin-
ishing of mitosis (the separation of the cell into two cells)
and is presented in the model by proteins Cdh1 and Cdc20.
Cdh1 is known to be an inhibitor of CycA, however, during
the transition from the growth phase G2 to mitosis, while
Cdh1 is active, CycA reaches a concentration high enough to
inactivate Cdh1, and it was long unclear why this happens.
Recent research has revealed the role of the E2 ubiquitin
conjugating enzyme UbcH10 in this process by showing
that Cdh1-dependent degradation of CycA can happen only
in the presence of UbcH10 [7]. Moreover, Cdh1 triggers
UbcH10 ubiquitination, but only in the case when Cdh1
targets are not active, or in terms of the logical model, when
CycA, CycB and Cdc20 are inactive. These observations
were formalized in [3], but the relationships between the
nodes in this model do not directly reflect them.

After the establishment of the new framework we can
address the aforementioned issues and create a more un-
derstandable model of the mammalian cell cycle shown in
Figure 7. This model has the same steady cycle as described
in [3] as depicted in Table I, with the only exception that
UbcH10 is expressed one step earlier (denoted with the
bold font face in the table). To determine the significance
of this change for the model we need more feedback from
biologists.

V. CONCLUSIONS

In this paper we have developed a framework to model
regulatory networks as answer set programs. ASP is an area
of logic programming that allows to model systems that
exhibit non-monotone behaviour using negation-as-failure.

Table I
MAMMALIAN CELL CYCLE EXECUTION FLOW

node 1 2 3 4 5 6 7 8
CycD 1 1 1 1 1 1 1 1

Rb 0 0 0 0 0 0 0 0
E2F 0 1 1 1 0 0 0 0

CycE 0 0 1 1 1 0 0 0
CycA 0 0 0 1 1 1 1 0
p27 0 0 0 0 0 0 0 0

Cdc20 1 0 0 0 0 0 1 1
Cdh1 1 1 1 1 0 0 0 1

UbcH10 1 1 0 0 1 1 1 1
CycB 0 0 0 0 0 1 1 0

These models, represented as programs, can be executed to
produce the set of steady states of a regulation network.

We have implemented a framework that covers threshold
boolean network semantics and extended this framework
with the possibility to model meta interactions. Furthermore
our ASP framework is more formal compared to boolean
networks, since it requires that all implicit assumptions are
explicitly described in the body of the program, while in
boolean networks this knowledge can be hidden in the non-
formal description. However, the approach remains straight-
forward to apply; it does not require any formal logics
knowledge from the biologist, who can operate with ready-
to-apply blocks to build a model. At the same time the
approach is very flexible due to the fact that any specific case
which does not fit in the general picture can be incorporated
with a minimal effort. Moreover, readily available answer set
solvers can be used to find the steady states of a network.

REFERENCES

[1] C. Baral, K. Chancellor, N. Tran, N. Tran, A.M. Joy and
M.E. Berens. A knowledge based approach for represent-
ing and reasoning about signaling networks. Bioinformatics
20(1):15–22, 2004.

[2] M. I. Davidich and S. Bornholdt. Boolean network model
predicts cell cycle sequence of fission yeast. PLoS ONE, 3(2),
2008.

[3] A. Faure, A. Naldi, C. Chaouiya, and D. Thieffry. Dynamical
analysis of a generic Boolean model for the control of the
mammalian cell cycle. Bioinformatics, 22(14):e124–131, 2006.

[4] T. Fayruzov, M. De Cock, C. Cornelis, and D. Vermeir. Model-
ing protein interaction networks with answer set programming.
In BIBM09, pages 99–104, 2009.

[5] M. Gebser, C. Guziolowski, M. Ivanchev, T. Schaub, A. Siegel,
S. Thiele and P. Veber. Repair and Prediction (under In-
consistency) in Large Biological Networks with Answer Set
Programming. In KR 2010, pages 497–507, 2010.

[6] M. Gelfond and V. Lifschitz. The stable model semantics for
logic programming. In ICLP/SLP, pages 1070–1080, 1988.

[7] M. Rape and M. W. Kirschner. Autonomous regulation of the
anaphase-promoting complex couples mitosis to s-phase entry.
Nature, 432:588 – 595, 2004.

