
A LabVIEW® based generic CT scanner control software platform.

Dierick M., Van Loo D., Masschaele B., Boone M., Van Hoorebeke L.

UGCT, Centre for X-ray Tomography, Department of Physics and Astronomy, Ghent University,

Proeftuinstraat 86, B-9000 Ghent, Belgium

Abstract : UGCT, the Centre for X-ray tomography at Ghent University (Belgium) does research on X-ray

tomography and its applications. This includes the development and construction of state-of-the-art CT

scanners for scientific research. Because these scanners are built for very different purposes they differ

considerably in their physical implementations. However, they all share common principle functionality.

In this context a generic software platform was developed using LabVIEW® in order to provide the same

interface and functionality on all scanners. This article describes the concept and features of this

software, and its potential for tomography in a research setting. The core concept is to rigorously

separate the abstract operation of a CT scanner from its actual physical configuration. This separation is

achieved by implementing a sender-listener architecture. The advantages are that the resulting software

platform is generic, scalable, highly efficient, easy to develop and to extend, and that it can be deployed

on future scanners with minimal effort.

Corresponding author : manuel.dierick@UGent.be , Tel: +32/2646611, Fax: +32/2646697

Keywords : X-ray tomography, software, LabVIEW

mailto:manuel.dierick@UGent.be

1. Introduction:

X-ray micro-CT is becoming a well-established technique for non-destructive 3D imaging of samples,

both in medical and non-medical research. Based on a series of 2D X-ray radiographs it allows to

reconstruct the internal structure of an object in 3D by means of a suitable reconstruction algorithm [1].

Micro-CT not only offers valuable morphological information, but based on the 3D data one can extract

useful data such as surface meshes that can serve as input for finite element simulations (e.g. for

simulating fluid flow in blood vessels), or porosity distributions (e.g. for studying osteoporosis).

UGCT, the Centre for X-ray Tomography at Ghent University (Belgium), specializes in micro and nano-CT

on non-living samples. Crucially, all scanners and software tools used at UGCT are developed in-house to

gain maximum control over the data processing. UGCT’s research covers everything from the design and

construction of the actual CT scanners, over data acquisition, processing, reconstruction and

visualization up to and including 3D analysis [2]. Besides doing research on tomography itself, UGCT also

operates as a user facility. Because of the large number of different available X-ray sources, detectors

and motors that have to be controlled in the different scanners, a generic scanner control software was

designed that is independent of a particular hardware configuration and which is used on all UGCT

scanners for operation and data-acquisition. This article will give an overview of this generic scanner

control software. The resulting raw scanner data is subsequently reconstructed using the software

package Octopus [3] which provides access to all relevant reconstruction parameters, including

misalignment corrections, making it ideal for CT in a research setting.

2. Materials and Methods:

2.1 The problem:

UGCT has two CT scanners already in operation, two others in the commisisiong stage and a fifth one in

the design stage. One scanner has two separate X-ray sources and two detectors, which can be selected

on the fly. Another scanner has some parts rotating on a gantry while others are static, and therefore

two control PC’s are required. For all scanners together, a total of more than 20 components need to be

controlled. This includes 3 Hamamatsu X-ray sources (HM_L10711, HM_L6622 and HM_L9181) each

controlled through RS-232, a Feinfocus FXE-160 dual head microfocus source, 2 PCI-based CCD–cameras

from Photonic Science (PS-VHR 12 MPixel and a PS-VHR Air 15 MPixel) that come with a dll supplied by

the manufacturer, 2 Rad-Icon flat panel CMOS sensors (RadEye EV and RadEye HR with Gadox

scintillators) which are read out by means of a frame grabber (Imagenation PXD-1000). There are 2

Varian Paxscan 2520V aSi flat panel detectors with CsI scintillator which are controlled through an

Ethernetcard and a dll supplied by the manufacturer. Yet another detector is the PerkinElmer XRD 1620

which comes with a dll and a PCI card. Further equipment includes 2 high-precision air-bearing rotation

stages (Micos UPR-160 Air controlled through a serial port and an Aerotech ABRS-150MP controlled

using a .NET library supplied by the manufacturer) and multiple RS-485 controlled linear motor stages,

serially controlled piezo XY stages from PI Motion (M-662 PILine), an Active-X controlled webcam to

monitor the setup and to take optical images of the sample, etc.

2.2 The solution:

It is clear that it is quite a challenge to develop a scanner control software that is user friendly and at the

same time independent from the underlying hardware. It was decided to develop the scanner control

software in LabVIEW® (version 8.6), a graphical programming language which is ideally suited for

integrating different types of hardware and for speedy development in a research environment. The use

of LabVIEW for controlling micro-CT systems has been reported before [4,5,6,7]. In most cases however

this involves code specifically written around one specific combination of hardware or one specific

component such as a camera driver [8]. They were not designed from the start to independent from

underlying hardware. The core concept of the control software reported in this article is to completely

separate the abstract scanner operation from its physical implementation and actual configuration. To

separate the abstract parts of the code from the physical parts of the code that address the actual

hardware components, a custom LabVIEW® design template was implemented based on so called ‘user

events’, something similar to an interrupt but with embedded data. In this case the user event was

defined as a cluster containing the name of the addressed component (tube, camera, mag_obj etc.), the

command to be executed (set exposure, xrayon, etc), arguments and feedback. Four event types were

defined, tube events, motor events, camera events and other events. A standardized set of commands

was defined for each category. For example, tube commands include xrayon, set current, etc. Basically,

abstract commands are broadcast and are picked up to be executed by the corresponding physical

component. This sender-listener concept effectively decouples the abstract operation of a scanner and

the physical actions to be taken on a lower level. More generally, not only the main program but also

individual components or add-on programs can broadcast or receive commands, resulting in a very

flexible framework. A schematic representation of this framework is shown in figure 1. Commands are

broadcast into the ‘ether’, and all components that registered for that particular type of event receive

the command when fired and process it as soon as possible.

2.3 The component programs:

Each component is implemented as a standalone program (or VI as it is called in LabView) that runs

separately from the main program. It is always based on the same template, written around an event

structure which registers for the type of event corresponding to that component. When the event

structure receives a command event it first checks the component field. If it is addressed to another

component it ignores the command, else it confirms to the outside world that it received the command

(by firing a RCV event) and starts executing it. During execution it may occasionally fire feedback (FDB)

events (for example motor positions during a movement). Finally the component acknowledges to the

outside world that the command has been executed (ACK) or if an error occurred (ERR). In case a

command event cannot be handled immediately the event structure automatically queues it to be

processed as soon as the previously received event has been handled. This ensures that no commands

get lost. Typically, if a component is idle, a command event is heard almost instantaneously after being

fired (<1ms). Finally it should be noted that a component program is more that just a driver. It has its

own interface from which it can be controlled directly (although typically this is only used for actions

that are very specific for that particular component). It can run as a standalone program, without being

part of the CT scanner framework.

2.3 The main program:

The main program, referred to as the scannerGUI, controls a complete CT scanner. The code behind it

only contains abstract functionality that holds for any particular physical implementation of a CT

scanner. An abstract scanner configuration is supposed to contain one or more X-ray sources, one or

more X-ray cameras and a number of motion axes. All X-ray sources have some common properties and

actions, like switching the X-ray beam on or off, setting the high voltage and current, setting the focusing

mode etc. Similarly, all X-ray cameras have a certain pixel pitch, pixel count, exposure time, binning

modes etc. Every motion axis has a certain position, speed, lower and upper limit etc. The motion axes

can not only move the sample, but also a tube or a detector. When combined with four direction

categories, namely rotation, magnification, translation and vertical movements, this results in an

abstract motor naming convention of the nature direction_subject (e.g. mag_tube, rot_obj, ver_det,

etc.). When operating a scanner, the user normally only interacts with the scannerGUI. The scannerGUI

contains four independent loops running in parallel. The first is the user event loop. This handles all

events related to user interaction with the interface. For example, when the user clicks on the X-ray ON

button the command ‘tube xrayon’ is sent out by the user event loop. The second loop is the polling

loop which processes feedback from all components and adjusts the interface and status globals

accordingly. For example, when it receives acknowledgment that mag_obj has moved to position X it will

recalculate the geometry, voxel size, magnification etc and update the 3D drawing accordingly. To

ensure a good responsiveness of the polling loop, time-consuming operations like image corrections and

saving to harddisk are handed over to the user event loop which will block user interactions for the time

necessary. A third independent loop is the script loop. A script is a text based series of commands,

generated by the script preparation tool or manually, and represents a CT scan (or other types of scans

like tiled radiographies). The script is executed in a serial way. Before each command all component

status flags are checked (this way, execution of a scan is automatically paused when for example

someone enters the bunker room, and it continues as soon as the door closes again). Then the

command is sent out. A ‘wait’ flag with each command determines if the script waits until the command

finished execution (default), or to proceed as soon as the component confirmed having received the

command. This means that, although the script is executed sequentially, that certain actions can run in

parallel if desired. For example, in some cases the ‘wait’ flag for the ‘save image’ command is set to

FALSE so that the command to rotate to the next angular position can already start executing while the

image is being saved, thus speeding up the acquisition. Additionally, during exposures the X-ray status is

monitored and if necessary the image is taken again to ensure that all images were properly exposed

(for example, operating an X-ray source close to its highest voltage can occasionally give discharges

causing the X-ray output to drop temporarily). The fourth and final loop implements the abstract

component ‘scanner’ in such a way that scripts or external routines can call commands that relate to the

abstract concept of a ‘scanner’, like ‘scanner set_output_directory’.

3. Results

A short overview of the discerning features of the scanner control software is given below:

3.1 The main interface:

When doing CT research with self built setups one needs control over all components: the tube, the

camera, sample positioning stage etc. Only actions and properties which are common to at least most of

the components of that type are added to the main scannerGUI interface. Actions or properties that are

very specific to a particular component are not included in the main interface, but only on the interface

of that specific component. When the software is started, an ini file is read which lists all the

components that make up that particular scanner. These components are all launched and the

scannerGUI is updated accordingly, listing the available components and their appropriate settings like

possible binning modes, exposure time range etc. Figure 2 shows a screenshot of the main window.

Figure 2 : The main user interface.

Tube control: from the GUI one can select one of the available tubes. One can control typical settings

like the high voltage, tube current and focusing mode (from a drop-down list that lists the available

modes for that particular tube), autocentering, warmup, etc. but also more advanced settings like

manual adjustment of the focusing coils (if available on that particular tube of course). If a filter is used

to modify the spectrum it can be selected from a drop-down list or be filled in. UGCT currently only

operates continuous sources, not pulsed ones.

Camera control: this allows one to select one of the available cameras, to set exposure time, binning

mode, a region of interest (ROI) etc. For cameras that do not support hardware binning or ROI modes

these were implemented in the component software of that camera, so that from an operator

standpoint any camera has these options. One can take single images, grab images constantly (with a

selectable interval), and one can record time lapse radiography sequences to disk. It is possible to

operate the scanner with raw projection images, or to use an inline normalization using prerecorded flat

field and/or dark field images. Lag or ghosting corrections are not applied because they proved not to be

problematic in the typical circumstances at the UGCT scanners. When some lag is to be expected the

exposure is made with multiple frame averaging to reduce the effect. It is possible to apply a spot filter

during acquisition to suppress noise or defective pixels. This was implemented as a selective median

filter with a user selectable threshold to choose the level of suppression. Based on the known geometry

and camera settings a horizontal line is drawn on top of the image to precisely indicate the central plane

of the setup. This is important in setups where one can interactively switch between source and/or

detector. When a sample is larger than the field of view one can enable extended FOV. Each ‘take

image’ command is then replaced by a small script (a series of detector movements and ‘take image’

commands) so that a bigger image can be assembled from the different positions. These are calculated

automatically based on the set ROI, binning, magnification etc. This of course requires precise

calibration of the setup. To minimize motor movements the shortest ‘route’ is always taken based on

the current position of the detector and the central position around which to extend the FOV.

Motor control: this allows to move the different axes to position the sample, but also to control their

speed and acceleration, to set the limits, etc. There are 4 buttons to move the rotation stage directly to

0°, 90°, 180° and 270°. The operator can fill in a desired magnification or voxel size, source detector or

source object distance and the motor positions will be adjusted accordingly. Since the voxel size in a

reconstructed volume differs slightly from the voxel size in radiography (due to the conical shape of the

beam and the way the reconstruction software was implemented) the user gets to choose which of both

he or she wants to set.

3.2 Scripting:

The scannerGUI supports a multitude of scanning scripts. A selection is described here:

The most common is a standard CT scan which is basically a sequence of recording a projection, saving

it, and proceed to the next projection angle. This is repeated until the desired angular range is covered.

Optionally one can choose to acquire a number of dark field images (detector offset and noise

contributions) and flat fields (beam intensity profile and detector response), to include occasional

autocentering of the tube for longer scans and to include occasional reference images to monitor

possible movements in the scanner geometry due to thermal expansion or sample movement (only

relevant in very high resolution applications). If desired, the script can explicitly include settings like

exposure time, binning mode, ROI, output path, high voltage, current or even voxel size, although by

default the script does not set these, but rather takes the active scanner configuration at the moment

the script is started.

When faster scanning is required the step-and-shoot strategy is abandoned for a continuous CT

acquisition. The full rotational movement is initiated and then images are grabbed at a preset rate. To

exclude effects of the acceleration and deceleration of the rotation an overshoot angle can be set. In

this case, the rotation starts at -10 degrees for example, and then acquisition starts when the rotational

position crosses the starting angle (typically 0 degrees). A special command was therefore implemented

which is included in the script: [scanner, wait until position >=, arg]. One possible issue with this type of

scan is that, when using frame grabber based detectors (like many flat panels detectors), there can be

occasional buffer refreshes during which no images are recorded, resulting in missing data at certain

angles. Other issues can be harddisk transfer delays or temporary instabilities in the tube output. UGCT

therefore adjusted its iterative reconstruction algorithm in Octopus to allow reconstruction of datasets

with non-uniform angular sampling. This requires the angular position to be recorded with each

projection so that it can be read during the reconstruction.

For scanners where a vertical sample axis is installed a helical acquisition script was implemented. Due

to the large cone angle the standard CT scan exhibits strong so called ‘cone beam artefacts’. This is a

common problem in cone beam CT where the information of different slices is mixed in the vertical

direction [9]. This is caused by the incomplete sampling of the Fourier space representation of the

sample and especially critical near the top and bottom of the scanned region. Helical scanning requires

an additional vertical movement or pitch with each rotational increment along a vertical axis, or more

generally, along an axis parallel to the rotational axis. This acquisition sequence has the advantage that

the resulting reconstruction does not suffer from cone beam artefacts. Figure 3 shows a comparison

between a scan made with standard cone beam acquisition and with helical acquisition.

To allow radiography of objects that are too large for a given detector a tiled radiography script was

implemented to record a large object by translating the detector vertically and/or horizontally to record

a complete view. This of course requires the detector to be mounted on a vertical and/or horizontal axis.

It also requires pixel-perfect alignment of the detector with the axes, as the sub-images are recorded

without overlap. No registration procedures are used to fit the sub-images together, they are seamlessly

assembled in one bigger image. Subsequently a tiled tomography script was implemented to allow

tomography scanning of objects that are larger than the detector. This can be done in two ways. By

default, the detector is positioned and all projection angles are recorded and this is repeated for all

required detector positions (this can be more than two, and in both horizontal and/or vertical direction

if the axes are available). When sample or setup movement become an issue (typically in high resolution

applications) the detector is moved to the different positions for each angular position. This results in

more motor movements and is thus slower, but it ensures that the different parts of each image align

precisely. The scan shown in Figure 4 is the result of a standard tiled scan where the left half was

scanned first, and the right one after moving the detector.

To enable batch scanning, multiple scripts can be prepared, even different types of scans in one batch,

each with its own sample description, sample scanning position and data output path. This is typically

used to scan multiple samples stacked on top of each other without operator intervention between

scans. But it is also used for comparative studies where the same sample is for example first scanned

using a standard cone beam acquisition and immediately after using a helical acquisition. Finally, scripts

can be edited manually from the main program or loaded from text files that were saved earlier. When

running a script, the progress and an estimated duration are shown to the operator.

3.3 Other features :

Essential parameters in a CT scanner setup include the source-object distance, source-detector distance,

magnification, detector pixel pitch, voxel size in the scanned object etc. An automated calibration

procedure was implemented to relate the source position, detector plane and sample position in space

to the actual motor positions. A routine was written to image a strongly absorbing object at different

magnifications. Using image processing routines the projected size is extracted. Using a fitting procedure

this allows to derive the magnification, voxel size and other relevant parameters with great accuracy.

These geometry parameters are critical for a proper reconstruction and are logged with each scan in a

text file which is read by the reconstruction software Octopus. This way, minimal user input is required

to obtain a high quality reconstruction.

In high resolution CT, especially below 1 micrometer resolutions, typical sample sizes are below 1 mm.

To make optimal use of the detector area it is crucial that the sample is well centered on the rotational

axis. A piezo XY stage is therefore mounted on top of the rotational axis. The sample is placed on this XY

stage. To facilitate sample positioning an automated sample centering routine was implemented. The

automatic centering routine records images of the sample at 0°, 90°, 180° and 270° and adjusts the

position of the sample until it is perfectly centered on top of the rotational axis, thus allowing for

maximal magnification while keeping the desired volume of interest in the field of view at all time.

Finally, the scannerGUI supports different users with different user levels (supervisor, administrator,

operator). When logging on, the interface gives access to only those features that correspond to the

user level. The operator does not have access to advanced tube settings such as for example manual

adjustment of the centering coils. An administrator has access to all functions of the program except the

user management. Supervisors finally have access to all functionality, including user management.

4. Discussion:

4.1 Precautions:

When executing a series of commands, typically when running a scan script, the decoupling implies one

should take explicit care of the execution flow. Commands are not necessarily executed in the same

order they are broadcast, because of the inherent parallel nature of the sender-listener concept.

Therefore a timing protocol was implemented in the template mentioned before. When a command is

sent out, the receiver first acknowledges receiving the command (RCV). While executing feedback can

be sent out (FDB), and when execution has finished, the command is acknowledged (ACK) to the outside

world. This way one can choose to wait until a certain command is executed before proceeding to the

next, or only to wait for acknowledgment from the component that it received the command. By default

the wait flag is enabled. But there are cases where one does not want to wait until a command has

finished execution, for example in the case of a continuous acquisition where the rotation is started and

one proceeds with taking images as soon as the rotation motor confirmed it received the command to

start rotating. This provides the necessary control over the precise execution flow. At this point it should

be noted that different cameras behave differently in terms of timing. CCD cameras typically start

exposing when an image is requested, and return the image after the exposure time plus a certain

readout time, whereas flat panel detectors typically use frame grabbers that take images from the

sensor at a preset rate. When the software requests an image from a framegrabber, it either

immediately returns the last image it received from the sensor, or in some cases it returns the first

image that comes from the sensor after the request was made. In the latter case it can return anywhere

between almost immediately and the time between successive frames. In both cases this means that the

exposure could (partially) overlap with the execution of a previous command (typically rotation of the

sample). Frame-grabber based cameras were therefore all implemented in such a way that the first

frame can optionally be discarded in order to make sure that the frame that is returned to the

scannerGUI is one that did not start exposure before the command to take an image was issued.

All status information of a scanner is stored in four status variables (scanner status, tube status, camera

status and motors status). These are global variables, making them accessible by all components at any

time. However, one should be aware that using global variables in LabView holds some risks as a global

variable is not locked when accessed. This can lead to ill-defined behavior when reading and writing

from different parts of the code at the same time. Precautions were therefore taken to ensure the

correct execution flow. Only the scannerGUI is allowed to write into the globals. Components and add-

on routines can only read from them, or send a command to the scannerGUI to update their content.

When reading from the globals a small delay is first executed to ensure that the scannerGUI had time to

process any commands recently issued so that the globals are up to date when being read from.

4.2 Benefits:

Decoupling the abstract and physical operations allows for minimal duplication of coding efforts. For

example, the scripting engine only makes use of abstract commands. As a result, the same scripts can be

executed on completely different implementations of a CT scanner without any modification to the

software. The decoupling achieved by the sender-listener concept also ensures the scalability of the

programming. At this point more than 20 different components have been implemented. New

components can be added without any modification to the main program or any other add-on routine

that executes abstract operations. Deploying the software on a newly built scanner requires minimal

effort. Of course, the functionality of new hardware components first has to be implemented within the

template structure. Besides that, only an ini-file should be written listing the components that make up

this particular scanner. These components will all be launched at the startup of the main program and

the GUI will be configured accordingly, listing the available tubes, cameras and motors and their possible

settings.

In one particular scanner at UGCT, parts of the setup are mounted on a gantry, and other parts are

stationary. Therefore, the components making up the scanner are effectively controlled by two different

PC’s. The tube, detector and magnification axis are controlled by a PC which rotates along with them on

the gantry, whereas the gantry motor and vertical axis are controlled by a stationary PC outside of the

gantry. A bi-directional TCP/IP tunnel was therefore written which registers for all event categories. Any

command that is broadcast on one side is tunneled through a (wireless) TCP/IP connection to be

broadcasted on the other side too. This provides a completely transparent solution in which

components can run behind a TCP/IP connection. No modification to the main program nor to any code

of the components is required, thus preserving the scaleability and generic nature of the platform. This

can also be advantageous when testing third party components that come with their own control PC, or

to reduce processor load on the main machine.

For test and development purposes dummy components were implemented (a dummy tube, a dummy

camera and dummy motors) that behave exactly as their physical counterparts. This facilitates the off-

line development of new acquisition sequences or the adoption of add-on modules that interact with a

scanner such as routines to control peripheral equipment based on the status of the scanner.

For example, to record a pressure reading each time an image is taken simply requires programming a

structure that listens for camera events. When a ‘camera take_image’ command is acknowledged this

will be heard and the pressure reading can be taken. No knowledge of the physical implementation of

the scanner is needed, and as such the same piece of code can be used at different CT scanners.

Overhead can be reduced to the absolute minimum thanks to the inherent parallel nature of the

separate components running in parallel. The GUI is optimally responsive because updates are

processed as the feedback is returning from the separate components (no sequential polling loops are

required since the events behave as interrupts). The intrinsic overhead of the concept of sending

commands and receiving commands using user events is negligible. A typical scan script comprises a few

thousand commands. The total overhead was measured to be of the order of seconds. Even

components that run behind a TCP/IP connection send and receive commands with minimal overhead of

the order of milliseconds per command.

A final benefit of this approach is that the acquisition sequence(s) one wants to execute are not

embedded in the code of the main program but only determined by the text-based script that is

generated by the script editor. Other acquisition schemes besides the already extensive list of available

schemes can easily be implemented in the script generator, and the scripts can even be edited manually.

5. Applications:

Figure 3 shows a comparison of a standard cone beam CT acquisition versus a helical acquisition of a

soda can with liquid inside. These scans were made on UGCT’s nano-CT scanner using the microfocus

source at 100kV with a voxel size of (89 micrometer)^3 and a magnification of 2,85 times. A total of

1000 projections were recorded covering 360 degrees. The helical scan had a pitch of 0,1 mm. The

reconstruction was made with Octopus. The part shown in the images is the top part of the

reconstructed volume. Notice how the surface of the liquid is blurred near the centre, and how the

features at the top ‘radiate’ outward along the cone angle under which they were recorded. The image

on the right shows the result of a scan of the same area with a helical acquisition scheme [10]. The

surface of the liquid is much better defined, and no streaking is seen.

Figure 3 : Comparison of a cone beam tomography (left) and a helical tomography (right).

Figure 4 shows a result of a tiled tomography scan where the projection images are assembled from two

exposures taken at different horizontal positions to extend the field of view and thus scan objects wider

than the detector area. In this particular case a 30 cm large cast of the blood vessels in a liver was

scanned using a 20cm wide Varian flat panel detector. Because it is a large sample and thus a low

resolution scan the left half was first acquired, then the sample was moved once, and subsequently the

right half was acquired. The images were stitched without any registration procedure. For high

resolution scans where one may expect long term sample shift due to spot shift or thermal expansion of

the setup, there is also a scan mode where the detector is shifted for each projection angle. This ensures

that the two parts of each projections align accurately but takes longer due to the many detector

movements.

Figure 4 : Example of a result of a tiled tomography scan of a 30 cm large liver scanned with a 20cm wide detector.

6. Conclusions:

The current software platform provides all the functionality needed for operating a CT scanner for

research purposes. Thanks to the generic implementation, the software can be deployed with minimal

effort on any CT scanner, regardless of its actual physical implementation. Future developments will

mainly focus on implementing other acquisition schemes, including dual energy approaches. Add-on

functionality will continue to be implemented to allow interaction with peripheral equipment such as

pressure stages, climate control chambers, DAQ boards etc.

A separate tool is currently used to predict the recorded spectrum using Monte Carlo simulated spectra

for the available tubes together with the spectral sensitivity of the chosen detector to estimate the

transmission through a sample or to decide which is the most appropriate filter to be used to scan a

certain sample. This will be integrated in the scannerGUI and take the active settings as input.

Finally, the Octopus SDK (software development kit) will be used to integrate reconstruction

functionality into the scanning environment, so that fast preview reconstructions can be made by the

operator in order to quickly assess samples before executing a detailed scan.

Figure captions:

Figure 1 : Schematic representation of the programming concept.

Figure 2 : The main user interface.

Figure 3 : Comparison of a cone beam tomography (left) and a helical tomography (right) of a soda can.

Figure 4 : Example of a result of a tiled tomography scan of a 30 cm large liver scanned with a 20cm wide

detector.

References:

[1] Kak A.C. and Slaney M; Principles of Computerized Tomographic Imaging, Society of Industrial and

Applied Mathematics, 2001.

 [2] Vlassenbroeck J, Masschaele BC, Dierick M, et al.; Recent developments in the field of X-ray nano-

and micro-CT at the Centre for X-ray Tomography of the Ghent University; Microscopy And

Microanalysis, 13, 184-185, 2007.

[3] Vlassenbroeck J, Dierick M, Masschaele B, et al.; Software tools for quantification of X-ray

microtomography, Nuclear Instruments & Methods In Physics Research Section A-Accelerators

Spectrometers Detectors And Associated Equipment, 580, Issue: 1, 442-445, 2007

[4] Ionita, Ciprian N; Cone-beam micro-CT system based on LabVIEW software, Journal of digital imaging

21 (3), 296-305, 2008

[5] Harrison H. Barrett et al; Compact CT/SPECT Small-Animal Imaging System, Nuclear Inst. and

Methods in Physics Research, A, 584 (1), 135-148, 2008

[6] G Cao et al, A dynamic micro-CT scanner based on a carbon nanotube field emission x-ray source,

Physics in Medicine and Biology, 54 (8), 2323-2340, 2009

[7] C T Badea et al, In vivo small-animal imaging using micro-CT and digital subtraction

angiography,Physics in Medicine and Biology, 53 (19), R319-R350, 2008

[8] A LabVIEW driver for X-ray flat-panel detector, Journal of X-Ray Science and Technology, 16 (4), 261-

268, 2008

[9] Feldkamp L A, Davis L C and Kress J W; Practical cone-beam algorithm, J. Opt. Soc. Am. A, A6, 612–19,

1984

[10] Kudo H, Noo F and Defrise M; Cone-beam filtered-backprojection algorithm for truncated helical

data, Phys. Med. Biol., 43, 2885–909, 1998

Figure 1 : Schematic representation of the programming concept.

Figure 2 : The main user interface.

Figure 3 : Comparison of a cone beam tomography (left) and a helical tomography (right) of a soda can.

Figure 4 : Example of a tiled tomography scan of a 30 cm large liver cast scanned with a 20cm wide detector.

