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Abstract

We discuss how semidefinite programming can be used to determine the second-order density

matrix directly through a variational optimization. We show how the problem of characterizing

a physical or N -representable density matrix leads to matrix-positivity constraints on the density

matrix. We then formulate this in a standard semidefinite programming form, after which two

interior point methods are discussed to solve the SDP. As an example we show the results of an

application of the method on the isoelectronic series of Beryllium.
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I. INTRODUCTION

The idea of a variational determination of the ground-state energy for a non-relativistic

many-body problem based on the second-order density matrix (2DM) has a long history [1–

3] and several highly appealing features. The energy of a system is a known linear functional

of the 2DM. N -particle wave functions never need to be manipulated since the energy is

minimized directly in terms of the 2DM. However, the minimization is constrained because

the variational search should be done exclusively with 2DMs that can be derived from an

N -particle wave function (or an ensemble of N -particle wave functions). Such a 2DM is

called N -representable, and the complexity of the many-body problem is in fact shifted

to the characterization of this set of N -representable 2DMs. The complete (necessary and

sufficient) set of conditions for N -representability of a 2DM is not known in a constructive

form, but it is clear that the energy from a minimization constrained by a set of necessary

N -representability conditions is a strict lower bound to the exact energy. Therefore this

approach is highly complementary to the usual variational procedure based on a wave-

function ansatz, which produces upper bounds. In addition the method is in principle

exact, in the sense that as increasingly accurate set of N -representability conditions are

imposed in the minimization, the resulting energy converges to the exact one.

These are fascinating ideas for any true-blooded many-body theorist, as it comes close

to the “ultimate reduction” of an interacting many-particle problem to solving a sequence

of two-particle problems. In practice, however, implementing the method turns out to be

very difficult and it is only in the last decade that serious attempts have been undertaken

to turn the idea into a practical calculational scheme. The efforts by Mazziotti et al. [4–6]

and Nakata et al. [7, 8] are particularly notable. The main difficulty is of a technical na-

ture: stringent N -representability conditions require the positive semidefiniteness of matrix

functionals of the 2DM, which turns the variational problem into a so-called semidefinite

program (SDP). Even applying the simplest “two-index” conditions, a direct energy mini-

mization using Newton-Raphson methods requires a matrix operation scaling as M12 (where

M is the number of single-particle states) in each Newton-Raphson step. This can be cir-

cumvented in various ways, so that only matrix operations scaling as M6 are needed. While

these are nominally M6 methods, the number of iterations required to reach convergence

is very high and seems to rise with system size; in practice present implementations are
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probably about 100-1000 times slower than comparable methods. Still, one has the feeling

that there is potential to turn it into a genuine M6 method, and it is of interest to inves-

tigate the properties of SDP applied to various systems. In this proceeding we will first

discuss the problem of density matrix optimization and N -representability, and how it can

be formulated as an SDP. We will describe two different algorithms we used to solve the

problem and as an example we will discuss the results of application of the method to the

isoelectronic series of Be [9].

II. VARIATIONAL DENSITY MATRIX DETERMINATION

We use second quantized notation where a†α (aα) creates (annihilates) a fermion in a

single-particle (sp) state α). When there are only two-body interactions present in a physical

system, the Hamiltonian of that system can be written as:

Ĥ =
∑
αγ

tαγa
†
αaγ +

1

4

∑
αβγδ

Vαβ;γδa
†
αa
†
βaδaγ . (1)

The expectation value of the energy in an arbitrary N -particle state |ΨN〉 can be expressed

using only the second-order density matrix (2DM),

E(Γ) = Tr ΓH(2) =
1

4

∑
αβγδ

Γαβ;γδH
(2)
αβ;γδ , (2)

with the 2DM defined as:

Γαβ;γδ = 〈ΨN |a†αa
†
βaδaγ|Ψ

N〉 , (3)

and the reduced two-particle Hamiltonian,

H
(2)
αβ;γδ =

1

N − 1
(δαγtβδ − δαδtβγ − δβγtαδ + δβδtαγ) + Vαβ;γδ . (4)

Now the idea of variational density matrix optimization is to determine the ground-state

energy and other two-body properties by minimizing the energy (2) using the 2DM as a

variable. This is a much compacter object than the wavefunction because, no matter how

many particles are involved, you always stay in two-particle (tp) space. The problem is

that there is no straightforward way to know whether an arbitrary matrix in tp-space Γ is

derivable from a physical N -particle fermionic wavefunction as in Eq. (3). This is called
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the N -representability problem. Some obvious necessary N -representability constraints are

apparent from the definition (3):

Tr Γ =
N(N − 1)

2
, (5)

Γαβ;γδ = −Γβα;γδ = −Γαβ;δγ = Γβα;δγ , (6)

Γαβ;γδ = Γγδ;αβ , (7)

but it turns out that there are many more non-trivial constraints needed to ensure that a

2DM is physical.

A. N-representability

The necessary and sufficient conditions for N -representability are known. A tp-matrix is

N -representable if and only if, for every two-body Hamiltonian Ĥν , the following inequality

is satisfied:

Tr H(2)
ν Γ ≥ E0(Ĥν) . (8)

This is of course not a constraint that can be used in practice, as you need to know the

ground-state energy of every imaginable two-body Hamiltonian. Therefore one resorts to

certain classes of Hamiltonians for which a lower bound to the ground-state energy is known

[2, 3, 10]. A Hamiltonian class that is used as necessary constraint is

〈ΨN |B†B|ΨN〉 ≥ 0 , (9)

which leads to positivity conditions of linear matrix maps of the 2DM. There are three

possible forms of the operator B† if we want (9) to be expressable as a function of the 2DM,

which gives rise to three conditions on the density matrix:

a. B† =
∑

αβ pαβa
†
αa
†
β leads to the trivial I-condition:∑

αβγδ

pαβ〈ΨN |a†αa
†
βaδaγ|Ψ

N〉pγδ ≥ 0 → I(Γ) = Γ � 0 , (10)

which just demands that the 2DM remains positive semidefinite.

b. B† =
∑

αβ qαβaαaβ leads to the Q-condition:∑
αβγδ

qαβ〈ΨN |aαaβa†δa
†
γ|ΨN〉qγδ ≥ 0 → Q(Γ) � 0 , (11)

in which the Q can be written as a function of Γ using the anticommutation relations.
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c. B† =
∑

αβ gαβa
†
αaβ which leads to the G-condition:∑

αβγδ

gαβ〈ΨN |a†αaβa
†
δaγ|Ψ

N〉gγδ ≥ 0 → G(Γ) � 0 , (12)

Another Hamiltonian class for which a lower bound to the ground-state energy is known,

gives rise to the so-called three-index conditions:

〈ΨN |
{
B†, B

}
|ΨN〉 ≥ 0 . (13)

Two commonly used three-index conditions can be derived from Eq. (13):

d. B† =
∑

αβγ t
1
αβγa

†
αa
†
βa
†
γ leads to the T1-condition:∑

αβγδεζ

t1αβγ〈ΨN |a†αa
†
βa
†
γaζaεaδ + aαaβaγa

†
ζa
†
εa
†
δ|Ψ

N〉t1δεζ ≥ 0 → T1(Γ) � 0 . (14)

e. B† =
∑

αβγ t
2
αβγa

†
αa
†
βaγ leads to the T2-condition∑

αβγδεζ

t2αβγ〈ΨN |a†αa
†
βaγa

†
ζaεaδ + a†γaβaαa

†
δa
†
εaζ |ΨN〉t2δεζ ≥ 0 → T2(Γ) � 0 . (15)

In short, the optimization problem that we have to solve can be summerized as:

min
Γ

Tr ΓH(2) , (16)

under the condition that

Tr Γ =
N(N − 1)

2
, (17)

L(Γ) � 0 ∀L ∈ {I,Q,G, T1, T2} . (18)

III. REPRESENTATION AS AN SDP

The variational method described in the previous section can be formulated as a semidef-

inite program. A general 2DM, describing an N -particle system can be expanded in an

arbitrary orthogonal basis of traceless matrix space {f i} as

Γ =
N(N − 1)

M(M − 1)
1tp +

∑
i

γif
i , (19)

with M the dimension of single-particle (sp) space, and the unit matrix on tp space defined

as

(1tp)αβ;γδ = δαγδβδ − δαδδβγ . (20)
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The energy of the system can be written as a function of the γ’s as

Tr ΓH(2) =
N(N − 1)

M(M − 1)
Tr H(2) +

∑
i

γiTr H(2)f i . (21)

Because the necessary N -representability conditions can be written as linear homogeneous

matrix maps of Γ, we can also write them as a function of the γ’s:

L (Γ) =
N(N − 1)

M(M − 1)
L (1tp) +

∑
i

γiL
(
f i
)
� 0 . (22)

If we now define the block matrices:

u0 =
N(N − 1)

M(M − 1)

⊕
j

Lj (1tp) and ui =
⊕
j

Lj
(
f i
)
, (23)

then we can formulate the variational density matrix optimization problem as a standard

dual form of a semidefinite program [11]:

min
γ

γTh on condition that Z = u0 +
∑
i

γiu
i � 0 , (24)

in which hi = Tr H(2)f i. The primal problem corresponding to (24) optimizes the matrix-

variable X, the problem is defined as:

max
X
− Tr Xu0 on condition that Tr Xui = hi and X � 0 . (25)

The primal-dual gap η is defined as the difference between the primal and the dual cost

function for a certain primal-dual point (X,Z):

η = γTh+ Tr u0X =
∑
i

γiTr Xui + Tr Xu0 = Tr XZ ≥ 0 , (26)

because X and Z are positive semidefinite matrices. We can see that the smallest value

of η will be reached when both the primal and the dual problem are optimal. It can be

proved [11] that if the primal and the dual problem are both feasible, then at their solution

the primal-dual gap will vanish. This means that the primal-dual gap can be used as a

convergence criterion for the algorithm, what is more, at any point during the optimization,

the error on the current value is limited from above by the primal-dual gap.
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IV. ALGORITHMS USED TO SOLVE SDP

There is a vast literature available with different methods to solve SDP’s. It is generally

excepted that the interior point methods have the best computational performance. In the

course of our research we have implemented numerous algorithms, here we will discuss two

of them, a dual-only potential reduction method, and a primal-dual path following method.

A. Dual potential reduction method

This method will only solve the dual problem (24), so we have no access to the primal-

dual gap as a convergence criterion. The idea is to minimize the following potential function

over γ:

Φ(γ, t) = γTh− t ln detZ(γ) . (27)

Starting from a feasible Z, the logarithmic potential will make sure that Z remains positive

definite. The potential is minimized for decreasing scaling factor t, using the solution of

the previous t as a starting point. When t → 0 the solution will lie on the edge of the

feasible area, and this is exactly the solution of the original semidefinite program (24). For

every value of t the optimization problem of (27) will be solved using Newton method. This

means that we have to solve the following linear system of equations to find the step δγ until

convergence is reached:

t
∑
j

(
Tr uiZ−1ujZ−1

)
(δγ)j = tTrZ−1ui − hi . (28)

The dimension of the system of equations is M4, which means that if we would solve it by

direct inversion the method would scale as M12. We can construct an efficient matrix-vector

product and use the conjugate gradient method to solve this much faster. Unfortunately in

the limit of small t the number of iterations needed to converge increases because the system

becomes ill conditioned.

B. Primal-dual path following method

In this method we will solve the primal and the dual problem at the same time. To

explain how it works we first have to define the central path, which is the set of primal-dual
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points for which

XZ =
η

n
1sup , (29)

with n the total dimension of the X and Z matrices and 1sup the direct sum of the unity

matrices on the different constraint spaces:

1sup =
⊕
k

1k . (30)

In the path following algorithm we will try to follow the central path, reducing the primal-

dual gap along the way. Imagine that we have a primal-dual point (X,Z) on the central

path with primal-dual gap η. We want to answer the question: what is the primal-dual point

on the central path with primal-dual gap scaled down with a factor ν, rephrased, what are

the (∆X,∆Z) that solve:

(X + ∆X)(Z + ∆Z) =
νη

n
1sup . (31)

There are several ways to symmetrize these equations, using the method proposed by Nes-

terov and Todd (see [12]), we obtain two equivalent equations, which we call the primal and

the dual equation:

(P ) : ∆Z +D−1∆XD−1 =
νη

n
X−1 − Z , (32)

(D) : ∆X +D ∆Z D =
νη

n
Z−1 −X , (33)

with

D(X,Z) = Z−
1
2

(
Z

1
2XZ

1
2

) 1
2
Z−

1
2 , (34)

and under the condition that:

Tr ∆Xui = 0 and ∆Z =
∑
i

(δγ)iu
i . (35)

We can see that now, we will have to solve two systems of linear equations:∑
j

(
Tr D cj D ci

)
δzj = Tr

(νη
n
X−1 − Z

)
ci ,

∑
j

(
Tr D−1ujD−1ui

)
(δγ)j = Tr

(νη
n
Z−1 −X

)
ui ,

in which we define {ci} as the basis of the orthogonal complement of the space spanned by

the ui’s, and ∆Z =
∑

j δzjc
j. We will again be able to construct an efficient matrix-vector
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product and use the conjugate gradient method. First we solve the dual system, which has

the smallest dimension, and feed the solution into the primal system, which then needs very

few iterations to converge. Once again we run into the same problem that the solution of

the dual system needs more and more iterations as it gets closer to the solution, because of

the increasing condition number of the system.

V. APPLICATION TO BERYLLIUM ISOELECTRONIC SERIES

We have applied this method in the study of electronic structure calculations of diatomic

molecules [13–15] and atomic systems [9]. We will discuss in short the result of the method

applied to the isoelectronic series of Beryllium, using the P , Q and G conditions. This is

an interesting test case for the inclusion of static electron correlation, because there is a

near degeneracy between the 2s and 2p energy levels when the central charge becomes large,

thus creating a multireference ground state. Because of the amount of symmetry present in

atomic systems, the density matrix and the constraint matrices all become block diagonal

(see [9]), enabling us to use quite large basis sets (cc-pVDZ, cc-pVTZ and cc-pVQZ [16]).

In Fig. 1 the SDP correlation energy, defined as the difference between the Hartree-Fock

and the SDP energy, is shown as a function of central charge Z for the different basis sets,

compared to estimates for non-relativistic energies based on experimental data [17, 18], and

to the results of coupled cluster (CCSD) calculations. The experimental curve is linear in Z,

as a direct consequence of the near-degeneracy of the ground state [18]. The SDP correlation

energy does not follow this trend: it goes linear in the beginning, but becomes concave in

the cc-pVDZ and cc-pVTZ basis, or convex in the cc-pVQZ basis. This failure, however,

is not related to the SDP method as the trend is the same in the CCSD calculations. It

simply reflects the fact that the incipient degeneracy is not well described in these basis sets.

This can also be seen by calculating the hydrogen spectrum (corresponding to the Z →∞

situation, when the electron-electron interaction can be neglected) in the basis sets: the

2s and 2p energies are not degenerate, but differ by 5.8 mhartree (cc-pVDZ), 2.0 mhartree

(cc-pVTZ) and -2.3 mhartree (cc-pVQZ). We also performed calculations in the cc-pVDZ

basis after rescaling (r → αr) it in such a way that the hydrogenic 2s-2p degeneracy is exact.

In this basis the SDP correlation energy (also shown in Fig. 1) indeed has the correct linear

behavior. It is clear from the above discussion that SDP is indeed capable of providing
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FIG. 1. The SDP correlation energy (EHF −ESDP) for the Be series in all three basis sets, and in

a rescaled basis set that exhibits hydrogen-like behavior (degeneracy between the 2s and 2p level).

For comparison, the CCSD and experimental values are also shown.

accurate correlation energies in the presence of near degeneracies, when other many-body

techniques (like density functional theory or MP2) can fail.
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