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PREFACE 

 

1 

 

 

In horses, perioperative mortality rates are higher than in many other species. Reasons for 

this include their character, high body weight, and the frequent occurrence of severe 

ventilation-perfusion mismatching and cardiovascular depression during anaesthesia. 

Several of these factors cannot be altered substantially or are difficult to treat, but different 

approaches to treat cardiovascular depression are available. The first step is to confirm its 

presence. Clinical evaluation of the cardiovascular status and routine monitoring of heart 

rate and arterial blood pressure provide useful information, but do not allow assessment of 

cardiac output and vascular tone. An easily applicable and reliable method of measuring 

cardiac output would allow better evaluation of the cardiovascular status of each patient. 

Therefore, the first aim of this PhD thesis was to identify and evaluate possible alternative 

techniques to measure cardiac output in horses.   

   Once low cardiac output has been detected, inotropic drugs are often needed to 

normalize oxygen delivery in anaesthetized horses. The second major aim of this PhD 

thesis was to evaluate alternative drugs with inotropic properties that could be used in 

horses under clinical conditions. The human and equine literature was reviewed to identify 

an inotropic drug which had received little attention but appeared promising for use during 

equine anaesthesia. Subsequently, the effectiveness and safety of this drug were evaluated, 

both under experimental conditions and in clinical cases, alone or combined with other 

commonly used drugs.   
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Inadequate oxygen delivery in anaesthetized 

horses: consequences, aetiology, diagnosis 

and treatment 
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Cardiovascular depression as a cause of 

inadequate tissue oxygen supply during 

equine anaesthesia: diagnostic aids and 

principles of treatment 
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SUMMARY 

Anaesthesia-related mortality is higher in horses compared to other species and is often 

attributable to inadequate tissue oxygenation, resulting from the effects of anaesthetic 

drugs, recumbency and other predisposing factors. More specifically, arterial oxygen 

content, arterial blood pressure and cardiac output are often low during equine 

anaesthesia. Diagnostic techniques routinely available to the equine anaesthetist for 

detecting cardiovascular depression include subjective clinical assessment and 

measurement of arterial blood pressure. An easily applicable, continuous, reliable and 

cheap method for measuring cardiac output would allow a better estimation of oxygen 

delivery. Pulse contour analysis appears promising in this respect. Once cardiovascular 

depression has been diagnosed, an appropriate treatment should be initiated, including 

reduction of anaesthetic depth, fluid therapy and use of cardiovascular stimulant drugs. 
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Introduction 

The mortality rate associated with general anaesthesia and/or surgery in horses was assessed 

by different groups of researchers, but results from these studies are variable and usually 

difficult to compare. Although death should be a clear-cut outcome that can be assessed 

objectively, it is more difficult to determine whether death is related to or induced by 

anaesthesia, or rather the result of underlying diseases or surgical complications. Perioperative 

mortality was reported to be 0.8 % in horses undergoing different types of surgery (Tevik 

1983), 0.63 % in horses undergoing elective surgery, with only 0.08 % directly attributable to 

anaesthesia (Mee et al. 1998a), 0.68 % in horses undergoing orthopaedic surgery, radiography 

or minor soft tissue surgery (Young & Taylor 1993) and 31.4 % in horses undergoing 

emergency procedures (Mee et al. 1998b). More recently, Bidwell et al. (2007) reported a 

comparatively low mortality rate in horses undergoing surgery in a private referral practice, 

with a prevalence of fatalities directly related to anaesthesia of 0.12 %, which rose to 0.24 % 

with the inclusion of horses killed or dying within 7 days after general anaesthesia. The 

majority of these horses were healthy and underwent procedures lasting less than 1 hour, 

which may have contributed to the low mortality rates. Other reasons may include differences 

in the criteria used to define anaesthesia related death, the reasons for surgery, familiarity of 

the anaesthetists with the relatively fixed anaesthetic protocols used in this practice, etc.  

   Undoubtedly, the largest epidemiological study investigating equine peri-anaesthetic 

mortality was the “Confidential Enquiry into Perioperative Equine Fatalities” (CEPEF). In 

this report, Johnston et al. (2002) described the risk of death during anaesthesia or within 7 

days following anaesthesia in 41,824 horses, anaesthetized in 129 different clinics over a 

period of 6 years. At the end of the 7 day period, an overall death rate of 1.9 % was found. 

These horses were classified as „dead‟ because they died unexpectedly or were euthanized 

because of perioperative complications unrelated to pre-existing disease. Another 4.8 % of the 

horses died or were euthanized because of an inoperable lesion found at surgery or as a result 

of pre-existing disease, but these horses were classified as „put to sleep‟.  

      When cause of death was further analyzed in noncolic horses in the CEPEF study, it was 

demonstrated that 33 % of deaths were due to cardiac arrest (including postoperative 

cardiovascular collapse), 32 % of horses were euthanized because of fractures or myopathies 

observed during the recovery period, while the remaining 35 % of deaths were from a range 

of causes (Johnston et al. 2002). The study therefore confirmed the well accepted concept that 
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most causes of perianaesthetic death in horses are linked with cardiovascular depression 

and/or inadequate tissue oxygen supply. Indisputably, cardiac arrest is a form of 

cardiovascular depression and is often caused by inadequate myocardial oxygen supply. Also, 

the association between hypotension during anaesthesia and postoperative myopathy has been 

well established in horses (Grandy et al. 1987, Serteyn 1988, Lindsay et al. 1989, Richey et al. 

1990). Even in the muscles of healthy anaesthetized horses, an anaerobic metabolic response 

has been demonstrated using the microdialysis technique (Edner et al. 2005). Although 

myopathies are not necessarily lethal, the prognosis if often very poor when larger muscle 

groups are involved or when a more generalized myopathy occurs. The horses are unable to 

stand, leading to excitation and prolonged recumbency, thus causing further muscle damage. 

In some cases, this vicious circle necessitates euthanasia. Additionally, myoglobin from 

affected muscles can cause nephropathy and acute renal failure. Fractures may also occur 

during unsuccessful attempts to stand due to muscle weakness (Lindsay et al. 1989). It 

therefore seems likely that at least some of the fractures in the CEPEF study were associated 

with muscle dysfunction/myopathy caused by inadequate oxygen delivery during anaesthesia. 

Young & Taylor (1993) obtained comparable results in 1,314 ASA (American Society of 

Anaesthesiologists) class I and II horses. The main cause of death in that study was myopathy 

(4 out of 9 horses), while another 2 horses re-fractured a leg after osteosynthesis, most likely 

as a result of myopathy. In conclusion, it can be stated that perioperative death in horses is 

closely linked with inadequate tissue oxygen delivery.  

   The death rate for noncolic horses was calculated to be 0.9 %, while this number increased 

to 11.7 % in colic horses (Johnston et al. 2002). In most studies investigating the prognosis of 

equine colic cases, variables which assess cardiovascular status were found to be good 

prognostic guides. Examples include heart rate (HR), packed cell volume (PCV), capillary 

refill time, mucous membrane colour and/or blood pressure (Parry et al. 1983, Pascoe et al. 

1983, Puotunen-Reinert 1986, French et al. 2002, Stephen et al. 2004, Mair & Smith 2005, 

Proudman et al. 2005, Proudman et al. 2006). Once again, this confirms the importance of 

maintaining cardiovascular function during anaesthesia, especially in high risk patients such 

as the colic horse. Appropriate monitoring of anaesthetized horses should enable the clinician 

to detect cardiovascular depression in a timely fashion. However, before appropriate measures 

can be taken to prevent or treat inadequate tissue oxygen supply, a clear understanding of the 

underlying mechanisms is necessary to allow a logical approach to treatment.
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Cardiovascular depression as a cause of inadequate tissue oxygen supply 

Oxygen delivery (DO2) is calculated as the product of arterial oxygen content (CaO2) and 

cardiac output (   ) (Lumb 2005) (Table 1). However, oxygen supply to individual tissues is 

not only determined by total oxygen delivery, but also by the degree of perfusion of 

individual tissues. The latter depends on    , smooth muscle tone in precapillary arterioles 

(which also determines systemic vascular resistance) and transmural pressure in the blood 

vessels of a certain tissue, which is important for maintaining the patency of these vessels. 

Since transmural pressure is the difference between intravascular and extravascular pressures, 

it is highly influenced by blood pressure. Inadequate tissue oxygen supply can therefore result 

from decreases in arterial oxygen content,    , systemic vascular resistance (SVR) or blood 

Table 1: Formulas to calculate some valuable cardiovascular/respiratory parameters 

Variable Formula 

 

Oxygen delivery 

(DO2) 

(L/min) 

 

     
                       

    
 

 
 

Arterial oxygen 

content (CaO2) 

(mL/L) 

 

                                        
                    

 

Mixed venous oxygen 

content 

(C  O2) 

 

                                         
                     

 

End-capillary 

pulmonary oxygen 

content 

(CćO2) 

 

                                         
                     

(For practical reasons, PćO2 is usually assumed to be equal to 

PAO2) 
 

Alveolar oxygen 

partial pressure 

(PAO2)  

(kPa)
 

 

                                 
(where PaCO2 = arterial carbon dioxide tension and  

PIO2  = partial pressure of inspired oxygen  

= FIO2(PB(kPa) – 6.3 kPa)     

(with FIO2 = oxygen fraction in inspired dry air)  

 
 

Degree of venous 

admixture (       ) 
(%) 

 

 

   

   
 

          

           
 *100% 

 

 

Alveolar-to-arterial 

oxygen tension 

gradient  

(P(A-a)O2) (kPa) 

 

 

                              

 

Systemic Vascular 

Resistance (SVR) 

(dyne.sec/cm
5
) 

 

     
                             

          
 

(where MAP = mean arterial pressure and RAP = right atrial 

pressure) 
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pressure, especially in tissues with high extravascular pressures (e.g. muscles) or high oxygen 

consumption (e.g. brain). Due to a complicated interplay between all these factors (Fig. 1), a 

delicate balance must be maintained by the body and interference with the normal 

homeostatic mechanisms by administration of anaesthetic drugs can result in pronounced 

changes in oxygen supply to individual tissues. 

   Arterial oxygen content is the sum of the amount of oxygen bound to haemoglobin and the 

amount of oxygen dissolved in plasma (Table 1). The former is measured as the saturation of 

haemoglobin with oxygen in arterial blood (SaO2), the latter as the arterial partial pressure of 

oxygen (PaO2). In anaesthetized horses, respiratory function is often compromised due to 

mismatching between ventilation and perfusion of the lungs (Nyman & Hedenstierna 1989), 

leading to dead-space or „wasted‟ ventilation and right to left pulmonary shunts. These 

respiratory problems seem to occur due to the combined effects of recumbency and general 

anaesthesia, since in laterally recumbent conscious ponies, mean PaO2 and PaCO2 were 

reported to range between 85 and 97 mm Hg and between 39 and 43 mm Hg respectively. 

These values were not significantly different from those in standing ponies (Rugh et al. 1984). 

Pulmonary shunt fractions (       ) (Table 1) of 20 to 25 % were reported in healthy, 

spontaneously breathing, laterally recumbent, halothane anaesthetized horses (Hall et al. 

1968). In another study, the shunt fraction increased from a mean of 1 % in conscious horses 

to a mean of 34 % in dorsally recumbent anaesthetized horses (Nyman & Hedenstierna 1989). 

It was suggested that this was mainly due to atelectasis (Nyman et al. 1990). These shunt 

flows induce an increased alveolar-to-arterial oxygen tension gradient (P(A-a)O2) (Table 1), 

leading to a lower than expected value for PaO2. Although PaO2 is important because it 

represents unbound oxygen immediately available for diffusion into the tissues, the amount of 

oxygen bound to haemoglobin (SaO2) is quantitatively of greater importance as it forms a 

much larger part of the total CaO2. Fortunately, the sigmoid shape of the oxyhaemoglobin 

dissociation curve allows a large reduction in PaO2 before SaO2 starts to decline (Bohr et al. 

1904), thus avoiding large changes in CaO2 until respiratory function is severely 

compromised. 

   The second determinant of tissue oxygen supply is    , which is usually lower during 

anaesthesia than in conscious animals. Many anaesthetic drugs commonly used in horses, 

including acepromazine (Stepien et al. 1995), α2 agonists (Wagner et al. 1991), barbiturates 

(Patschke et al. 1975) and volatile agents (Steffey & Howland 1980), reduce    , either 
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Fig. 1: Schematic overview of the different factors which play a role in determining tissue 

oxygenation 

 For abbreviations: see general list of abbreviations 
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as volatile anaesthetics are an essential component of most clinical protocols used for 

prolonged anaesthetic procedures in horses, the mechanism of their cardiovascular depressant 

action deserves further attention.  

   Volatile anaesthetics depress myocardial contractility by influencing calcium homeostasis in 

the cardiac cell (Pagel et al. 1993, Wheeler et al. 1994), with a decrease in intracellular 

calcium transients (Bosnjak & Kampine 1986, Bosnjak et al. 1992). Most agents inhibit the 

influx of calcium through slow channels (Rusy and Komai 1987) and depress the maximal 

uptake of calcium by the sarcoplasmic reticulum (Casella et al. 1987). Halothane was also 

reported to evoke a net loss of calcium from the sarcoplasmic reticulum of rat heart cells 

(Wheeler et al. 1988). In addition, inhalants decrease the myofibrillar responsiveness to 

calcium and/or the calcium sensitivity of the contractile proteins (Housmans & Murat 1988, 

Bosnjak et al. 1992). Finally, small but significant decreases in serum ionized and total 

calcium concentrations were reported in horses anaesthetized with halothane and isoflurane 

(Gasthuys et al. 1985, Grubb et al. 1999).  

   Besides their effects on    , many anaesthetic drugs, including acepromazine (Steffey et al. 

1985), 2 agonists (McCashin & Gabel 1975), propofol (Oku et al. 2006), isoflurane (Raisis et 

al. 2000) and sevoflurane (Aida et al. 1996), also affect vascular smooth muscle tone in 

horses. The net result of constriction or dilation of vessels depends on the type and number of 

vessels involved and their localization. As an example, large veins normally contain about 60 

% of the blood volume, but their capacitance can be greatly altered by autonomic nervous 

system activity (Power & Kam 2001). Together with the effective circulating blood volume, 

venous capacitance determines the mean systemic filling pressure (Pmsf), which represents 

the theoretical pressure throughout the systemic blood vessels when blood flow would stop. 

The difference between Pmsf and RAP determines venous return to the right heart (Fig. 1). 

Venous vasodilation may reduce Pmsf and therefore venous return, although this effect is 

somewhat attenuated because of a simultaneous decrease in venous resistance (Fig. 1). The 

arteriolar smooth muscle tone determines the distribution of     towards the different organs, 

SVR (and thus arterial pressure) and intravascular pressure in the capillaries (Power & Kam 

2001). When all other factors remain constant, arteriolar vasodilation will increase the 

perfusion in a tissue, but if this occurs on a larger scale throughout the body, eg. due to the 

administration of larger doses of acepromazine (Steffey et al. 1985), systemic vascular 

resistance may decline markedly, leading to hypotension and possibly collapse of the vessels 
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perfusing tissues with high extravascular (intracompartmental) pressures, such as the muscles 

of recumbent horses (Lindsay et al. 1980).  

   Compared to other species, horses appear to be more susceptible not only to the respiratory, 

but also to the cardiovascular depressant effects of general anaesthesia (Eberly et al. 1968, 

Gillespie et al. 1969, Hall 1971). Combined with their high body weight and their propensity 

to develop ventilation-perfusion mismatch when anaesthetized and placed in a recumbent 

position, this means that tissue oxygenation is often inadequate in anaesthetized horses. 

Sufficient monitoring is therefore needed to detect signs of cardiopulmonary deterioration at 

an early stage and appropriate measures must be taken to avoid or treat any problems. 

 

Detecting cardiovascular depression during equine anaesthesia 

During equine anaesthesia, cardiovascular monitoring usually consists of clinical assessment 

(pulse rate/quality, mucous membrane colour, capillary refill time, skin turgor, etc.), 

electrocardiography, pulse oximetry and invasive measurement of arterial blood pressure. 

Since the latter requires placement of an arterial catheter, blood sampling for arterial blood 

gas analysis, which is useful to detect hypoxaemia, is also often performed. Although arterial 

pressure is important in the prevention of severe complications, measurement of     allows a 

better assessment of cardiovascular function and additional parameters such as stroke volume, 

oxygen delivery and systemic vascular resistance (provided right atrial pressure is known) can 

be calculated (Table 1). Numerous techniques have been described to measure    , including 

the Fick principle (Fick 1870), indicator dilution methods (Lagerlof et al. 1950), rebreathing 

of carbon dioxide (Klausen 1965), electromagnetic flowmetry (Brunsting et al. 1970), pulse 

contour analysis (Kouchoukos et al. 1970), Doppler echocardiography (Steingart et al. 1980) 

and thoracic electrical bioimpedance (Mattar et al. 1986). A continuous thermodilution 

method, using readings from a thermistor incorporated into the pulmonary catheter was 

developed, mainly for intensive care purposes in man (Luchette et al. 2000). However, the 

response time in sheep was reported to be rather slow (Siegel et al. 1996).  

   In horses, the indicator dilution techniques have been used most frequently (Muir et al. 

1976). When performed carefully, the dilution techniques are as accurate as an 

electromagnetic flowmeter placed around the aorta (Kouchoukos et al. 1970), but usually  
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Fig. 2:  Short description of cardiac output (   ) measurements using the lithium dilution and 

pulse contour analysis techniques 

require placement of a central venous and/or pulmonary artery catheter. In 1993, Linton et al. 

described the use of lithium chloride for a new indicator dilution technique to measure     

(Fig. 2). This technique was later commercialized under the tradename LiDCO
®
. It was 
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technique,      is calculated as the product of the velocity-time integral of blood flow through 

the aorta, the cross-sectional area of the aorta and heart rate. However, a long, expensive 

device is needed in horses, the technique does not provide continuous measurements and 

technical experience is required. Also, the user may have difficulty to obtain a good alignment 
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of the ultrasound beam, which should be parallel to the blood flow. This is even more difficult 

when performing transthoracic echocardiography. Finally, the technique is minimally invasive 

but does not allow calculation of certain parameters derived from    , such as SVR, unless 

arterial and central venous pressures are simultaneously monitored. 

   Cardiac output is rarely measured in horses anaesthetized for clinical purposes because no 

„ideal‟ measurement technique is available, i.e. one that is accurate, continuous, easy to 

perform and minimally invasive. However, the estimation of     based on analysis of the 

arterial pressure wave seems to fulfil most of these criteria, as it allows continuous, beat-to-

beat assessment of     and only requires the insertion of an arterial catheter. Based on a 

mathematical model (Kouchoukos et al. 1970), these techniques allow calculation of changes 

in stroke volume or     from the arterial pressure wave, but require calibration in each patient 

using an absolute method, such as thermodilution or lithium dilution (Jansen et al. 1990). The 

accuracy of the original formulas was rather disappointing compared to other methods of 

measuring     in man, dogs and pigs (Alderman et al. 1972, Starmer et al. 1973, Verdouw et 

al. 1975, Wesseling et al. 1976). Later on, a more complicated, nonlinear, time-varying three-

element model was developed, the “Modelflow” method, which was found to be more 

accurate (Wesseling et al. 1993). This formula was the basis for the commercial PiCCO
®

 

system, which needs an initial calibration using the thermodilution technique (Gödje et al. 

2002).  

   The PulseCO
®

 software (Fig. 2) uses yet another formula to calculate     during every heart 

beat from the beat duration, ejection duration, mean arterial pressure and the modulus and 

phase of the first harmonic of the arterial waveform. It is usually calibrated by the lithium 

dilution technique, which offers the advantage that no pulmonary catheterisation is needed 

and that the two techniques can be conveniently combined into one monitor, the LiDCO-

Plus
®
. Another advantage is that PulseCO

®
 incorporates a model of pressure transfer from the 

aorta to the radial artery, whereby wave reflections are taken into account, which should make 

the technique more accurate (Linton & Linton 2001). Compared to thermodilution and 

LiDCO
®
 in man, PulseCO

®
 reliably tracked changes in     for at least 8 hours after cardiac 

operations (Hamilton et al. 2002). Because the PulseCO
®
 algorithm was developed for use in 

humans, the reliability in animals remains uncertain. If the technique proved to be reliable in 

horses, it would be an invaluable technique for     measurement in this species, where 

assessment of cardiovascular function is of fundamental importance to improve survival rate. 
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Principles of treatment 

To reduce the complication rate in equine anaesthesia, some preventive measures should be 

taken in all anaesthetized horses, including preoperative preparation of the horse (with 

correction of any abnormalities when possible, e.g. hypovolaemia), use of sufficient padding, 

careful positioning of the horse (to avoid myopathies), availability of equipment for artificial 

ventilation, reduction of anaesthesia duration if possible, etc. The anaesthetic protocol also 

has an important role, e.g. it has been reported that less muscular injury results from 

hypoxaemia during isoflurane compared to halothane anaesthesia (Whitehair et al. 1996). 

Although such measures are of fundamental importance to reduce the incidence and severity 

of problems resulting from anaesthesia-related cardiovascular depression, cardiovascular 

function per se must also be restored whenever it deteriorates during anaesthesia. Three 

general principles are the fundaments of the prevention and treatment of cardiovascular 

depression in any species: reduction of anaesthetic depth (if possible), high-volume fluid 

therapy and use of drugs which stimulate the cardiovascular system. In daily practice, the aim 

is usually to maintain mean arterial pressure above 70 mm Hg in anaesthetized horses to 

reduce the incidence or severity of myopathy (Young 1993, Duke et al. 2006), since 

intracompartmental pressure in the dependent muscles of adult horses, on an adequately 

padded surface, reaches values of 30-40 mm Hg (White & Suarez 1986), while vascular 

transmural pressure needs to be greater than 30 mm Hg for adequate microcirculation (Young 

1993). However, as stated above, not only maintaining blood pressure but additionally 

measuring and optimizing cardiac output would be desirable.  

   Volatile anaesthetics have only poor analgesic properties (Tomi et al. 1993, Petersen-Felix 

et al. 1995) and, depending on the circumstances, may even be anti-analgesic (Zhang et al. 

2000). Consequently, reducing anaesthetic depth in response to cardiovascular depression is 

usually not possible when only an inhalant is used for maintenance of anaesthesia during 

painful surgical procedures. However, as a preventive measure, the use of locoregional 

anaesthetic/analgesic techniques (Tobias 1996, Tobias et al. 1996, Doherty et al. 1997, 

Morley et al. 2002, Haga et al. 2006) and/or systemically administered anaesthetics/analgesics 

(Brandl & Taeger 1991, Muir & Sams 1992, Doherty & Frazier 1998, Muir et al. 2003) can 

reduce the need for volatile anaesthetics by providing additional analgesia, hypnosis and/or 

muscle relaxation, the 3 cornerstones of anaesthesia. Similarly, intratesticular, intrafunicular 

and subcutaneous administration of lidocaine reduced the need for additional doses of 
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ketamine and romifidine during total intravenous anaesthesia for field castration in horses 

(Portier et al. 2009). Combining anaesthetic drugs may result in less pronounced side effects, 

not only when dose requirements are reduced, but also when the anaesthetic agents have 

opposing effects on the cardiovascular system. As an example, the cardiovascular depressant 

effects of inhalants (Steffey & Howland 1980) might be partially offset by the administration 

of a constant rate infusion of ketamine (Muir & Sams 1992), which usually increases heart 

rate and arterial blood pressure by increasing sympathetic efferent activity (Wong & Jenkins 

1974). It is therefore clear that, with respect to cardiovascular function, balanced anaesthetic 

techniques have many advantages over the use of a single agent for maintenance of 

anaesthesia. 

   In humans and small animals, high-volume fluid therapy can be an effective means of 

increasing circulating volume and cardiovascular performance. In horses and other large 

animals, this is less readily achieved because very large volumes need to be infused, 

especially when isotonic crystalloids are used. Indeed, 75 to 85 % of the administered volume 

moves to the interstitial space within the first hour after intravenous administration (Griffel & 

Kaufman 1992). In shock cases, the recommended administration rates of isotonic crystalloids 

in dogs and cats are respectively situated around 90 and 55 mL/kg within 10 to 15 min (Day 

2000). In equine practice, even when using multiple, large-gauge, short catheters and 

pressurized infusion systems, such infusion rates are rarely, if ever, reached. Due to their 

larger molecular size, colloid solutions are better retained within the vasculature and are 

therefore more effective at quickly restoring plasma volume, because smaller volumes result 

in greater plasma volume expansion compared with crystalloids (Shoemaker et al. 1981). A 

cheaper alternative is the use of hypertonic saline (Danowski et al. 1946), which first causes a 

shift of water into the plasma from red blood cells and endothelium and then from the 

interstitium and tissue cells (Mazzoni et al. 1988). Although the increase in blood volume is 

transitory, it occurs in only a fraction of the time needed with iso-osmotic fluids at the same 

infusion rate. Furthermore, capillary hydraulic resistance may be reduced and tissue perfusion 

improved since hypertonic saline causes haemodilution and endothelial cell shrinkage, 

(Mazzoni et al. 1988). Use of hypertonic saline in horses or ponies has been reported by 

several authors (Bertone et al. 1990, Dyson & Pascoe 1990, Schmall et al. 1990, Gasthuys et 

al. 1992). 

   Despite the use of balanced anaesthetic protocols and fluid administration, cardiovascular 

stimulant drugs are often needed in anaesthetized horses. Among the drugs most often used in
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 anaesthetized horses are the sympathomimetic agents dobutamine, dopamine, ephedrine and 

noradrenaline, but many other drugs exist which exert a stimulating effect on the 

cardiovascular system. The following part of this chapter presents a general overview of the 

different classes of available drugs, with specific attention to the effects that have been 

reported in horses.  

Conclusions 

Horses are prone to develop inadequate tissue oxygen supply during anaesthesia, a factor 

which contributes to the high mortality related with anaesthesia in this species. To optimize 

oxygen delivery, cardiovascular depression needs to be diagnosed and treated. No ideal 

method to measure cardiac output in anaesthetized horses under clinical circumstances is 

available, but the pulse contour analysis (PulseCO
®
) technique appears promising. When 

cardiac output is found to be low, reduction of anaesthetic depth and high volume fluid 

therapy are useful measures, but pharmacological support of the cardiovascular system is still 

often needed in horses.     
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SUMMARY 

Cardiovascular stimulant drugs include antimuscarinics, inotropic drugs and 

vasopressors. Antimuscarinic drugs increase heart rate and, for many reasons, are not 

suitable to augment cardiac output (   ) unless it is decreased by bradycardia which is 

not related to hypertension. Inotropic drugs include digitalis glycosides, β-

sympathomimetics, calcium salts, calcium sensitizers and phosphodiesterase III 

inhibitors. Although the mechanism of action differs between these agents, most 

inotropes increase the availability of calcium to the contractile apparatus of the cardiac 

muscle. For routine cardiovascular support during equine anaesthesia, digitalis 

glycosides seem to be of limited usefulness, because of their unfavourable 

pharmacokinetic properties and toxicity. Extensive research has been performed on the 

β-sympathomimetics, of which dobutamine appears to remain the most useful agent for 

use in anaesthetized horses. Calcium salts are not always effective, the effects depend on 

the cardiovascular situation of the individual horse. The use of calcium sensitizers has 

not been described in horses, but these drugs are quite expensive and long acting and 

are most likely best reserved for patients with specific cardiac diseases. Available data 

on the use of phosphodiesterase III inhibitors, i.e. inodilators, in horses is very limited. 

Vasopressors, such as vasopressin analogues, calcium salts and α-sympathomimetics are 

useful only when hypotension is caused by vasodilation, e.g. induced by drugs or 

endotoxins, while myocardial contractility and     are normal or even increased and 

vascular transmural pressure needs to be restored to maintain a normal tissue 

perfusion. 

 

 

 

 

 



Cardiovascular stimulant drugs 
 

28 

 

Introduction 

Cardiovascular depression frequently occurs and can induce detrimental effects in 

anaesthetized horses, especially because this species is also prone to hypoxaemia during 

anaesthesia. Despite the use of balanced anaesthetic techniques and intensive fluid therapy, 

additional pharmacological support is often needed to optimize cardiac output (   ) and blood 

pressure. This can be achieved by the use of chronotropic, inotropic or vasoactive drugs. The 

classification of these drugs into a single class is often not possible, e.g. noradrenaline exerts 

both positive inotropic (Garb 1950) and vasoconstrictive (Sutton et al. 1950) effects. 

Theoretically, vasodilators may also increase     by reducing afterload, but this approach will 

often induce hypotension with a reduction in tissue perfusion pressure.  

   The drugs most typically used to increase heart rate (HR) in equine clinical practice are the 

anticholinergics which competitively antagonize the muscarinic effects of acetylcholine 

without affecting the nicotinic receptors at the neuromuscular junction. These drugs are 

therefore more precisely referred to as antimuscarinic drugs (Calvey & Williams 2001b). 

Available inotropic drugs include digitalis glycosides, β-adrenergic agonists, calcium salts, 

calcium sensitizers and phosphodiesterase (PDE) inhibitors (Notterman 1991, Choudhury & 

Saxena 2003, Via et al. 2003). Except for vasopressin analogues and perhaps calcium salts, 

most vasopressors that are routinely used clinically are α-adrenergic agonists (Kee et al. 

2003). 

 

Antimuscarinics 

Both naturally occurring and synthetic antimuscarinic drugs affect organs innervated by 

postganglionic parasympathetic fibres, such as the heart, non-vascular smooth muscle, the 

eyes and glandular tissues (Calvey & Williams 2001b). The anticholinergic drugs most often 

used in equine practice are atropine, glycopyrrolate and hyoscine. Atropine (or hyoscyamine), 

probably the best known anticholinergic drug, is an alkaloid that can be extracted from the 

plant Atropa belladonna (deadly nightshade). It has been suggested that the juice of the 

belladonna berry, which contains atropine, was already used by Cleopatra for cosmetic 

purposes, i.e. to induce mydriasis (Emsley 2008). Atropine has been used mostly for 

premedication and to antagonize the muscarinic effects of anticholinesterase drugs, but also 

for other specific indications, e.g. to produce mydriasis in humans with glaucoma (Derby 
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1868) or as an antisialagogue (Kentala et al. 1990). Heart rate was reported to increase two- to 

threefold after administration of atropine (0.04 mg/kg intravenously) in awake horses (Hamlin 

et al. 1972). The drug has been widely used in horses to antagonize the bradycardic effects of 

α2 agonists (Alitalo et al. 1986, Gasthuys et al. 1990).  

   Glycopyrronium is another antimuscarinic drug often used by human and veterinary 

anaesthetists. Unlike atropine, it does not readily cross the blood brain barrier or the placenta 

because it is an ionized quaternary amine (Calvey & Williams 2001a). In humans, it is an 

effective antisialagogue with a long duration of action (approximately 6 hours) which does 

not tend to cause other antimuscarinic effects when used at moderate doses (e.g. 0.2 mg total 

dose). Indeed, clear effects on HR and pupillary size are only observed at higher doses 

(Calvey & Williams 2001a). In dogs (Richards et al. 1989) and horses (Singh et al. 1997, 

Dyson et al. 1999), the cardiac effects appear to be more comparable to those of atropine.  

   In humans, hyoscine (scopolamine) has a shorter duration of action, produces less 

tachycardia, is a more powerful antisialagogue and has less bronchodilator activity compared 

to atropine (Calvey & Williams 2001a). It is a useful drug in the prevention and treatment of 

motion sickness (Spinks et al. 2007) and has also been used in combination with opioids to 

produce „twilight sleep‟ (Gauss 1906). In equids, hyoscine butylbromide, a quaternary 

ammonium derivative of scopolamine, is often used for its spasmolytic properties (Roelvink 

et al. 1991, Boatwright et al. 1996), although the drug can increase HR in horses (Geimer et 

al. 1995, Marques et al. 1998, Borer & Clarke 2006). 

   As mentioned earlier, the main cardiovascular effect of antimuscarinics is positive 

chronotropism. Although HR is one of the determinants of    , attempting to increase     using 

chronotropic drugs is usually not recommended unless a clear bradycardia is present. When 

high heart rates are pharmacologically induced, myocardial oxygen consumption increases 

(Van Citters et al. 1957), while the proportion of time spent in diastole diminishes. Since 80 

% of the total coronary blood flow actually occurs during the diastolic phase (Power & Kam 

2001a), tachycardia may compromise myocardial oxygen delivery. This effect will be 

attenuated by a reflex metabolic coronary arteriolar dilatation (Power & Kam 2001a), but 

hypoperfusion and hypoxia of the myocardium can still occur, e.g. when tachycardia is 

severe, cardiac disease is present or drugs affecting coronary vascular resistance have been 

administered. In those cases, cardiac oxygen supply can become insufficient, resulting in 

decreased myocardial contractility (Jose & Stitt 1969, Nayler et al. 1971) or arrhythmias 
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(Senges et al. 1979, Hjalmarson 1980). Atropine has also been shown to increase the 

arrhythmogenicity of dobutamine in halothane anaesthetized horses (Light & Hellyer 1993). 

Finally, most antimuscarinic drugs have a negative effect on intestinal motility (Ducharme & 

Fubini 1983, Singh et al. 1996) and can induce signs of abdominal discomfort or colic in 

horses (Ducharme & Fubini 1983). These side effects might be avoided by using selective 

muscarinic type-2 antagonists such as methoctramine (Teixeira Neto et al. 2004). In equine 

anaesthesia, atropine has been widely used to counteract bradycardia and atrioventricular 

(AV) blocks after administration of α2 agonists (Brouwer et al. 1980, Gasthuys et al. 1990). 

Atropine was also shown to reduce the dose of dobutamine needed in order to maintain mean 

arterial pressure (MAP) above 70 mm Hg (Weil et al. 1997), but this strategy is somewhat 

controversial. An important part of the bradycardia induced by α2 agonists is attributable to a 

baroreceptor reflex in response to the initial hypertension associated with the administration 

of these drugs. Administering a positive chronotropic agent under such circumstances may be 

associated with even more pronounced increases in blood pressure. Cardiac work will also be 

higher since     increases in the presence of a high afterload, associated with α2 agonist – 

induced vasoconstriction. Finally, any chronotropic effects of other drugs, e.g. dobutamine, 

will be accentuated and may lead to pronounced tachycardia. For all these reasons, the use of 

antimuscarinic drugs for cardiovascular support is preferrably limited to horses with severe 

bradycardia unrelated to hypertension and which are not predisposed to develop 

gastrointestinal problems. 

 

Inotropes 

All positive inotropic drugs, such as digitalis glycosides, β-sympathomimetics, calcium salts, 

calcium sensitizers and phosphodiesterase inhibitors, increase myocardial contractility. 

Although there are differences in the exact mode of action of these drugs, the end result is 

virtually always (except for calcium sensitizers) an increased availability of calcium (Ca
2+

) to 

the contractile myocardial apparatus (Choudhury & Saxena 2003). Because of differences in 

additional positive or negative effects, preferred route of administration, efficacy and/or 

pharmacokinetic properties, the suitability of these products for use during anaesthesia differs 

from drug to drug. Also, their effects in horses are not always the same as in other species. 

From a pharmacokinetic and pharmacodynamic point of view, an ideal inotropic drug for use 

during anaesthesia needs a rapid onset and short duration of action with a reliable dose-effect 
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relationship and no tendency to accumulate, irrespective of the duration of administration and 

the health status of the patient. Indeed, these properties allow administration as a constant rate 

infusion (CRI) with the ability to rapidly alter plasma concentrations and associated 

cardiovascular effects. Ideally, the drug should also not induce side effects or overly increase 

myocardial oxygen consumption. 

   

Digitalis glycosides 

The digitalis glycosides form a group of more than 300 steroid-containing compounds that 

exert clear electrophysiologic effects on the heart. The most popular drugs are digoxin and 

digitoxin, which are used clinically, as well as ouabain, which is mostly used under laboratory 

conditions (Jortani & Valdes 1997). Cardiac glycosides increase the intracellular sodium 

concentration in the myocardial cells by inhibiting the Na
+
, K

+
-ATPase pump. This leads to a 

reduced extrusion of Ca
2+

 in exchange for Na
+
 and therefore an increased intracellular 

concentration of Ca
2+

, resulting in an increased force of contraction
 
(Calvey & Williams 

2001b). A second effect of the inhibition of Na
+
, K

+
-ATPase is a reduced inward K

+
 transport 

and therefore a less negative resting membrane potential. This leads to increased automaticity 

and possibly impaired conduction and excitability, explaining the toxic arrhythmogenic 

activities of digitalis (Adams 2001). At therapeutic concentrations, digoxin also increases the 

initial rate and the amount of Ca
2+

-induced Ca
2+

 release from cardiac sarcoplasmic reticulum 

(SR) vesicles, which may contribute directly to digoxin‟s inotropic effects (McGarry & 

Williams 1993).  

   Cardiac effects of digoxin include increased rate and peak force of contraction, as well as 

reduced time for generation of the peak force. Due to alterations in vagal and sympathetic 

function, digitalis therapy leads to reduced formation of impulses by the sinoatrial (SA) node 

and depression of conduction by the AV node, accompanied by an increase in the effective 

refractory period (Jortani & Valdes 1997). Its main use is in human and veterinary patients 

with congestive heart failure (CHF), where digitalization results in a broad scope of 

haemodynamic adjustments, including increased myocardial contractility and    , diuresis and 

diminution of oedema, control of cardiac arrhythmias and reductions in blood volume, venous 

pressures, heart size and HR. The improved myocardial contractility is the most important 

effect and the primary action on which the other effects depend (Adams 2001). Prophylactic 

preoperative digitalization has been used in humans to protect the heart against the negative 

inotropic effect of certain anaesthetic agents (Goldberg et al. 1961). Similarly, preanaesthetic 
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digitalization in dogs offered some protection against the negative inotropic and hypotensive 

effects of 1 and 2 % halothane (Goldberg et al. 1962) and high doses of thiopental (45 and 60 

mg/kg), although this could not be reproduced with smaller doses (15 and 30 mg/kg) 

(Goldberg et al. 1961). Prophylactic preoperative digitalization is not only useful for patients 

with overt heart failure, but has also been recommended in the late 1960‟s for patients with 

any history of cardiac failure (even when well compensated at the time of surgery), cardiac 

enlargement, ventricular hypertrophy, coronary artery disease or episodic atrial fibrillation 

(AF) or flutter, and for any patient undergoing cardiac surgery or for people over the age of 

50 years undergoing major pulmonary surgery (Deutsch & Dalen 1969). Later on, 

preoperative digitalization of patients with coronary artery disease (but without cardiac 

failure) has indeed been shown to prevent the impairment in cardiac function during recovery 

from anaesthesia (Pinaud et al. 1983). 

   Despite possible protective effects against the negative inotropic effects of anaesthetic 

drugs, cardiac glycosides are rarely used in patients without a history or clinical evidence of 

cardiovascular abnormalities. Possible reasons include problems related to the 

pharmacokinetic profile of digoxin, its propensity to induce toxic side effects and perhaps the 

apparently lower effectiveness in healthy patients. As mentioned earlier, an inotropic drug for 

perianaesthetic use is preferred to have a rapid onset but short duration of action, two 

properties which digitalis glycosides do not appear to have. Although the positive inotropic 

response to digoxin and digitoxin can be detected within 15-30 minutes after intravenous (IV) 

administration in dogs, the maximal pharmacological effect is typically not obtained until 60 

minutes after administration (Hamlin et al. 1971). This might make the drug sufficiently 

suitable for preoperative prophylactic use, but much less for treatment of cardiovascular 

depression occurring during anaesthesia. Digoxin disposition after IV injection in horses was 

reported to be tri-exponential. Both a rapid and slow distributive phase with half-lives of 15 

minutes and 4.1 hours respectively, followed by a biological disposition phase with a half-life 

of 23.1 hours have been calculated (Button et al. 1980). Based on these data, prolonged 

effects can be expected after administration of these drugs. It has been stated that „The basic 

procedure for digitalization usually involves the initial administration of a large amount of 

digitalis divided in several doses over a period of 24 – 48 hours to achieve the desired 

therapeutic effect quickly, but because of marked interpatient variation in the response to 

therapeutic and toxic actions of the glycosides, digitalization of each patient should be viewed 

as an individual and separate project involving some degree of trial and error during the 
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search for an efficacious dose without toxic side effects‟ (Adams 2001). From this description, 

it seems reasonable to say that, even if these drugs can be used during preoperative 

preparation of patients with cardiac disease facing elective surgery, they are not suitable for 

peroperative use in emergency cases, nor feasible for routine use before elective surgery. 

Furthermore, cardiac glycosides are typically administered orally and although IV 

administration is justified during acute decompensation, this increases the likelihood for toxic 

arrhythmias (Adams 2001). 

   The narrow safety margin between the therapeutic and toxic levels of digoxin is a major 

drawback. Toxicity is initially manifested in horses as signs of anorexia, colic, and diarrhoea, 

but cardiac arrhythmias are another common and potentially life-threatening result of digitalis 

intoxication (Sage 2002). Digoxin is capable of producing paroxysmal atrial tachycardia, 

atrial fibrillation and flutter, AV block and junctional rhythm with slow rate (Jortani & Valdes 

1997). Close monitoring of the clinical response and plasma digoxin concentration are needed 

in horses under digoxin treatment to avoid toxicity (Sage 2002), again rendering this drug less 

suitable for routine use during anaesthesia. Also, accurate measurement of digoxin 

concentrations has proven to be technically difficult and challenging (Jortani & Valdes 1997). 

Furthermore, hypokalaemia, -magnesaemia, and -calcaemia, can occur in anaesthetized 

patients and make the patient more sensitive to the toxic effects of digitalis glycosides. At the 

same time, digoxin also interacts with other drugs commonly used in the perioperative period, 

including phenylbutazone, quinidine, erythromycin, tetracyclines, omeprazole, etc. (Sage 

2002). Digoxin further accentuates the cardiotoxicity of local anaesthetics (Roitman et al. 

1993). Digitalis is not indicated in cases of circulatory shock because it may intensify tissue 

hypoxia by causing peripheral vasoconstriction in patients without congestive failure 

syndrome (Adams 2001). 

   Finally, digoxin was proven to be more effective in the diseased than in the normal heart, 

where     increases minimally and may even decrease slightly due to an increase in systemic 

vascular resistance (SVR), thus augmenting outflow impedance (Adams 2001). Although 

digitalis increases the contractility not only of the failing, but also of the normal heart (Adams 

2001), the degree to which cardiac glycosides augment contractility is inversely related to the 

baseline contractile state (Braunwald 1985). Despite these observations, it may be argued that, 

during anaesthesia, contractility is depressed and should therefore be higher with prior 

digitalization, even in healthy patients. However, there is clear evidence suggesting that the 

effects of digoxin are diminished by certain anaesthetic drugs. Halothane was shown to 
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increase the tolerance of the heart to digitalis, so digitalization may be less effective in 

patients anaesthetized with halothane, while the effects of an excessive dose of digitalis given 

during halothane anaesthesia may not become apparent until the patient awakens (Morrow 

1970). Also, preoperative digitalization did not attenuate cardiac and haemodynamic changes 

occurring after induction and during balanced anaesthesia with phenoperidine, thiopentone, 

suxamethonium, pancuronium and N2O/O2 in patients with ischaemic heart disease (Blanloeil 

et al. 1980).  

   In horses, digoxin can be used during treatment for CHF (Brumbaugh et al. 1982, 

Staudacher 1989) and AF (Reef et al. 1995, Gray 1999) and remains the most commonly used 

digitalis glycoside in the horse (Sage 2002). However, digitalis is best reserved for therapy of 

CHF and should not be used in attempts to treat cardiovascular depression during anaesthesia 

in healthy patients. To the authors‟ knowledge, reports in literature about perianaesthetic use 

of digoxin in equids are sparse, being limited to one experimental study about the combined 

use of digoxin and dopamine in ponies (Gasthuys et al. 1991b) and a case report about the use 

of digoxin during preoperative preparation of a horse with AF and reduced contractility 

(Schauvliege et al. 2005).  

 

Sympathomimetics 

When ß-adrenergic sympathomimetics bind to the β1-receptor, a stimulatory protein (Gs), 

which is a heterotrimer of α, β and γ subunits, is activated (Hall 1993) and undergoes a 

conformational change. This results in high-affinity binding of guanosine triphosphate (GTP) 

(Gilman 1984) and dissociation of the α subunit – GTP complex, which in turn stimulates 

adenylate cyclase. The latter enzyme converts adenosine triphosphate (ATP) to cyclic 

adenosine monophosphate (cAMP) (Power & Kam 2008). Cyclic AMP then binds to a protein 

kinase comprised of two regulatory and two catalytic subunits, causing a dissociation of the 

regulatory subunits from the catalytic subunits. This activated protein kinase phosphorylates 

specific substrate proteins in the cells, including sarcolemmal proteins, phospholamban and 

troponin-I (TnI) (Evans 1986).  

   Phosphorylation of sarcolemmal proteins results in increased Ca
2+ 

influx through slow 

channels in response to membrane depolarization (Evans 1986). More specifically, the 

probability of slow Ca
2+

 (L-type) channel opening and the mean open time of the channel are 

increased, an effect mediated by protein kinase A (Sperelakis et al. 1994). In addition to the 

slower, indirect, cAMP/protein kinase A pathway, a faster and more direct mechanism also 
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follows β receptor activation, which likely involves direct modulation of the L-type Ca
2+

 

channel activity by the α subunit of the Gs-protein (Sperelakis et al. 1994). Because Ca
2+

 flux 

across myocardial cell plasma membranes is facilitated (Osterrieder et al. 1982), intracellular 

Ca
2+

 levels increase, stimulating the release of more Ca
2+

 from the SR („Ca
2+

 induced Ca
2+

 

release‟) (Fabiato 1983). This results in an increase of the contractile forces (Vernon et al. 

1991). 

   Phosphorylation of phospholamban, a protein that regulates the Ca
2+

 pump of the SR, 

results in an increased velocity of Ca
2+

 reuptake by SR vesicles, an increased affinity of the 

transport protein for Ca
2+

 and an increased turnover of elementary steps of the ATPase 

reaction (Kranias & Solaro 1983). Consequently, Ca
2+

 transport by the cardiac SR is 

stimulated (Tada et al. 1975) and occurs at an increased rate (Davis et al. 1990, Luo et al. 

1994), thus augmenting calcium sequestration by the SR (Tada et al. 1983). Because more 

Ca
2+

 is available for release during the next action potential, the net result is a higher force 

and rate of contraction (Luo et al. 1994). In phospholamban-deficient mice, contractility was 

as high as in wild-type mice maximally stimulated by the β agonist isoproterenol, while 

isoproterenol administration in the knockout mice did not further increase contractility (Luo et 

al. 1994). It ha s therefore been suggested that increases in the Ca
2+

 sensitivity of the SR 

transport system, through phosphorylation of phospholamban, might even be the main 

mechanism by which β-adrenergic agonists mediate a contractile response. A second 

consequence of the rise in the Ca
2+

 transport rate by the SR is an increased rate of myocardial 

relaxation, i.e. a positive lusitropic effect (Luo et al. 1994, Li et al. 2000).  

   Protein kinase A in ventricular myocytes also phosphorylates TnI, which helps to explain 

the positive lusitropic effects of catecholamines (Kögler & Rüegg 1997). Phosphorylation of 

TnI leads to a decreased affinity of troponin C for Ca
2+

 (Kranias & Solaro 1983, Kögler & 

Rüegg 1997) and an increased rate of Ca
2+

 dissociation from the myofilaments, thus 

accelerating myocardial relaxation (Li et al. 2000).  

   Negative aspects of ß-adrenergic sympathomimetics are the increases in cardiac work and 

myocardial oxygen demand occurring after their administration (Notterman 1991), as well as 

sinus tachycardia, cardiac arrhythmias, muscular tremor and disturbances of organ perfusion 

caused by vasoconstriction (Swanson et al. 1985, Trim et al. 1985, Gasthuys et al. 1991c, Lee 

et al. 1998). The increase in HR seen after administration of β1-adrenergic agonists is related 

to acceleration of voltage-sensitive sarcolemmal currents (the so-called „voltage clock‟) and 
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Ca
2+ 

release from the SR (the „calcium clock‟) in cardiac pacemaker cells, such as the SA 

node (Eisner & Cerbai 2009, Joung et al. 2009). Individual differences between drugs do 

exist, not only in their pharmacokinetic properties but also in their selectivity for the different 

types of adrenergic receptors. Two classic examples of catecholamines are adrenaline and 

noradrenaline. However, dobutamine and dopamine are undoubtedly the most widely used 

agents in equine anaesthesia. A short overview of some β-sympathomimetics is presented in 

Table 1. 

Adrenaline 

Adrenaline or epinephrine is an endogenous catecholamine secreted into the bloodstream by 

the adrenal medulla during stress periods. It exerts powerful α and β1 and moderate β2 effects 

(Barnard & Linter 1993). At lower doses (0.04 – 0.1 µg/kg/min), the effects on β-

adrenoreceptors predominate and HR, contractility and conduction velocity are increased (β1 

effect), while SVR is lowered (β2 effect) or unchanged (Morrill 2000, Calvey & Williams 

2001b). Consequently, systolic arterial pressure (SAP) increases, while diastolic arterial 

pressure (DAP) may even decrease due to vasodilation (Sanders et al. 1991, Calvey & 

Williams 2001b). At higher doses, the α-effects become more dominant so both SVR and 

blood pressure increase (Barnard & Linter 1993, Morrill 2000). In halothane anaesthetized 

horses, IV administration of a bolus of adrenaline (3 µg/kg) resulted in a pronounced increase 

in blood pressure during approximately 8 minutes; HR initially increased markedly, but 

decreased when the pressor response became maximal (Lees & Tavernor 1970). The plasma 

half-life of adrenaline is very short (10-15 seconds) (Power & Kam 2001b), explaining the 

short duration of the effects. Consequently, adrenaline can be administered as a CRI, which 

has been described in halothane anaesthetized horses. Significant increases in blood pressure 

and HR were seen at rates of 0.25-1.2 µg/kg/min, but ventricular premature contractions 

occurred at the higher end of the dose range (Gaynor et al. 1992). 

   In human medicine, adrenaline is mainly indicated for treatment of anaphylaxis, pulseless 

electrical activity, asystole and ventricular fibrillation (Morrill 2000) and plays an important 

role during cardiopulmonary resuscitation (Wenzel et al. 2006). The drug can be useful in 

cases of ventricular fibrillation where fine fibrillation (high-frequency, low-amplitude waves) 

needs to be coarsened prior to direct current cardioversion (Calvey & Williams 2001b). 

Adrenaline is also indicated in patients irresponsive to dobutamine or dopamine and in 

patients with life threatening hypotension, because its maximal effects are greater than those 

of other β agonists (Lees & Tavernor 1970, Barnard & Linter 1993). 
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Table 1: Dose-dependent effects of frequently used β- sympathomimetic agents (continues).  

  

Abbreviations used: heart rate (HR), arterial blood pressure (ABP), systemic vascular resistance (SVR), oxygen (O2), systolic (SAP) and 

diastolic (DAP) arterial pressure, ventricular premature contraction (VPC), dopamine 1 and 2 receptor (DA1 and DA2 respectively), 

glomerular filtration rate (GFR), sodium (Na
+
), cardiac output (   ). 
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Table 1: Dose-dependent effects of frequently used β- sympathomimetic agents (continued).   

 

 

Abbreviations used: cardiac index (CI), mean arterial pressure (MAP), systemic vascular resistance (SVR), cardiac output (   ), arterial 

blood pressure (ABP), heart rate (HR), dopamine 1 and 2 receptor (DA1 and DA2 respectively).  
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Table 1: Dose-dependent effects of frequently used β- sympathomimetic agents (continued).  

 

 

Abbreviations used: systemic vascular resistance (SVR), cardiac index (CI), mean arterial pressure (MAP), stroke volume (SV), heart 

rate (HR), packed cell volume (PCV), arterial blood pressure (ABP), cardiac output (   ), atrioventricular (AV), atrial premature 

contraction (APC), diastolic arterial pressure (DAP), oxygen (O2).  
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   Adrenaline additionally produces many other effects throughout the body, including 

mydriasis, bronchodilation, lipolysis, glycogenolysis, increased blood glucose levels, 

sweating, etc. (Anderson & Aitken 1977, Morrill 2000). Traditionally, there has been concern 

about the association of adrenaline with tachycardia, vasoconstriction and myocardial 

ischaemia (Schechter et al. 1983). Adrenaline constricts coronary vessels due to its effects on 

α adrenoceptors and although this direct effect is overshadowed by the dilatory effect of 

metabolic changes induced by the increased work of the heart (Calvey & Williams 2001b), 

myocardial oxygen consumption rises due to increases in HR, contractility and SVR (Fawaz 

& Tutunji 1960). Myocardial oxygen supply may therefore become inadequate (Barnard & 

Linter 1993). 

   Another concern during treatment with adrenaline is its propensity to induce arrhythmias 

(Lenel et al. 1948), including premature ventricular depolarizations, ventricular tachycardia 

and atrial or ventricular fibrillation (Gaynor et al. 1992). Intravenous administration of 3 

µg/kg adrenaline produced ectopic beats of ventricular origin in 8 out of 13 conscious horses 

(Lees & Tavernor 1970). The arrhythmogenic activity of adrenaline is also influenced by the 

anaesthetic protocol. As an example, the risk for arrhythmias in response to adrenaline 

infusions in dogs was significantly higher with halothane compared to isoflurane or 

sevoflurane (Imamura & Ikeda 1987). Furthermore, halothane not only increased the 

incidence, but also the duration of ventricular arrhythmias occurring after IV adrenaline 

administration in horses (Lees & Tavernor 1970). In the latter study, 3 µg/kg of adrenaline 

caused ventricular ectopic beats in all horses and ventricular or nodal tachycardia in 4 of 11 

animals (Lees & Tavernor 1970). When hypercapnia occurs, this will further increase the risk 

of adrenaline-induced ventricular arrhythmias in halothane anaesthetized horses (Gaynor et al. 

1993). Beside the choice of the inhalant agent, drugs used during premedication may also 

influence the arrhythmogenicity of adrenaline. Xylazine was reported to reduce the dose of 

adrenaline required to induce fibrillation in anaesthetized dogs (Muir et al. 1975). However, 

more recent studies in dogs (Lemke et al. 1993a & 1993b) and horses (Gaynor et al. 1992) 

failed to show significant alterations in the arrhythmogenic dose of adrenaline after xylazine 

administration (Gaynor et al. 1992). On the other hand, premedication with acepromazine 

may protect against the occurrence of arrhythmias in response to adrenaline (Muir et al. 

1975). Consequently, low doses of acepromazine are often included in the premedication 

protocols of horses for elective surgical procedures. 
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Noradrenaline 

Although noradrenaline or norepinephrine is a β1 agonist which increases myocardial 

contractility (Garb 1950), it is a more potent α agonist and is therefore best seen as a 

vasopressor with some inotropic properties. For this reason, the drug will be discussed later. 

 

Dopamine 

Dopamine is a naturally occurring sympathetic amine and the precursor of noradrenaline. It is 

formed by metabolization of L-dihydroxyphenylalanine (= L-dopa) by dopa decarboxylase 

and is metabolized by dopamine β hydroxylase to noradrenaline (Blaschko 1939). Dopamine 

exerts a complex, dose-dependent action on the cardiovascular system since it stimulates a 

variety of receptors, including presynaptic dopamine 2 (DA2) and α2 receptors and 

postsynaptic dopamine 1 (DA1), α1, α2 and β1 receptors (Murphy & Elliott 1990). Dopamine 

achieves part of its effects by causing the release and preventing the re-uptake of 

noradrenaline (Via et al. 2003). Because of the effects at postsynaptic β1 receptors, mediated 

by inducing noradrenaline release, dopamine has positive inotropic and chronotropic effects. 

Postsynaptic DA1 receptors on vascular smooth muscle cells mediate vascular relaxation and 

promote sodium excretion by the kidneys.  Dopamine causes vasoconstriction by the effects 

exerted at postsynaptic α1 and α2 receptors. Presynaptic α2 and DA2 receptors both inhibit 

noradrenaline release (Murphy & Elliott 1990). The half-life of dopamine is 2 minutes with a 

time to onset of action of 5 minutes and duration of effect of approximately 10 minutes 

(Morrill 2000). 

   In humans, low doses (< 2-4 µg/kg/min) predominantly activate DA1 and DA2 receptors, 

increasing renal plasma flow, glomerular filtration rate and sodium excretion (Murphy & 

Elliott 1990, Barnard & Linter 1993, Morrill 2000). Such „renal‟ doses can be used to increase 

renal blood flow, e.g. during heart failure or acute tubular necrosis (Morrill 2000). However, 

this is no longer recommended as a routine strategy in human medicine. Although low-dose 

dopamine indeed augmented renal blood flow, glomerular filtration rate and natriuresis in 

different experimental models of ischaemic and nephrotoxic acute renal failure (ARF), most 

clinical studies in humans have failed to demonstrate convincingly that it prevents ARF in 

high risk patients, or improves renal function or outcome in patients with established ARF 

(Denton et al. 1996, Friedrich et al. 2005). Intermediate doses (3-10 µg/kg/min) 

predominantly stimulate β1 receptors, resulting in an increased HR and     (Murphy & Elliott 

1990, Morrill 2000, Via et al. 2003). The inotropic effect is usually more pronounced than the 
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chronotropic effect, but tachycardia can sometimes be a problem, particularly in 

underhydrated patients (Calvey & Williams 2001b). These moderate doses are used primarily 

to increase contractility in CHF (Morrill 2000). Higher doses (> 10 µg/kg/min) mainly 

stimulate α receptors, leading to vasoconstriction (Murphy & Elliott 1990, Morrill 2000), 

while arrhythmias become more likely (Calvey & Williams 2001b). Dopamine increases 

automaticity in Purkinje fibres, affects action potential duration and has been reported to 

induce sinus tachycardia and ventricular ectopic activity.  However, the latter is usually 

asymptomatic and dopamine-associated ventricular tachycardia is relatively rare in humans 

(Tisdale et al. 1995). High dosages are mainly used to increase blood pressure in cases of 

hypotension or shock with evidence of hypoperfusion (e.g. mental status changes, oliguria, 

poor tissue perfusion). Dopamine administration is usually initiated when SAP is below 90 

mm Hg (Morrill 2000). It should be remembered that the mentioned dose ranges are 

approximate and doses at which the different receptors are activated can vary considerably, 

depending largely on the patient‟s clinical status and particularly on the pre-existing level of 

sympathetic activity (Murphy & Elliott 1990). 

   Numerous authors reported on the cardiovascular effects of dopamine in conscious or 

anaesthetized ponies or horses. In conscious horses, dopamine at 1 and 2.5 µg/kg/min did not 

affect HR, carotid arterial pressure (Clark & Moore 1989a, Trim et al. 1989), lateral caecal 

arterial blood flow (Clark & Moore 1989a) or fractional excretion of sodium and potassium, 

although a rate of 2.5 µg/kg/min did increase renal blood flow (Trim et al. 1989). In the study 

by Clark & Moore (1989a), significant increases in lateral caecal arterial blood flow and HR 

and decreases in carotid arterial pressure were found when dopamine was administered at a 

rate of 5 µg/kg/min. In contrast, Trim et al. (1989) did not observe any changes in HR, blood 

pressure or fractional excretion of sodium and potassium with a similar dose, although 

increases in renal blood flow and urine volume, decreases in urine osmolality and 

dysrhythmias occurred. 

   In halothane anaesthetized ponies, dopamine CRI‟s at doses of 2.5 and 5.0 µg/kg/min failed 

to induce any significant cardiovascular changes (Gasthuys et al. 1991c, Lee et al. 1998). 

Higher doses (10 – 20 µg/kg/min) decreased SVR and increased CI, MAP and intramuscular 

blood flow in the dependent muscles of halothane anaesthetized ponies, but the highest dose 

(20 µg/kg/min) was associated with tachyarrhythmias and muscular tremor (Lee et al. 1998). 

After pretreatment with digoxin, dopamine did not produce significant changes in 

cardiovascular function at doses of 1.25 and 2.5 µg/kg/min, but administration of 5 µg/kg/min 
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caused increases in blood pressure and    , while SVR tended to decrease and HR and total 

pulmonary resistance remained constant (Gasthuys et al. 1991b). 

   In halothane anaesthetized healthy horses, a dopamine CRI at rates between 0.5 and 3 

µg/kg/min also failed to produce any cardiovascular effects (Swanson et al. 1985, Trim et al. 

1985), except for an increase in     and a decrease in SVR at a dose of 2.5 µg/kg/min (Trim et 

al. 1985), which was not detected at 3 µg/kg/min (Swanson et al. 1985). Using a CRI rate of 4 

µg/kg/min, Young et al. (1998a) reported significant decreases in mean aortic pressure and 

increases in    , together with a small but significant increase in HR. Using a CRI of 5 

µg/kg/min, dopamine had no effect on blood pressure, most likely because it reduced SVR 

while increasing     by augmenting the rate of increase in left ventricular pressure (dP/dt) 

(Swanson et al. 1985). At 10 µg/kg/min, increases in blood pressure were recorded, mainly 

because of an increase in     and dP/dt, while SVR returned to baseline values. Heart rate was 

not affected by either of these doses. Robertson et al. (1996), using the same administration 

rates, reported variable effects on HR, with either no change, an increase or a decrease in 

individual horses. In the study of Swanson et al. (1985), 2
nd

 degree AV blocks, in some cases 

accompanied by increases in HR, were noted in 1 out of 9 horses receiving 5 µg/kg/min and 

in 3 of 9 horses receiving 10 µg/kg/min. Other authors have also reported arrhythmias in 

halothane anaesthetized horses receiving dopamine, including supraventricular premature 

contractions (Trim et al. 1985, Robertson et al. 1996) and episodes of tachycardia at 5 

µg/kg/min (Trim et al. 1985), as well as sino-atrial block, atrial premature contractions, 

ventricular premature contractions, ventricular tachycardia and ventricular fibrillation with 

death in 1 horse at 10 µg/kg/min (Robertson et al. 1996). 

   Based on the available data from literature, it can be concluded that the situation in equids is 

comparable to human medicine, i.e. the cardiovascular effects of dopamine are dose-

dependent and results between various studies are not always consistent. Low dose rates (≤ 3 

µg/kg/min) do not produce clear changes, while higher doses can be used to increase     and 

perhaps also blood pressure. However, by increasing the dose, the risk of inducing 

arrhythmias becomes higher. As in human medicine, the response of each individual patient to 

dopamine may vary depending on the degree of sympathetic stimulation and the health status 

of the patient. After infusion with Escherichia coli endotoxins in anaesthetized horses, 

dopamine appeared to produce more pronounced effects than previously mentioned. A CRI of 

5 µg/kg/min increased CI and blood pressure and decreased diastolic pulmonary arterial 
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pressure (PAP), SVR and pulmonary vascular resistance (PVR), although it had no effect on 

the development of metabolic acidosis (Trim et al. 1991). One more possible indication for 

the use of dopamine was mentioned in a case report where 4 anaesthetized foals with AV 

block unresponsive to atropine sulphate and supportive treatment were treated successfully 

with dopamine hydrochloride (Whitton & Trim 1985). 

 

Dopexamine 

Dopexamine is a synthetic catecholamine with agonistic activity at β2 adrenoreceptors and 

peripheral dopamine receptors (Brown et al. 1985, Calvey & Williams 2001b). The drug‟s 

potency at β2 receptors is approximately 60 times higher than that of dopamine, but the 

activity at dopamine receptors is lower. Nevertheless, dopexamine causes a fall in renal 

vascular resistance and reduces neurogenic vasoconstriction through its activity at vascular 

DA1 and prejunctional DA2 receptors respectively (Brown et al. 1985). Although it is only a 

weak β1 receptor agonist, dopexamine has positive inotropic effects, partly due to its direct 

effects on cardiac β2 adrenoreceptors, but also by inhibiting the neuronal reuptake of 

noradrenaline (Uptake1), which increases the effects of released noradrenaline at β1 receptors 

(Calvey & Williams 2001b, Via et al. 2003). 

   Dopexamine was reported to increase HR and CI and to reduce SVR and PVR (Leier et al. 

1988). In humans, it can be used as an alternative to dobutamine to increase     and produce 

vasodilation, hereby increasing splanchnic blood flow and urinary output (Barnard & Linter 

1993, Via et al. 2003). Besides sinus tachycardia, dopexamine can also induce 

tachyarrhythmias in humans (Calvey & Williams 2001b). 

   In halothane anaesthetized ponies and horses, the cardiovascular effects of dopexamine 

CRI‟s varying between 0.5 and 20 µg/kg/min were usually characterized by increases in CI, 

MAP, HR and maximal rate of increase in left ventricular pressure (dP/dtmax), together with 

a reduction in SVR (Muir 1992a & b, Young et al. 1997, Lee et al. 1998). It was also 

demonstrated that dopexamine infusions of 1 and 5 µg/kg/min in anaesthetized ponies 

increased intramuscular blood flow in the nondependent limb (Lee et al. 1998). However, 

several undesirable side effects have been associated with dopexamine administration in 

equids, including muscular tremor (Lee et al. 1998), profuse sweating during administration, 

excitement and violent shivering during recovery and signs of colic a few hours after 

anaesthesia (Young et al. 1997, Lee et al. 1998). At the higher end of the dose range (10 – 20 
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µg/kg/min), several authors also reported sinus tachycardia, tachyarrhythmias and ventricular 

arrhythmias (Muir 1992a, Lee et al. 1998). 

 

Fenoldopam 

Fenoldopam, a DA1 receptor agonist with no α or β effects, increases CI, but reduces SVR 

and blood pressure dose-dependently (Barnard & Linter 1993). Lateral caecal arterial blood 

flow (Clark & Moore 1989b), renal blood flow (Aronson et al. 1990) and urine output (Hollis 

et al. 2006a) also increase during administration of fenoldopam. However, the drug was 

reported to induce hypotension and tachycardia in anaesthetized rats (Sengupta & 

Lokhandwala 1985), dogs (Aronson et al. 1990), horses (Clark & Moore 1989b) and foals 

(Hollis et al. 2006a). Consequently, fenoldopam seems less useful for cardiovascular support 

in anaesthetized horses. 

 

Dobutamine 

Dobutamine, a synthetic catecholamine chemically related to dopamine (Calvey & Williams 

2001b), is one of the most potent positive inotropes available (Morrill 2000). It was developed 

by systematic modification of isoproterenol‟s chemical structure to reduce its chronotropic, 

arrhythmogenic and vascular side effects (Tuttle & Mills 1975). The resulting drug, 

dobutamine, was shown to have an inotropic efficacy in dogs as great as the one of 

adrenaline, due to a direct action on β1 cardiac receptors, combined with only a slight effect 

on α and β2 vascular receptors (Tuttle & Mills 1975). The drug is marketed as a racemic 

mixture, in which the (-) isomer has some β agonist properties but is predominantly an α 

agonist, while the (+) isomer is a β1 and β2 agonist and a competitive α blocker (Ruffolo et al. 

1981). The racemic mixture has a predominant β1 activity and a balanced peripheral β2 and α1 

effect (Via et al. 2003). Therefore, lower dosages mainly stimulate β1 receptors, while both β1 

and β2 effects are seen at higher dosages (> 7.5 µg/kg/min). The effects at α1 receptors 

(vasoconstriction) are usually antagonized by the drug‟s β2 effects (vasodilation) (Morrill 

2000). In humans, the plasma half-life of dobutamine is very short (2 – 3 minutes), due to 

rapid metabolism in the liver (Calvey & Williams 2001b). The time to onset of action is 1 to 

10 minutes, with a peak effect seen within 10 to 20 minutes (Morrill 2000). 

   In humans, dobutamine is administered to increase     in patients with CHF and other states 

of decreased     (Morrill 2000). This increase in     is the result of an increase in stroke 

volume (SV) and, at higher doses, HR (Barnard & Linter 1993). Dobutamine has been 
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suggested as the agent of choice in septic shock patients with low     despite adequate fluid 

resuscitation, but should be combined with vasopressor therapy when blood pressure is low 

(Beale et al. 2004). The drug is contraindicated in human patients with hypovolaemia and is 

usually not administered if the patient‟s SAP is below 90 mm Hg (Morrill 2000), because 

dobutamine can decrease blood pressure slightly because of its vasodilating properties. This 

vasodilatory effect is mainly observed at higher dosages, which activate β2 receptors, causing 

a decrease in afterload, SVR (Morrill 2000) and total pulmonary resistance (Thuillez et al. 

1993). Nonetheless, dobutamine restored blood pressure despite reducing SVR slightly in 

dogs with experimentally induced hypotension and low     and contractility (Tuttle & Mills 

1975). Dobutamine has also been shown to increase myocardial oxygen supply and coronary 

blood flow, but this favourable effect may be lost when the drug causes tachycardia (Via et al. 

2003), which is mainly observed at higher dosages (Morrill 2000). Dobutamine may also 

induce arrhythmias, but its arrhythmogenic activity has been shown to be weaker than that of 

other catecholamines such as dopamine, isoproterenol and noradrenaline (Ueda et al. 1977). 

   In equine anaesthesia, dobutamine is undoubtedly the most widely used catecholamine for 

cardiovascular support. Many authors have reported on the cardiovascular effects of different 

doses of dobutamine in both ponies and horses, usually under experimental circumstances. In 

halothane anaesthetized ponies, dobutamine (1.25, 2.5 & 5.0 µg/kg/min) did not significantly 

alter SVR but dose-dependent increases in cardiac index (CI), MAP, mean PAP and SV were 

reported. This was in contrast with dopamine infusions of 2.5 and 5.0 µg/kg/min, which did 

not affect any of these variables. At the 2 highest doses of dobutamine, packed cell volume 

(PCV) and HR also increased, and in some ponies a severe tachycardia was observed 

(Gasthuys et al. 1991c). Lee et al. (1998) obtained similar results in ponies, with dose-

dependent increases in CI and MAP and decreases in SVR at CRI rates of 2.5, 5.0 and 10 

µg/kg/min. In 2 out of 8 ponies, the highest dose caused tachycardia and ventricular 

arrhythmias. Additionally, it was shown that dobutamine increased intramuscular blood flow 

in both the dependent and nondependent forelimbs more consistently than dopamine, 

dopexamine or phenylephrine (Lee et al. 1998). 

   In halothane or isoflurane anaesthetized healthy horses, blood pressure invariably increased 

in response to dobutamine infusions at doses ranging between 0.5 and 10 µg/kg/min 

(Swanson et al. 1985, Dyson & Pascoe 1990, Young et al. 1998b, Raisis et al. 2000a, Gehlen 

et al. 2006). As reported in ponies, these increases occurred at lower infusion rates of 
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dobutamine compared to dopamine and were not accompanied by changes in SVR (Swanson 

et al. 1985). Although     does not seem to be affected by doses of 0.5 (Raisis et al. 2000a) 

and 1.0 µg/kg/min (Swanson & Muir 1986), higher doses of dobutamine (3 – 10 µg/kg/min) 

have been shown to increase     (Swanson et al. 1985, Swanson & Muir 1986, Dyson & 

Pascoe 1990, Young et al. 1998b). In agreement with these findings, no changes were found 

in left ventricular systolic function when dobutamine was administered at a rate of 0.5 

µg/kg/min (Raisis et al. 2000a), while doses between 3 and 10 µg/kg/min were shown to 

increase the maximal rate of left ventricular pressure development (dP/dtmax) (Swanson et al. 

1985), maximal acceleration and velocity of aortic blood flow and left ventricular velocity 

time integral, while left ventricular pre-ejection period and ejection time significantly 

decreased (Young et al. 1998b). Dobutamine‟s effect on HR in anaesthetized normotensive 

horses appears to be variable, with some authors reporting increases (Gehlen et al. 2006) and 

others decreases (Swanson et al. 1985) at doses of 3 – 5 µg/kg/min. At 10 µg/kg/min, HR was 

not significantly different from baseline values (Swanson et al. 1985). Most likely, the actual 

effect in an individual horse will depend on the prevailing autonomic nervous system activity, 

blood pressure and HR of the horse before initiating dobutamine administration. In contrast to 

reports in human medicine, most authors found only small and non-significant effects of 

dobutamine on SVR in horses (Swanson et al. 1985, Raisis et al. 2000a). Other effects of 

dobutamine administration include increased pulmonary capillary wedge pressure (PCWP) 

(Gehlen et al. 2006), PAP (Young et al. 1998b) and PCV (Dyson & Pascoe 1990). 

Additionally, low dose dobutamine infusions (0.5 µg/kg/min) significantly increased femoral 

arterial flow, most likely due to local vasodilation, which may however not be associated with 

improved perfusion of skeletal muscles since microvascular perfusion, recorded using laser 

Doppler flowmetry, was not altered (Raisis et al. 2000a). Although dobutamine CRI‟s are 

usually found to have a quick onset and short duration of action, Young et al. (1998b) 

demonstrated that, in halothane anaesthetized horses, dobutamine at a dosage of 4 µg/kg/min 

did not achieve peak effects on many haemodynamic variables within 40 minutes of the start 

of the infusion while effects of a 60-minute infusion persisted for at least 30 minutes after the 

infusion was discontinued (Young et al. 1998b). 

   Dobutamine is a weaker proarrhythmic drug than most other catecholamines (Ueda et al. 

1977). Arrhythmias have been reported with the use of dobutamine in horses under 

experimental conditions, including supraventricular tachycardia in 2 of 8 horses receiving 

dobutamine at a rate of 4 µg/kg/min (Young et al. 1998b). However, in most horses the 



Cardiovascular stimulant drugs 
 

48 

 

arrhythmias observed during dobutamine administration are limited to bradyarrhythmias, 2
nd

 

degree AV blocks and isorhythmic AV dissociation at doses of 3 – 5 µg/kg/min (Swanson et 

al. 1985, Light et al. 1992). This agrees with the results of a study involving 200 horses 

anaesthetized for elective or emergency surgery, where a CRI of 1.5 to 3.2 µg/kg/min 

dobutamine as treatment of hypotension effectively increased blood pressure, while a cardiac 

arrhythmia developed in 28 % of the horses (60 % sinus bradycardia, 32 % AV block, 4 % 

premature atrial contractions and 4 % AV dissociation) (Donaldson 1988). 

   Caution is advised when combining parasympatholytic drugs with dobutamine. After prior 

atropine administration, the risk for tachyarrhythmias in response to dobutamine 

administration was higher (Light et al. 1992), while the dose of dobutamine required to induce 

repeated premature ventricular complexes or sustained narrow-complex tachyarrhythmia was 

almost threefold lower (Light & Hellyer 1993). 

   Many authors investigated the effects of dobutamine in anaesthetized horses under 

experimental conditions, but only a few reports describe the effects during routine clinical 

use. In horses anaesthetized for different surgical procedures, 1 – 4 µg/kg/min dobutamine 

significantly increased blood pressure and PCV, while HR tended to decrease (Hellyer et al. 

1998). No arrhythmias were noted in the latter study. In another clinical study, in isoflurane 

anaesthetized horses, dobutamine administered to effect (average dose of 1 µg/kg/min) 

effectively increased blood pressure, CI and HR, although some of these changes may have 

been accentuated by surgical stimulation (De Vries et al. 2009). Because the increase in CI 

was only significant 30 minutes but not 15 minutes after the start of the infusion, the authors 

suggested that the initial increase in blood pressure may have resulted from the peripheral 

vasoconstrictive (α1) effects of dobutamine; since SVR was not measured or calculated, this 

hypothesis could not be confirmed. 

   Dobutamine appears to be an effective and rather safe drug for cardiovascular support in 

horses and seems to be more effective than dopamine at improving blood pressure and    . 

Some additional evidence favouring dobutamine over dopamine in equine anaesthesia was 

provided by Duke et al. (2006), who reported that a combination of high-volume fluid therapy 

and dobutamine for cardiovascular support, with the aim to maintain MAP above 70 mm Hg, 

reduced the increase in muscle enzymes after halothane anaesthesia compared to the use of 

low-volume fluid therapy and dopamine with the aim to maintain MAP above 60 mm Hg. 
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Xamoterol 

Xamoterol is a selective partial agonist of the β1 adrenoreceptors and produces dose-

dependent positive inotropic and chronotropic effects upon the dog heart (Nuttall & Snow 

1982). In pigs, a more potent positive inotropic than chronotropic effect was illustrated under 

basal conditions (Galiè et al. 1989). However, the drug is also a competitive antagonist of the 

chronotropic and vasodilator effects of isoprenaline on the heart and blood vessels and of the 

chronotropic effects on noradrenaline on the heart (Nuttall & Snow 1982). When sympathetic 

tone is low, xamoterol has additive effects with released noradrenaline, but when it is high, it 

wil antagonize the effects of the neurotransmitter, such that xamoterol has moderate inotropic 

effects at rest, but partly attenuates the β-adrenergic response during exercise (Calvey & 

Williams 2001b). In pigs with a maximal sympathetic tone, xamoterol indeed antagonized the 

chronotropic, though not the inotropic, effect of noradrenaline, while increasing SVR and 

blood pressure, possibly through a β2 vascular blocking action (Galiè et al. 1989). In humans, 

xamoterol may be beneficial in patients with poor left ventricular function but can cause 

clinical deterioration in patients with extremely poor left ventricular function when 

sympathetic drive is high (Molajo & Bennett 1985). To the authors‟ knowledge, the use of 

xamoterol has not been described in horses or ponies. 

 

Ephedrine 

For more than 5000 years, the Chinese have used a vegetable drug, derived from a plant 

called Ma Huang (= Ephedra sinica), as a circulatory stimulant, antipyretic and cough 

suppressant. Towards the end of the 19
th

 century, an alkaloid, named ephedrine, was isolated 

from this plant by a Japanese chemist and subsequently shown to have marked chemical and 

pharmacological similarity with adrenaline (Stehle 1925). Like adrenaline, ephedrine 

increases HR, contractility and blood pressure (Stehle 1925). Ephedrine occurs naturally in 

various other plants, but nowadays it is usually synthesized (Calvey & Williams 2001b). The 

drug has direct and indirect sympathomimetic activity (Trendelenburg et al. 1962). It directly 

stimulates postsynaptic α1-receptors, but is also actively taken up by sympathetic nerve 

endings (Uptake1), where it displaces noradrenaline from its storage granules into the synapse 

and inhibits the intraneuronal metabolism of noradrenaline by mitochondrial monoamine 

oxidase (Calvey & Williams 2001b). Tachyphylaxis occurs with the continued use of 

ephedrine (Valette et al. 1960), because of depletion of noradrenaline stores in sympathetic 

neurones (Calvey & Williams 2001b). Similarly, the effect of ephedrine may be diminished 

when the sympathetic nervous system is already maximally stimulated before administration. 



Cardiovascular stimulant drugs 
 

50 

 

Compared to most other sympathomimetics, the cardiovascular effects of ephedrine are more 

prolonged, e.g. the effect on blood pressure usually lasts at least 15 minutes (Stehle 1925). 

Therefore this drug is often administered as a bolus instead of a CRI. 

   In halothane anaesthetized horses, ephedrine (0.06 mg/kg IV) increased    , SV and blood 

pressure, without affecting HR or cardiac rhythm (Grandy et al. 1989). Ephedrine (0.06 mg/kg 

IV, 1 – 2 boluses) significantly increased blood pressure without significantly altering HR or 

inducing arrhythmias (Hellyer et al. 1998). In the latter study, dobutamine 1 – 4 µg/kg/min 

tended to increase MAP to a greater extent than ephedrine, suggesting that dobutamine is 

more efficacious than ephedrine at increasing arterial blood pressure in anaesthetized horses. 

However, the study was not designed to compare equipotent doses of the two drugs. 

Ephedrine did not affect PCV, in contrast to dobutamine (Hellyer et al. 1998). 

 

Isoprenaline 

Isoprenaline or isoproterenol (N-isopropylnorepinephrine) is a synthetic catecholamine which 

differs from adrenaline in that it has an isopropyl group substituted for the methyl group of 

adrenaline (Nathanson & Miller 1952). Of all catecholamines available to the clinician, 

isoprenaline has the most potent direct β1 and β2 effects, but no α effects (Barnard & Linter 

1993). The drug therefore increases     and myocardial contractility and produces a 

pronounced increase in HR (Mueller 1978, Chamberlain et al. 1980, Mansell et al. 1988), in 

some cases even an excessive tachycardia (Morrill 2000). The β2 activity leads to peripheral 

and bronchial vasodilation, resulting in a reduction in SVR (Mueller 1978, Chamberlain et al. 

1980), DAP (Mansell et al. 1988, Barnard & Linter 1993) and MAP (Morrill 2000, Calvey & 

Williams 2001b). The potent β1 activity leads to a significant increase in myocardial oxygen 

consumption (Parratt & Wadsworth 1970, Mueller 1978), while coronary perfusion may 

become compromised because of tachycardia and reduced DAP (Parratt & Wadsworth 1970). 

Undesirable effects include tachycardia, arrhythmias (Mueller 1978, Morrill 2000) and a 

diversion of blood flow from vital organs to muscle and skin (Barnard & Linter 1993). 

Isoprenaline is nevertheless useful in patients with bradycardia and AV block (Nathanson & 

Miller 1952, Barnard & Linter 1993), as well as in patients with pulmonary hypertension and 

right ventricular failure (Barnard & Linter 1993). The half-life of isoproterenol is 2.5 to 5 

minutes with an onset of action after 30 to 60 seconds and a duration of action of 8 to 50 

minutes (Morrill 2000). 
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   To the authors‟ knowledge, only one study reported the use of isoprenaline during 

anaesthesia in horses. Intravenous injection of 0.85 µg/kg isoprenaline to 6 halothane 

anaesthetized horses produced great increases in HR, with a much slower return to baseline 

compared to adrenaline. Ventricular ectopic beats were observed in all animals and 

ventricular or nodal tachycardia in 3 cases. In most horses, blood pressure increased slightly 

(Lees & Tavernor 1970). 

 

Calcium salts 

As indicated earlier, inotropic drugs usually act by increasing the availability of Ca
2+

 to the 

contractile apparatus, but an alternative approach is to directly increase circulatory calcium 

levels (Choudhury & Saxena 2003). Total calcium in the blood consists of three distinct 

forms: protein bound, ionized (free) and complexed with ions such as phosphate and citrate 

(Simesen 1980). In the open-chest dog, differences in ionized calcium levels accounted for 

significant alterations in dP/dt, suggesting that fluctuations in ionized calcium were primarily 

involved in the regulation of the contractile state of the heart (Bristow et al. 1977). This 

finding led the authors to propose that ionized calcium should replace total calcium as a 

routine clinical test. It is now indeed generally accepted that ionized calcium is the 

biologically active form. Intravenous therapy that is aimed at increasing circulatory calcium 

levels is therefore best done by administering calcium salts which increase serum ionized 

calcium levels. Typically, CaCl2 or calcium gluconate are used. The choice between both 

forms may depend on considerations regarding differences in urinary excretion, rapidity of 

dissociation, concentration of the salt in solution and bioavailability of the calcium ion 

provided (Cote et al. 1987). However, in both dogs and children, Cote et al. (1987) 

demonstrated that equal elemental calcium doses of calcium gluconate and CaCl2 were 

equivalent in their ability to raise ionized calcium levels, rapidity of ionization and 

cardiovascular effects. On the other hand, Hempelmann et al. (1978) found that, while both 

CaCl2 and calcium gluconate significantly increased blood pressure, left ventricular pressure, 

SVR, CI, stroke index (SI), peak dP/dt and myocardial oxygen consumption, the positive 

inotropic effects of CaCl2 were more pronounced. 

   In man, CaCl2 effectively improved cardiac function when it was depressed by anaesthesia, 

underlying cardiac disease, or both (Eriksen et al. 1983). Similarly, calcium salts produced 

positive inotropic effects in cats (Bosnjak and Kampine 1986), dogs (Pagel et al. 1993), calves 

(Stanley et al. 1976) and horses (Grubb et al. 1996, Grubb et al. 1999a) and attenuated or 
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completely reversed the negative lusitropic actions of halothane and isoflurane in horses 

(Grubb et al. 1999b). Furthermore,     and/or SV increased when calcium salts were 

administered in conscious (Grubb et al. 1996) and anaesthetized horses (Grubb et al. 1999a) 

and ponies (Gasthuys et al. 1991a), hypocalcaemic dogs (Drop and Scheidegger 1980) and 

human patients with cardiac disease (Eriksen et al. 1983). In anaesthetized dogs, calcium 

gluconate increased myocardial contractility and myocardial oxygen consumption, but in 

contrast to the adrenergic stimulation induced by isoprenaline, myocardial uptake of free fatty 

acids remained low, indicating a possibly lower oxygen cost for similar haemodynamic 

performance (Bugge-Asperheim 1972). Heart rate decreased in halothane anaesthetized 

ponies (Gasthuys et al. 1991a) and horses (Grubb et al. 1999a) during the administration of 

calcium, while blood pressure increased when calcium was administered to anaesthetized 

ponies (Gasthuys et al. 1991a), horses (Grubb et al. 1999a), dogs (Drop and Scheidegger 

1980) and humans (Marone et al. 1981, Eriksen et al. 1983, Zaloga et al. 1990, Butterworth et 

al. 1992, Royster et al. 1992). In most of these reports, the increase in blood pressure was not 

due to an increase in    , but rather to an increase in SVR. 

   However, while calcium administration may slightly improve MAP, it significantly 

increased mortality associated with endotoxic shock (Malcolm et al. 1989) and septic 

peritonitis (Zaloga et al. 1992) in rats. Furthermore, several researchers failed to demonstrate 

significant changes in cardiovascular function after calcium administration. Calcium 

gluconate infusion did not influence blood pressure in conscious horses (Grubb et al. 1996) 

and     was not affected by calcium administration in dogs (Scheidegger et al. 1980), healthy 

people (Marone et al. 1981, Eriksen et al. 1983) or patients recovering from cardiac surgery 

(Zaloga et al. 1990, Butterworth et al. 1992, Royster et al. 1992). Possibly, these conflicting 

results may be explained by differences in health status, cardiovascular function and pre-

existing serum calcium concentrations between the different studies. Indeed, serum calcium 

concentrations were found to be lower during inhalation anaesthesia than in conscious horses 

(Gasthuys et al. 1985, Grubb et al. 1999a). Also, Drop and Scheidegger (1980) reported 

significant increases in     and SV when calcium was administered in hypocalcaemic, but not 

in normocalcaemic dogs. Similarly, Mathru et al. (1993) found that during normocalcaemia, 

the predominant effect of CaCl2 is peripheral vasoconstriction, while calcium infusion during 

hypocalcaemia significantly increased left ventricular contractile performance. It can be 

concluded that the usefulness of calcium salts for cardiovascular support differs between 

individual patients. 
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Calcium sensitizers 

Most cardiotonic agents, such as digitalis, catecholamines and phosphodiesterase III 

inhibitors, induce a positive inotropic effect by facilitating Ca
2+

 mobilization through cAMP-

dependent or -independent mechanisms in myocardial cells. These agents are therefore 

sometimes referred to as „Ca
2+

 mobilizers‟. On the other hand, „Ca
2+

 sensitizers‟ increase the 

Ca
2+

 binding affinity of troponin C or stability of the Ca
2+

-troponin C complex and/or 

facilitate thin filament regulation of cross-bridge cycling and/or directly facilitate cross-bridge 

cycling (Endoh 2008). Some of these agents (e.g. EMD 57033, CGP 48506) are pure Ca
2+ 

sensitizers, while others also weakly (Org 30029, SCH00013) or clearly (pimobendan, 

levosimendan) inhibit PDE III, hereby increasing intracellular cAMP levels in the 

myocardium (Endoh 2008). Advantages of Ca
2+ 

sensitizers include the stimulation of cardiac 

contractility without increasing myocardial oxygen demand (Parissis et al. 2008), without the 

risks for arrhythmias, cell injury, apoptosis or necrosis due to Ca
2+ 

overload. Even more, these 

agents are able to reverse contractile dysfunction under pathophysiological conditions where 

other agents may be less effective (Endoh 2008). Levosimendan enhances myocardial 

contractility by Ca
2+

 sensitization and causes peripheral vasodilation through ATP-dependent 

potassium channels (Perrone & Kaplinsky 2005); it also has immunomodulatory, antioxidant 

and anti-apoptotic properties, whereby lower levels of oxidative stress markers have been 

reported compared to placebo treatment (Parissis et al. 2008). In dogs with CHF secondary to 

dilated cardiomyopathy or chronic degenerative valvular disease, pimobendan was found to 

be safe and well tolerated. Pimobendan enhanced the quality of life when used in combination 

with furosemide or other conventional therapies and reduced mortality from CHF associated 

with dilated cardiomyopathy (Gordon et al. 2006). Although Ca
2+

 sensitizers appear 

promising for use in patients with heart failure, they do have long-lasting haemodynamic 

effects (Lehtonen et al. 2004) and are quite expensive. It appears unlikely that these specific 

drugs will ever be used for routine cardiovascular support during anaesthesia in patients 

without cardiac disease. To the authors‟ knowledge, the effects of pimobendan and 

levosimendan have not been investigated in horses or ponies. 

 

Phosphodiesterase III inhibitors 

As explained earlier, the inotropic and chronotropic effects of β sympathomimetics are 

mediated by increasing the synthesis of cAMP by adenylate cyclase. At the same time 

however, cAMP is broken down by phosphodiesterase enzymes, which in this way play an 

important role in modulating the amplitude and duration of the cyclic nucleotide second 
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messenger signal, the response of cells to prolonged agonist stimulation and cross-talk 

between different second messenger signalling pathways (Beavo 1995). More than 25 PDE‟s 

of 7 different families have been recognized in humans (Beavo 1995). Some drugs, including 

the methylxanthines theophylline, theobromine and caffeine (Butcher & Sutherland 1962), but 

also papaverine (Kukovetz & Pöch 1970) and pentoxifylline (Cortijo et al. 1993), 

nonselectively inhibit PDE‟s of the different families. One example of the clinical use of 

methylxanthines is as bronchodilators for treatment of asthma (Shenfield 1982). However, 

these agents also affect the central nervous system, gastrointestinal tract and cardiovascular 

system (Slapke et al. 1988). Other drugs more specifically inhibit a certain family of PDE 

enzymes and produce effects that depend on the type of PDE inhibited. There is some 

evidence to suggest that selective PDE I inhibitors increase cognitive function (Beavo 1995) 

and certain PDE IV inhibitors may have antidepressant (Bobon et al. 1988) or anti-

inflammatory (Teixeira et al. 1994) effects. PDE V inhibitors such as sildenafil can have a 

role in the treatment of pulmonary hypertension (Michelakis et al. 2002). However, the 

greatest number of commercially available compounds, including e.g. amrinone, milrinone, 

vesnarinone, enoximone, pimobendan, etc. primarily inhibit the PDE III family. These drugs 

have been developed as antithrombotic (reduction of platelet aggregation) (Shintani et al. 

1985), antihypertensive (vasodilation) and/or inotropic agents (Beavo 1995). 

   The inotropic effects of PDE III inhibitors result from increased cAMP levels in the 

myocardial cell, the effects of which have already been described for the β sympathomimetic 

agents. However, PDE III inhibitors also increase the cAMP levels in vascular smooth muscle 

cells, causing a vasorelaxation through three different mechanisms. Cyclic AMP decreases 

myoplasmic Ca
2+

 concentrations (McDaniel et al. 1991, Itoh et al. 1993) by inhibiting the 

slow, L-type Ca
2+

 channels (Sperelakis et al. 1994), reducing Ca
2+

 influx in vascular smooth 

muscle cells (Ishikawa et al. 1993, Orlov et al. 1996) and enhancing Ca
2+

 pump activity by 

phosphorylation of phospholamban (Kimura et al. 1991, Sasaki et al. 1992). Secondly, PDE 

inhibitors may decrease the Ca
2+

 sensitivity of contractile elements in vascular smooth muscle 

cells (Itoh et al. 1993). Finally, a cAMP-dependent protein kinase catalyzes the 

phosphorylation of myosin light chain kinase, which interferes with the binding of Ca
2+

-

calmoduline to myosin light chain kinase, reducing the activity of this enzyme (Adelstein et 

al. 1982). In turn, this causes reduced myosin light chain phosphorylation, which is needed for 

actin-myosin interaction and vascular smooth muscle contraction. 
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   There are three groups of PDE III inhibitors: the bipyridines (amrinone, milrinone), 

imidazole derivatives (enoximone, piroximone) and benzimidazole derivatives (sulmazole, 

pimobendan, adibendan) (Barnard & Linter 1993). Comparative studies failed to show 

clinically relevant differences between most PDE III inhibitors (Via et al. 2003). They all 

induce an inotropic effect, pulmonary and systemic vasodilation, less chronotropic effects 

than dobutamine, no increase in myocardial oxygen consumption (Baim 1989) and improved 

diastolic properties of the left ventricle, such as relaxation, compliance and filling (Barnard & 

Linter 1993). Because of their inotropic and vasodilating effects, PDE III inhibitors such as 

amrinone, milrinone and enoximone are sometimes referred to as inodilators. These drugs 

cause peripheral vasodilation and therefore reduce ventricular wall stress and counteract the 

increased oxygen requirement normally needed to support enhanced contractility (Colucci 

1991). Their lusitropic effect appears to be more pronounced than that of the β 

sympathomimetics, e.g. the lusitropic action of milrinone was greater than that of adrenaline 

(Lobato et al. 2000). Potential drawbacks include the long duration of action and a possibly 

excessive vasodilator effect associated with bolus administration (Via et al. 2003). High doses 

may indeed substantially reduce MAP, but this effect can be minimized by volume expansion, 

slower administration of loading doses and the administration of vasopressors (Barnard & 

Linter 1993). In human medicine, the main indications of these drugs are in patients with 

heart failure and during weaning from cardiopulmonary bypass (Lehtonen et al. 2004). 

Reports about the use of PDE III inhibitors in horses are sparse, only the effects of milrinone 

have been described in this species (Muir 1995). Because of the abundance of information 

about the many PDE III inhibitors available, only a short overview of some properties of three 

well known inodilators will be provided here, i.e. amrinone, milrinone and enoximone. 

 

Amrinone 

Amrinone was the first PDE III inhibitor approved for clinical human use. In 1978, Benotti et 

al. investigated its cardiovascular effects and found significant increases in CI and dP/dtmax 

together with decreases in left ventricular end-diastolic, pulmonary capillary and right atrial 

pressures, without a change in HR and only a slight decline in mean aortic pressure. 

Amrinone also improved myocardial systolic and diastolic function in endotoxaemic rabbits 

and even reduced the systemic inflammatory response syndrome after IV administration of 

endotoxins (Takeuchi et al. 1999). Amrinone has a half-life of more than 3 hours in humans 

(Park et al. 1983). Reported side effects include thrombocytopenia, gastrointestinal effects, 
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hypotension, fever, liver enzyme elevation and anaphylactoid responses (Treadway 1985). 

Accumulation can also occur in critically ill patients (Notterman 1991). Although the 

incidence and/or importance of most of these side effects appear to be limited (Treadway 

1985), amrinone is used less frequently compared to newer agents such as milrinone and 

enoximone. 

 

Milrinone 

Milrinone is a second generation bipyridine derivative of amrinone and is 15 times more 

potent (Barnard & Linter 1993). Milrinone increases left ventricular dP/dt, ameliorates cardiac 

pump function, improves diastolic filling and accelerates isovolumic myocardial relaxation, 

without altering myocardial oxygen demand (Colucci 1991). Milrinone was also shown to 

have less proarrhythmic effects than dobutamine (Caldicott et al. 1993) and may even have 

anti-inflammatory properties (Möllhoff et al. 1999). Slow administration over 10-15 minutes 

is recommended for all PDE III inhibitors to avoid sudden decreases in SVR and venous 

return, which may result in hypotension, especially in hypovolaemic patients (Choudhury & 

Saxena 2003). When milrinone was administered to halothane anaesthetized horses, increases 

in HR, MAP,    , ejection fraction and maximum rate of increase and decrease of left 

ventricular pressure were observed (Muir 1995). 

 

Enoximone 

Enoximone (MDL 17,043) is an imidazole derivative which mainly inhibits PDE III, although 

PDE IV inhibition may also contribute to the observed inotropic effects (Szilágyi et al. 2005). 

Beside the positive inotropic effect, enoximone increases coronary blood flow and reduces 

SVR and PVR in humans, without significant increases in myocardial oxygen consumption 

(Dage and Okerholm 1990, Ghio et al. 2003). Myocardial oxygen consumption, as reflected 

by heart rate-pressure product, was indeed significantly lower in patients after the 

administration of enoximone compared to patients receiving dobutamine following 

cardiopulmonary bypass (Lancon et al. 1990). In patients with moderate to severe CHF, 

enoximone infusion markedly improved left ventricular performance while HR tended to rise 

and MAP to decrease (Vernon et al. 1991). In similar populations of patients, oral (Leier et al. 

1987) and intravenous (Winkle et al. 1990) enoximone increased     and decreased SVR, but 

had minimal or no effects on HR and blood pressure. Furthermore, Leier et al. (1987) reported 
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that, while the flow through and resistance of the renal and hepatic-splanchnic vascular beds 

were not altered, enoximone seemed to preferentially reduce limb vascular resistance and 

augment blood flow to the peripheral musculoskeletal system. 

   In patients with cardiogenic shock persisting despite the use of adrenergic agents, the 

addition of enoximone resulted in significant increases in CI and SI and a significant decrease 

in PCWP, without consistent changes in MAP (Vincent et al. 1990). Of perhaps greater 

interest for equine practitioners are the effects of inotropic drugs in patients with other types 

of shock. In contrast to dobutamine, enoximone improved hepatosplanchnic function and had 

anti-inflammatory properties in fluid-optimized septic shock patients (Kern et al. 2001). In 

patients with severe and prolonged catecholamine and volume refractory endotoxin shock, 

even with electromechanical uncoupling and complete myocardial arrest, enoximone was able 

to immediately restore myocardial contractility and blood pressure (Ringe et al. 2003). In a rat 

endotoxaemia model, despite contributing to systemic hypotension, enoximone prevented 

mucosal hypoperfusion (Schmidt et al. 2001). 

   In humans, enoximone is extensively metabolized into enoximone sulphoxide, very little 

unchanged drug appears in the urine (Okerholm et al. 1987). Enoximone sulphoxide has the 

same inotropic and vasodilator activities as the parent molecule, but is only 0.13-0.14 times as 

potent (Dage & Okerholm 1990). The terminal half-lives of both enoximone and its 

sulphoxide metabolite were 2.0-2.7 hours and did not appear to be dose related (Morita et al. 

1995). Administering 4 consecutive doses at 3h-intervals did not affect pharmacokinetic 

parameters and no accumulation was observed (Morita et al. 1995). 

   Adverse effects associated with long term oral enoximone therapy include central nervous 

(insomnia, headache and anxiety), gastrointestinal (diarrhoea, dyspepsia, vomiting, nausea, 

abdominal pain, increased liver enzymes mainly in patients with previous liver disease or 

diabetes) and cardiovascular side effects (usually mild ventricular or supraventricular 

arrhythmias) (Gilfrich & Dieterich 1991, Vernon et al. 1991). Vernon et al. (1991) mentioned 

that the gastrointestinal effects were the most common and could be resolved with a reduction 

in dosage, while Gilfrich & Dieterich (1991) found that cardiovascular side effects were the 

most frequent (10 % of patients), followed by gastrointestinal complaints in 3 % of the 

patients. On the other hand, Treese et al. (1991) found that in most patients with advanced 

chronic heart failure, even long-term enoximone therapy was not associated with an important 

increase in the incidence of ventricular arrhythmias. 
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   Most studies investigating the safety and side effects of enoximone have been performed in 

cardiac patients receiving the drug orally for prolonged periods of time, but its short-term use, 

e.g. in the intensive care unit (Sicignano et al. 1994) or following cardiac surgery (Gonzalez 

et al. 1988, Zeplin et al. 1990) was usually reported to be safe, with a low incidence of side 

effects. In patients with acute myocardial infarction, enoximone was tolerated better and 

produced fewer side-effects than dobutamine using doses which produced similar increases in 

    (Caldicott et al. 1993). When used during weaning from cardiopulmonary bypass, one of 

the main concerns with PDE III inhibitors is the occurrence of excessive vasodilation, which 

can be reduced by slow administration, but often has to be compensated for by volume 

supplementation and alpha-mimetic stimulation (Kruger et al. 1996). After extracorporeal 

circulation, enoximone reduced platelet levels and was associated with supraventricular 

arrhythmias and ventricular tachyarrhythmias (Ferrara et al. 1993). However, an inhibitory 

effect on platelet aggregation might in fact be beneficial in patients with cardiovascular 

disease (Buerke et al. 1997). On the other hand, Boldt et al. (1992) reported that platelet 

aggregation after cardiopulmonary bypass decreased to a similar extent with enoximone 

treatment as in the control group and concluded that enoximone did not affect platelet 

function in cardiac surgery patients. In contrast with the report of Ferrara et al. (1993), Pop et 

al. (1986), who investigated the electrophysiologic effects of enoximone, concluded that, 

despite its positive chronotropic and dromotropic effects, enoximone did not appear to be 

arrhythmogenic. Similarly, Brembilla-Perrot et al. (1990) found that enoximone has no 

supraventricular arrhythmogenic effects and does not facilitate the induction of ventricular 

arrhythmias in subjects without inducible sustained ventricular tachycardia under basal 

conditions, although it can accelerate the ventricular tachycardia rhythm in patients who have 

inducible sustained ventricular tachycardia under basal conditions. 

 

Vasopressors 

Vasopressors cause vasoconstriction and can be used to increase blood pressure through an 

increase in SVR. Many vasopressors are also positive inotropes and/or chronotropes at the 

same time. However, even pure vasopressors, which do not affect HR or myocardial 

contractility, may still have an influence on    . When vasoconstriction mainly occurs on the 

venous side of the circulation, mean systemic filling pressure and venous return will increase 

and this will tend to augment     through an increased preload. On the other hand, arterial 
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vasoconstriction will increase afterload and may actually reduce    , especially when 

contractility is already compromised, e.g. by underlying cardiac disease, sepsis or anaesthetic 

drugs. With regard to tissue perfusion, the effect of vasopressors will depend on the pre-

existing arteriolar tone. Arteriolar vasoconstriction will increase blood pressure but reduce 

perfusion of the tissues distal to constricted arterioles. This may lead to ischaemia of 

vulnerable organs such as the kidneys and the gut. However, arterial hypotension can be 

associated with a collapse of vessels perfusing tissues with high extravascular 

(intracompartmental) pressures, such as the muscles of recumbent horses (Lindsay et al. 

1980), because transmural pressure becomes inadequate. Under these circumstances, 

vasopressors may help to increase transmural pressure and actually restore patency of blood 

vessels and peripheral tissue perfusion. Vasopressors are therefore usually reserved for 

situations where hypotension is caused by a reduction in SVR (e.g. due to drug- or endotoxin-

induced vasodilation), myocardial contractility and     are normal (or already increased by 

sympathetic stimulation, fluids and inotropic support) and vascular transmural pressure needs 

to be restored to maintain (or re-establish) vessel patency and assure tissue perfusion. 

   Different types of vasopressors are available, which can largely be subdivided into three 

groups, i.e. vasopressin, calcium salts and sympathomimetics. Although the exact mechanism 

of action differs somewhat between these groups, they all increase intracellular Ca
2+

 levels in 

vascular smooth muscles. Calcium induces vascular smooth muscle contraction by binding to 

calmodulin and activating the enzyme myosin light chain kinase, which then phosphorylates 

myosin, initiating contraction. Calcium would further enhance smooth muscle contractile 

activity by binding directly to myosin and finally by activating protein kinase C, which 

phosphorylates smooth muscle myosin at a different site than myosin light chain kinase 

(Adelstein & Sellers 1987). 

 

Vasopressin analogues 

Endogenous vasopressin or antidiuretic hormone is synthesized in the hypothalamus and 

stored and released into the bloodstream by the posterior pituitary, mainly in response to 

increases in plasma osmolarity, but also when the arterial baroreceptors detect large decreases 

in blood pressure (Power & Kam 2001b). The most important physiological effects of 

vasopressin are water retention by the kidneys, mediated via V2 receptors on the basolateral 

surface of cells of the distal convoluted tubules and medullary collecting ducts in the kidney, 

and vasoconstriction, mediated via V1 receptors on vascular smooth muscle cells (Mutlu & 
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Factor 2004). Activation of V1 receptors stimulates phospholipase C, promoting hydrolysis of 

phosphatidylinositol 4,5-biphosphate (PIP2), which results in formation of inositol 

triphosphate (IP3) and diacylglycerol (DAG). Inositol triphosphate in turn promotes 

mobilization of Ca
2+

 from the endoplasmic reticulum, leading to vascular smooth muscle 

contraction (Mutlu & Factor 2004). Diacylglycerol stimulates protein kinase C, an enzyme 

which increases the influx of extracellular Ca
2+

 through L-type Ca
2+

 channels (Marshall et al. 

1999). Vasoconstriction mainly occurs in nonvital organ systems such as the skin, skeletal 

muscles and intestines (Vanhoutte et al. 1984, Rajani et al. 2009), while vasodilation occurs in 

other vessels such as the cerebral and coronary arteries (Vanhoutte et al. 1984). Vasopressin 

may additionally have some inotropic effects after stimulation of myocardial V1 receptors 

(Fujisawa & Iijima 1999), but this is usually overshadowed by a baroreflex-mediated 

reduction in    . This baroreflex is even facilitated by vasopressin, both through a central 

action of the hormone and a sensitizing influence on arterial baroreceptors and cardiac 

afferents (Abboud et al. 1990). 

   The time required for synthesis, transport and storage of vasopressin in the neurohypophysis 

is about 1 to 2 hours (Sklar & Schrier 1983), while the plasma half-life of endogenous 

vasopressin is short, only 6-10 minutes (Morelli et al. 2009). Prolonged stimulation, e.g. 

during haemorrhagic shock, exhausts the endogenous supply of vasopressin in approximately 

1 hour, which leads to vasodilation and hypoperfusion of end organs and may be a 

contributing factor to the morbidity and mortality associated with haemorrhagic shock (Rajani 

et al. 2009). Similarly, endogenous vasopressin plasma levels were found to be 

inappropriately low in vasodilatory septic shock. Except for depletion of endogenous 

vasopressin stores, it has been suggested that this may also be due to an impaired baroreflex-

mediated secretion of vasopressin (Landry et al. 1997). Administering vasopressin or one of 

its analogues may thus be useful in patients with refractory shock despite adequate fluid 

resuscitation and high-dose conventional vasopressors (Beale et al. 2004). Furthermore, 

vasopressin receptors remain available despite maximal binding of adrenoreceptors by 

endogenous or exogenous catecholamines. 

   Examples of arginine vasopressin (AVP) analogues are terlipressin and F-180. Terlipressin 

is a non-selective, synthetic AVP analogue, which has the nonapeptide sequence of the natural 

hormone lysine-vasopressin (Morelli et al. 2009). It has a somewhat greater preference for 

vascular V1 receptors than vasopressin, which has equal affinity for V1 and V2 receptors 

(Mutlu & Factor 2004). It is less expensive than vasopressin and has a long half-life, making 
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single bolus dosing possible (Mutlu & Factor 2004). Another, perhaps less known vasopressin 

analogue is F-180, a long-acting drug with selective effects on the V1 receptor (Bernadich et 

al. 1998). 

   Although arginine vasopressin and terlipressin are potent adjunct vasopressor agents which 

effectively increase SVR and blood pressure and reduce catecholamine requirements in 

patients with advanced vasodilatory or haemorrhagic shock, who remain hypotensive despite 

adequate fluid resuscitation and infusions of catecholamines (Jochberger et al. 2005, 

Tsuyenoshi et al. 2005, Krismer et al. 2006, Ertmer et al. 2008), the influence on the final 

outcome will remain uncertain until large scale, prospective studies have been performed 

(Jochberger et al. 2005). A second possible indication for vasopressin is during treatment of 

cardiac arrest. Vasopressin‟s effects were similar to those of adrenaline in the management of 

ventricular fibrillation and pulseless electrical activity and were even superior to those of 

adrenaline in patients with asystole (Krismer et al. 2006). Furthermore, vasopressin followed 

by adrenaline resulted in significantly higher rates of survival to hospital admission and 

discharge (Krismer et al. 2006). In a porcine cardiac arrest model, with severe hypotension 

induced by blood loss, vasopressin redirected blood from bleeding sites to more vital organs 

and resulted in sustained vital organ perfusion, less metabolic acidosis and prolonged 

survival, in contrast with large-dose adrenaline or saline administration (Voelckel et al. 2000). 

   Nevertheless, AVP should not be used as the sole vasopressor agent (Krismer et al. 2006). 

Especially when used in higher doses, AVP and terlipressin can reduce    , oxygen delivery 

(DO2) and mixed venous oxygen saturation, with impaired perfusion and ischaemic injury of 

tissues such as the gut, liver and skin (Ertmer et al. 2008). Also, while the efficacy of 

catecholamines is often markedly reduced in vasodilatory shock states, exogenous vasopressin 

receptor agonists appear to be more efficacious and even moderate doses may lead to an 

exaggerated increase in SVR (Ertmer et al. 2008). In septic rats, high dose AVP infusion 

severely compromised gut mucosal blood flow, which may be related to arteriolar 

vasoconstriction, a reduction in    , or both (Westphal et al. 2004). The inflammatory response 

to the septic injury was also increased (Westphal et al. 2004). On the other hand, during long-

term hyperdynamic endotoxaemia in pigs, a 12 hour low-dose infusion of terlipressin 

increased MAP and SVR and decreased     and global oxygen consumption, without any 

detrimental effect on hepatosplanchnic perfusion, oxygen exchange and metabolism. 

Nevertheless, a marked hyperlactataemia occurred, which did not originate from the 
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hepatosplanchnic organs, but from other tissues, possibly muscles and skin (Asfar et al. 2005). 

Ischaemic skin lesions are indeed another common complication during continuous infusion 

of AVP in patients with catecholamine-resistant vasodilatory shock (Dünser et al. 2003). 

Hyponatraemia and tissue oedema in response to anti-diuresis and water reabsorption may 

also occur, as well as decreases in platelet counts and increases in aminotransferase activity 

and bilirubin concentrations (Ertmer et al. 2008). 

   To avoid side effects, high volume fluid therapy is recommended when infusing AVP or 

terlipressin (Ertmer et al. 2008). When using terlipressin, a continuous infusion appears to be 

superior to bolus administration, since intermittent bolus injections of terlipressin caused 

decreases in HR and CI and increases in PVR, while continuous low-dose infusion of the drug 

stabilized haemodynamics and improved myocardial performance in endotoxaemic sheep 

(Lange et al. 2007). Platelet count, surrogate variables of hepatic dysfunction, electrolytes and 

osmolality should also be strictly monitored in patients treated with vasopressin analogues 

(Ertmer et al. 2008). 

   Literature describing the cardiovascular effects of exogenous AVP or its analogues in 

equids is scarce. In hypotensive, isoflurane anaesthetized foals, vasopressin (0.3 and 1.0 

mU/kg/min) increased SVR and blood pressure without affecting CI and DO2, but increased 

the gastric to arterial CO2 gap, which is indicative for reduced splanchnic perfusion (Valverde 

et al. 2006). 

 

Calcium salts 

As already mentioned, calcium chloride or gluconate administration increased blood pressure 

in anaesthetized ponies (Gasthuys et al. 1991a), horses (Grubb et al. 1999a), dogs (Drop and 

Scheidegger 1980) and humans (Marone et al. 1981, Eriksen et al. 1983, Zaloga et al. 1990, 

Butterworth et al. 1992, Royster et al. 1992). In most of these reports this was not due to an 

increase in    , but rather to an increase in SVR, illustrating the vasoconstrictive effects of 

calcium administration. 

 

Sympathomimetics 

Many sympathomimetics have vasoconstrictive properties through their effects at α1 

adrenergic receptors, which are G-protein coupled receptors. Many different types of α1 

adrenoceptors exist in different tissues and many different intracellular signaling effectors 

have been described, including phosholipase A2, phospholipase D and activation of Ca
2+

 and 
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K
+
 channels (Marshall et al. 1999). However, most α1 adrenoceptors, including those on 

vascular smooth muscle cells, are linked to phospholipase C via a G protein. When activated, 

the α subunit of the heterotrimeric G protein, Gq, binds GTP and dissociates from the βγ 

subunits and activates phospholipase C, which hydrolyzes PIP2 to IP3 and DAG (Marshall et 

al. 1999), with effects on Ca
2+

 transients as already described for vasopressin. Many 

sympathomimetic drugs not only induce vasoconstriction but also have inotropic and/or 

chronotropic properties. Furthermore, the vasoconstrictive effect of some drugs, such as 

adrenaline and dopamine, depends on the dose administered. Subdivision of the 

catecholamines as pure inotropes or pure vasopressors is therefore not always possible. Only 

the agents with clear vasoconstrictive and less inotropic effects will be discussed (Table 2). 

 

Noradrenaline 

Noradrenaline or norepinephrine is an endogenous catecholamine secreted by the adrenal 

medulla and is the main neurotransmitter at sympathetic postganglionic fibres. It is a rather 

potent β1 and very potent α1 and α2 agonist which mainly functions as a vasopressor (Barnard 

& Linter 1993, Morrill 2000). Systemic vascular resistance and arterial pressure are raised 

because of generalized vasoconstriction. This causes a vagally mediated baroreceptor 

response, which usually obscures the direct effects of noradrenaline on the heart and rather 

tends to cause slight bradycardia (Barnard & Linter 1993, Calvey & Williams 2001b). Also, 

noradrenaline directly increases myocardial contractility (Garb 1950), but     may in fact 

decrease due to the substantial increase in SVR (Barnard & Linter 1993, Morrill 2000).  

   Noradrenaline is used when the importance of increasing perfusion pressure outweighs the 

disadvantages of a lower    , or to counterbalance the vasodilatory effects of other agents 

(Barnard & Linter 1993, Via et al. 2003). Additionally, the effects of noradrenaline on α and 

β1 receptors in the myocardium may complement the positive inotropic effects of other drugs, 

and when relatively low doses are used (0.5-1.5 µg/kg/min), excessive vasoconstriction is not 

a problem and there are no deleterious effects on renal function (Calvey & Williams 2001b). 

Time to onset of action of noradrenaline is 1 to 2 minutes and because the half-life is very 

short (20-30 seconds) (Power & Kam 2001b), the duration of the effect is limited to 1-2 

minutes (Morrill 2000).  
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Table 2: Sympathomimetic agents with primarily a vasopressor action.  

 

Abbreviations used: systemic vascular resistance (SVR), arterial blood pressure (ABP), cardiac output (   ), oxygen (O2), mean arterial 

pressure (MAP), heart rate (HR), cardiac index (CI), oxygen delivery (DO2), right atrial pressure (RAP), systolic (SAP) and diastolic 

arterial pressure (DAP), packed cell volume (PCV), stroke volume (SV), atrioventricular (AV), central venous pressure (CVP).  
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   However, caution is advised when using this drug. Like adrenaline, noradrenaline has 

arrhythmogenic properties (Friedrichs & Merrill 1991). Myocardial oxygen consumption is 

invariably increased (Barnard & Linter 1993, Morrill 2000), ischaemia may be exacerbated 

and ventricular function can be compromised (Barnard & Linter 1993). Because of 

generalized vasoconstriction, renal, abdominal visceral and skeletal muscle ischaemia may 

also occur (Morrill 2000) and, if used in shock patients, the state of shock may actually be 

worsened (Calvey & Williams 2001b). In human medicine, noradrenaline is usually not 

recommended for patients with hypovolaemia, because “There must be adequate volume to 

generate pressure, and clinicians should remember to ‘fill up the tank‟ before attempting to 

constrict the vessels” (Morrill 2000).  

   Although some clinicians commonly use noradrenaline in anaesthetized horses when blood 

pressure is not responsive to dobutamine and/or in vasodilatory shock states (e.g. 

endotoxaemia), little information is available on the effects in adult horses. A bolus of 

noradrenaline (3 µg/kg) in halothane anaesthetized horses increased MAP during 6 minutes, 

but this increase was less pronounced than with adrenaline at the same dose. Heart rate 

initially increased slightly, followed by a more pronounced bradycardia shortly after the time 

of the maximal pressor response. In 2 of 4 animals receiving noradrenaline, ventricular 

arrhythmias were observed (Lees & Tavernor 1970). Using a total dose of 50 – 200 µg in 

conscious adult horses, Sanders et al. (1991) reported increases in blood pressure and 

decreases in bronchial artery flow after noradrenaline administration.  

   In contrast to the paucity of data in adult horses, several researchers have studied the effects 

of noradrenaline in young foals (Hollis et al. 2006b, Valverde et al. 2006, Craig et al. 2007, 

Hollis et al. 2008). Noradrenaline (0.1–0.3 µg/kg/min) increased blood pressure and SVR and 

decreased HR and CI compared to a placebo treatment with saline in normotensive conscious 

foals (Hollis et al. 2006b, Hollis et al. 2008). No significant differences in urine output, 

creatinine clearance or fractional excretion of electrolytes were found using a dose of 0.1 

µg/kg/min in Thoroughbred foals (Hollis et al. 2006b), but urine output and creatinine 

clearance increased when administering a dose of 0.3 µg/kg/min in pony foals (Hollis et al. 

2008). In the latter report, the authors concluded that noradrenaline may be useful for 

hypotensive foals, because it increases SVR and blood pressure without negatively affecting 

renal function. Similar results were found in 1 – 2 week old, isoflurane anaesthetized foals, 

where noradrenaline (0.05-0.40 µg/kg/min) increased blood pressure, PAP, SVR and PVR, 

while HR decreased (Craig et al. 2007). Cardiac index and DO2 also decreased, but the 
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changes were not significant. Oxygen consumption, oxygen extraction, mixed venous oxygen 

tension and standard base excess, all markers of inadequate tissue perfusion, did not change 

(Craig et al. 2007). In neonatal hypotensive foals during deep isoflurane anaesthesia, 

noradrenaline (0.3 and 1.0 µg/kg/min) increased not only SVR and blood pressure, but also CI 

and DO2, while the oxygen extraction ratio decreased. However, as would be expected, the 

increases in CI and DO2 were much less pronounced than after dobutamine administration 

(Valverde et al. 2006).  

    

Phenylephrine 

Phenylephrine is closely related structurally to adrenaline and noradrenaline. It is a selective 

α1-adrenergic agonist (Calvey & Williams 2001b) and has little effect on β adrenoreceptors of 

the heart (Kee 2003). It therefore has minimal direct effects on HR and contractility, but 

bradycardia can be observed in response to the increase in blood pressure (Hardy et al. 1994). 

In septic shock patients, hepatosplanchnic blood flow and oxygen delivery were lower during 

treatment with phenylephrine compared to noradrenaline (Reinelt et al. 1999). 

   Phenylephrine infusion (1, 3 or 6 µg/kg/min) in conscious horses significantly increased 

PAP, RAP, SAP, DAP, MAP and PCV and significantly decreased HR and    , but SV did not 

change significantly. At the highest dosage, the rate-pressure product increased. At all doses, 

bradycardia was observed, while 2
nd

 degree AV block was present in 88 % of horses (Hardy 

et al. 1994). In halothane anaesthetized ponies, doses of 0.25-2 µg/kg/min dose-dependently 

increased MAP, central venous pressure (CVP), PVR, PCWP and SVR, without improving 

intramuscular blood flow or CI (Lee et al. 1998). Similarly, Raisis et al. (2000b) reported that 

phenylephrine decreased femoral arterial and venous blood flow and     and increased MAP, 

SVR and PCV in anaesthetized horses. Besides its use as a vasopressor, phenylephrine is also 

commonly used in horses during treatment of nephrosplenic entrapment of the large colon, 

where splenic contraction is the therapeutic target (Hardy et al. 2000).  

 

Methoxamine 

Methoxamine has similar effects to phenylephrine because of its highly selective agonist 

effects on α-adrenoceptors. The drug is commonly used in the management of untoward 

hypotension occurring during anaesthesia, particularly following subarachnoid or extradural 

blockade or when ganglion-blocking drugs have been employed (Calvey & Williams 2001b). 

Only a few reports are available about the use of methoxamine in horses or ponies. When
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given before induction of anaesthesia, methoxamine 40 µg/kg did not significantly affect 

cardiopulmonary function during halothane anaesthesia in horses (Dyson & Pascoe 1990). 

However, when given during anaesthesia in halothane anaesthetized ponies, methoxamine 13 

µg/kg followed by 5 µg/kg/min was able to maintain normotension, while     was lower and 

SVR higher compared to the saline goup (Brodbelt et al. 1998).  

 

Metaraminol 

Metaraminol is a sympathomimetic drug with a direct effect on vascular-adrenergic receptors 

and an indirect mechanism of action related to the stimulation of noradrenaline release 

(Holmes 2005). It can be used for the prevention and treatment of acute hypotension, e.g. 

caused by epidural or spinal anaesthesia, surgical complications or drug reactions (Calvey & 

Williams 2001b, Kee 2003). To the authors‟ knowledge, the use of metaraminol in horses has 

not been described. 

 

Combinations 

Under certain circumstances, it may be advantageous to combine agents which exert different 

effects (e.g. vasopressors and inotropic drugs) or agents which exert similar effects through a 

different mechanism of action (e.g. sympathomimetics with calcium salts, phosphodiesterase 

inhibitors with sympathometics, vasopressin analogues with sympathomimetic vasopressors, 

etc.). Since extensive research has been performed in this area, it is only possible to give a 

few examples here.   

   During treatment of vasodilatory shock, increased myocardial contractility, peripheral 

vasoconstriction and preservation of renal function are concomitant objectives which might be 

achieved using CRI‟s of noradrenaline (inotropic and vasoconstrictor) and low dose dopamine 

(renal and splanchnic blood flow) (Schaer et al. 1985). However, it remains uncertain whether 

this combination is superior to dopamine alone (Beale et al. 2004). Similarly, „renal doses‟ of 

dopamine are sometimes used in combination with dobutamine in the treatment of shock 

states with a low     (e.g. septic or cardiogenic shock) in an attempt to improve both renal and 

cardiac function (Calvey & Williams 2001b). Another example of combined use of different 

sympathomimetic agents is the administration of noradrenaline (0.1 µg/kg/min) with 

dobutamine (5 µg/kg/min), which increased blood pressure and SVR and decreased HR and 

CI compared to saline administration in normotensive neonatal foals, without differences in 

urine output, creatinine clearance or fractional excretion of electrolytes (Hollis et al. 2006b). 
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   Because inotropic drugs exert their effect through increased Ca
2+

 influx in the myocardium, 

the effects of -adrenergic agonists might be enhanced when these drugs are administered 

together with Ca
2+

 (d‟Hollander et al. 1982, Abernethy et al. 1995). However, calcium salts 

rather tended to attenuate the cardiotonic effects of -adrenergic agonists in man (Zaloga et al. 

1990, Butterworth et al. 1992, Abernethy et al. 1995), most likely due to a negative effect of 

free Ca
2+

 ions on the activity of adenylyl cyclase in the myocardial cells (Drummond & 

Duncan 1970, Colvin et al. 1991, Yu et al. 1993, Abernethy et al. 1995). At the same time, 

Ca
2+

 decreased the inotropic effects of milrinone in rat heart preparations (Goyal and McNeill 

1986), possibly by stimulating the activity of PDE, thereby increasing cAMP degradation 

(Teo & Wang 1973). 

   Because inotropic ß-sympathomimetics and PDE III inhibitors increase the intracellular 

concentration of cAMP through independent mechanisms, they may produce more powerful 

increases in contractility when used in combination. At the same time, PDE III inhibitors have 

vasodilatory properties, while many ß-sympathomimetics act as vasopressors, which may be 

useful to prevent or treat exaggerated decreases in SVR after administration of PDE III 

inhibitors. In humans, a combination of adrenaline and amrinone produced additive effects on 

SV after cardiopulmonary bypass surgery (Royster et al. 1993). Also, enoximone‟s 

cardiovascular effects were additive to those produced by dobutamine, with larger increases in 

CI, left ventricular stroke work index and HR and more pronounced decreases in RAP, PAP, 

PCWP, SVR and PVR (Gilbert et al. 1995). Other authors have described beneficial effects of 

combinations of amrinone with dobutamine (Uretsky et al. 1987), noradrenaline (Robinson & 

Tchervenkov 1987) and dopamine (Olsen et al. 1988). 

 

Conclusions  

In anaesthetized horses, adequate perfusion of peripheral tissues is important to avoid possibly 

lethal complications such as myopathies. Although balanced anaesthesia and fluid support are 

useful, cardiovascular stimulant drugs are often needed to achieve this. These include 

antimuscarinics, inotropic drugs and vasopressors. Antimuscarinic drugs are preferably used 

to treat bradycardia unrelated to hypertension and are not suitable to augment     under other 

circumstances, for many reasons. Vasopressors are useful in patients with hypotension caused 

by vasodilation, e.g. induced by drugs or endotoxins, where myocardial contractility and     
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are normal or high. Under such circumstances, the benefit of restoring vascular transmural 

pressure often outweighs the disadvantage of not improving     and possibly compromising 

perfusion of certain tissues because of excessive vasoconstriction. However, in most cases, 

inotropic drugs are preferable to improve tissue perfusion. Digitalis glycosides, calcium salts 

and calcium sensitizers are less suitable for routine cardiovascular support during anaesthesia, 

because of different reasons including a lack of effectiveness, cost, toxicity and/or 

pharmacokinetic considerations. Extensive research has been performed on the β 

sympathomimetic agents, of which dobutamine appears to remain the most useful agent for 

clinical use in anaesthetized horses. In humans, dobutamine typically causes inotropic effects, 

combined with some vasodilation, effects which are quite similar to those of PDE III 

inhibitors in humans. These agents therefore might be useful during equine anaesthesia, but 

have received very little attention in literature.  
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Treatment of cardiovascular depression is important to reduce anaesthetic related mortality in 

horses. However, to detect cardiovascular depression and to monitor the response to 

treatment, an easily applicable, continuous, noninvasive and reliable method to measure 

cardiac output in anaesthetized horses is needed. Pulse contour analysis using the LiDCO-

Plus
®
 monitor appears attractive for this purpose. The first aim of the experimental part of 

this PhD thesis was therefore to evaluate the reliability of this monitor in ponies or horses. 

   When cardiac output is low, treatment with positive inotropes is often needed during 

anaesthesia in horses. While extensive literature is available on the effects of 

sympathomimetic drugs in horses, there is very limited information on the effects of 

phosphodiesterase III inhibitors. In humans, these agents are potent inotropes and induce little 

serious side effects during short term use. As described in chapter 1.2, amrinone may induce 

some side effects and is used less frequently compared to milrinone and enoximone in human 

medicine. Since the effects of milrinone had already been investigated in horses, the second 

aim of the present PhD thesis was to evaluate the cardiovascular effects and safety of 

enoximone in ponies and/or horses, alone or combined with other inotropic and vasoactive 

drugs.  

 

   To achieve these aims, both an experimental and a clinical study were set up. The specific 

aims of the experimental trial were to: 

- assess the reliability of the Pulse Contour analysis logarithm used in the LiDCO-Plus
®
 

monitor to measure cardiac output by comparing it to the lithium dilution technique. 

- evaluate the cardiovascular effects and side effects of a bolus of enoximone in 

isoflurane anaesthetized ponies, alone or in combination with dobutamine or calcium 

chloride. 

    

   The aim of the clinical study was to 

- explore enoximone‟s usefulness in horses undergoing colic surgery. 
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SUMMARY 

Cardiac output (   ) measurements using lithium dilution (LiDCO) and pulse contour 

analysis (PulseCO) techniques were compared in isoflurane anaesthetized ponies before 

and during the administration of different inotropic/vasoactive drugs. Six ponies aged 

5.0 ± 1.6 years and weighing 286 ± 53 kg were enrolled in a prospective, randomized, 

experimental cross-over trial. After sedation (romifidine) and induction (midazolam + 

ketamine), anaesthesia was maintained with isoflurane in oxygen. After 90 minutes (= 

T0), 1 of 4 treatments was administered: saline 0.1 mL/kg
 
(S), enoximone 0.5 mg/kg 

intravenously
 
(E), enoximone followed by dobutamine (0.5 µg/kg/min for 120 minutes) 

(ED) or enoximone followed by a calcium chloride infusion (0.5 mg/kg/min for 10 

minutes) (EC). Data were recorded for 120 minutes after T0. The PulseCO (recorded 

from carotid artery) was calibrated before T0, no further recalibrations were 

performed.     was determined with LiDCO (   LiDCO) and PulseCO (   PulseCO) 

simultaneously at T5, T10, T20, T40, T60, T80, T100 and T120. Systemic vascular 

resistances (SVRLiDCO and SVRPulseCO) were calculated.  

   In the saline group,    PulseCO was 4.9 ± 12.3 % lower than    LiDCO (P < 0.01), whereas 

SVRPulseCO was 6.9 ± 14.4 % higher than SVRLiDCO (P < 0.01). These differences 

increased over time,     by 0.06 % per minute
 
(P=0.042) and SVR by 0.08 % per minute

 

(P=0.018).    PulseCO was higher than    LiDCO in the EC group (1.8 ± 23.3 %), but lower 

than    LiDCO in groups E (-11.7 ± 20.4 %) and ED (-10.0 ± 25.9 %) (significant 

difference between treatments, P < 0.01). The differences in SVR in groups E (20.4 ± 

32.0 %) and ED (20.7 ± 35.3 %) were significantly higher than in groups S (6.9 ± 14.4 

%) and EC (3.1 ± 22.2 %) (P < 0.01). It can be concluded that the PulseCO values 

deviated significantly from the LiDCO measurements in isoflurane anaesthetized ponies 

and that this difference was influenced by inotropic/vasoactive drugs. 
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Introduction 

During equine anaesthesia, cardiovascular monitoring usually consists of an 

electrocardiogram and invasive measurement of arterial blood pressure. Indeed, supporting 

mean arterial blood pressure (MAP) is important in the prevention of severe complications, 

such as myopathies. However, measurement of cardiac output (   ) would allow an even 

better assessment of cardiovascular function. Ideally, the measurement technique must be 

easy to perform, accurate, continuous and minimally invasive. Numerous techniques have 

been described, such as the Fick principle (Fick 1870), electromagnetic flowmetry (Brunsting 

et al. 1970), indicator dilution methods (Lagerlof et al. 1950), Doppler echocardiography 

(Steingart et al. 1980), thoracic electrical bioimpedance (Mattar et al. 1986), pulse contour 

analysis (Kouchoukos et al. 1970) and rebreathing of carbon dioxide (Klausen 1965). While 

many of these methods have been used in horses (Waugh et al. 1980, Evans et al. 1988, 

Young et al. 1996, Giguère et al. 2005), the indicator dilution techniques have been used 

most frequently (Muir et al. 1976), but only allow an intermittent assessment of    . A 

continuous thermodilution method has been developed (Luchette et al. 2000), but its response 

time was reported to be rather slow (Siegel et al. 1996) and to the authors‟ knowledge, the 

use of the technique has not been described in depth in the horse. Transoesophageal 

echocardiography has also been reported as an effective and non-invasive method for 

measurement of     in anaesthetized horses (Young et al. 1996), but this technique requires 

experience and a long, expensive device is needed in horses.  

   Several other techniques have been developed, but one of the most attractive alternatives 

was the estimation of     based on an analysis of the arterial pressure wave, which would 

allow continuous, beat-to-beat assessment of     and only requires the insertion of an arterial 

catheter. Most of these pulse contour analysis methods are based on the “Windkessel” theory 

(Kouchoukos et al. 1970) and relate the arterial pressure or pressure difference to a flow or 

volume by taking the impedance through which the flow is driven into account (Jansen et al. 

1990). Numerous researchers developed countless linear models to assess stroke volume (SV) 

or     based on this theory, with rather disappointing results (Alderman et al. 1972, Starmer et 

al. 1973, Verdouw et al. 1975, Wesseling et al. 1976). Later, an extended version of the 

Windkessel model was developed: the “Modelflow” method (Wesseling et al. 1993). This 

nonlinear, time-varying, three-element model was able to maintain reliable determinations of 

    for a 24 hour period in humans, provided that no profound fluctuations in blood pressure 
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occurred (Gödje et al. 1999). An improved version of this algorithm has been implemented in 

the current PiCCO
®
 software (Pulsion Medical Systems AG, Munich, Germany) (Gödje et al. 

2002).  

   In the LiDCO-Plus
®
 monitor (LiDCO-plus Hemodynamic Monitor

®
, LiDCO Ltd., London, 

UK), continuous arterial pulse contour analysis is performed using a different formula 

compared to the previous methods. Cardiac output is calculated during each heart beat from 

the beat duration, ejection duration, MAP and the modulus and phase of the first harmonic of 

the waveform (Fig. 2 Chapter 1.1). The PulseCO
®

 technique incorporates a model of the 

pressure transfer from the aorta to the radial artery and uses a model of the arterial system in 

which wave reflections are well represented. The technique was therefore expected to be 

more accurate and less sensitive to changes in systemic vascular resistance (SVR) than the 

“Windkessel” model, where aorta and radial artery pressures are assumed to be equal and 

wave travel phenomena are not characterized (Linton & Linton 2001). Compared to 

thermodilution and LiDCO
®
, PulseCO

®
 reliably tracked changes in     in haemodynamically 

stable patients for at least 8 hours after cardiac surgery in humans, without performing 

recalibration (Hamilton et al. 2002).  

   As the PulseCO
®
 algorithm was developed for use in humans, the reliability in animals can 

be questioned. In anaesthetized dogs, the PulseCO
®
 provided directional tracking of    

 

measurements but poor accuracy when the haemodynamic conditions were altered 

appreciably from those during the initial calibration with the LiDCO
®
 system (Chen et al. 

2005). Although Martin-Bouyer et al. (2006) did not report significant differences between 

LiDCO
®
 and PulseCO

®
 in anaesthetized dogs after epidural administration of romifidine, the 

difference between the two methods gradually increased over time. One study in 24 horses 

undergoing elective or colic surgery reported a good correlation between LiDCO
®
 and 

PulseCO
®
 (Hallowell & Corley 2005). The objective of the present investigation was to 

further evaluate the accuracy of the PulseCO
®
 software in ponies by comparing LiDCO

®
 and 

PulseCO
®
 measurements under changing haemodynamic conditions.  
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Materials & Methods 

Animals 

After approval by the Ethical Committee of the Faculty of Veterinary Medicine of the 

University of Ghent (EC 2005/48), 6 ponies were used for the study: 5 geldings and 1 mare, 

aged 5.0 ± 1.6 years and weighing 286 ± 53 kg.  The left carotid artery had been transposed 

to a subcutaneous position at least two months before the experiment. Based on a physical 

and general blood examination, all ponies were regarded as ASA (American Society of 

Anesthesiologists) class I (normal and healthy).  

 

Anaesthetic protocol and instrumentation 

The ponies were fasted for 12 hours before anaesthesia. After sedation (80 µg/kg romifidine 

intravenously (IV) (Sedivet
®
, Boehringer Ingelheim, Brussels, Belgium)), a 12 gauge catheter 

(Intraflon 2
®
, Vygon, Ecouen, France) was placed in the right jugular vein. Fifteen minutes 

later, general anaesthesia was induced with 0.06 mg/kg
 
midazolam IV (Dormicum

®
, Roche, 

Brussels, Belgium) and 2.2 mg/kg ketamine IV (Anesketin
®
, Eurovet, Heusden-Zolder, 

Belgium). After endotracheal intubation (24 - 26 mm OD Soft rubber tracheal tube, Rüsch 

AG, Kernen, Germany), the ponies were placed in right lateral recumbency. The endotracheal 

tube was connected to a large animal anaesthetic unit (Matrix medical inc., Orchard Park, 

New York, USA + Sulla 909V
®
, Dräger, Lübeck, Germany) with a large animal respirator 

(Smith respirator LA 2100
®
, model 2002, Veterinary Technics/BDO-Medipass, Hoogezand, 

the Netherlands). 

   General anaesthesia was maintained with isoflurane (Isoflo
®
, Abbott Laboratories Ltd., 

Queenborough, Kent, United Kingdom) in oxygen, delivered through an out-of-circuit 

vaporizer (Drägerwerk AG, Lübeck, Germany). During the first 10 minutes of anaesthesia, 

the oxygen flow was set at 6 L/min, after which it was decreased to 10 mL/kg/min. 

Inspiratory and expiratory CO2, O2 and isoflurane concentrations were monitored with a 

calibrated, methane-insensitive, multi-gas analyzer (HP M1025B
®
, Hewlett Packard 

Company, Houston, USA). The end - tidal isoflurane concentration was maintained at 1.7 %. 

Respiration mode was assisted-controlled, with a tidal volume of 10 mL/kg, a respiratory 

frequency of 10 breaths/min, a peak inspiratory pressure of 1.96 kPa (20 cm H2O) and an 

inspiration time of 2 seconds. When necessary, these settings were adapted to maintain 

PaCO2 between 4.66 and 6.00 kPa (35 - 45 mm Hg). Lactated Ringer‟s solution 
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(Haemofiltration Formula E2, Clear-Flex
®
, Bieffe Medital, Grosotto, Italy) was infused at a 

rate of 3 mL/kg/hour.  

   After preparation of the skin over the left jugular vein and transposed carotid artery, a 20 

gauge catheter (Vasocan
®
 Braunüle Luer Lock, B. Braun Melsungen AG, Melsungen, 

Germany) was placed in the left carotid artery. Using the Seldinger technique, a 7 French 

thermodilution catheter (3-lumen, Abbott Laboratories, North Chicago, IL60064, USA) was 

placed in the left jugular vein, with the distal port in the right atrium to measure right atrial 

pressure (RAP). Correct positioning of the catheter was confirmed by the characteristic 

waveforms. Both the arterial and right atrial catheters were connected to a pressure 

transducer, zeroed at the level of the right atrium. Both catheters were regularly flushed 

during anaesthesia using a heparinized saline solution (100 IU heparin per mL (Heparine 

LEO
®
, Leo Pharma B.V., Breda, the Netherlands)). Pressures were monitored with a CMS-

Patientenmonitor
®
 (HP M1165A

®
, model 56S, Hewlett-Packard GmbH, Böblingen, 

Germany), which was also used to record the electrocardiogram (ECG) (base-apex lead), to 

perform pulse-oximetry (probe placed on tongue) and to measure body temperature using an 

oesophageal probe. The pressure monitoring system was calibrated against a mercury 

manometer before each experiment.  Cardiac output was determined with both the lithium 

dilution technique (   LiDCO) and with Pulse Contour Analysis (   PulseCO) (LiDCO-plus 

Hemodynamic Monitor
®

, LiDCO Ltd., London, UK). For LiDCO measurements, a 1 to 1.5 

mmol bolus of lithium chloride was injected through the proximal port of the thermodilution 

catheter, while arterial blood for detection of lithium chloride by the LiDCO sensor (CM10 

LiDCO sensor
®
, LiDCO Ltd.) was withdrawn from the carotid artery by the LiDCO Flow 

Regulator. The LiDCO-plus
®
 monitor then calculated     using the following formula:     = 

(LiCl dose x 60)/[Area x (1 – PCV)] (where Area =  integral of primary concentration versus 

time curve and PCV = packed cell volume). The monitor requires the user to enter the blood 

haemoglobin (Hb) concentration and calculates PCV from this value (PCV(L/L) = Hb 

(g/dL)/34) (Linton et al. 2000). Since we measured PCV by centrifugation before each 

LiDCO determination, but not the Hb concentration, we calculated Hb from PCV using the 

same formula. The plasma sodium concentration is also required by the LiDCO-plus
®

 

monitor and was determined on a blood sample withdrawn from the right jugular vein before 

sedation (AVL 9180 Electrolyte Analyzer
®
, AVL scientific corporation, Roswell, Georgia, 

USA 30076). Dilution curves rejected by the LiDCO-plus
®
 software were repeated 

immediately. For Pulse Contour Analysis, the pressure waveform from the catheter in the 
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carotid artery was analyzed by the LiDCO-plus
®
 monitor. During LiDCO measurements, 

PulseCO values were temporarily unavailable, as the arterial catheter had to be disconnected 

from the pressure transducer to allow blood flow towards the lithium sensor. Therefore, 

   PulseCO was taken as the mean of the PulseCO values during the last 5 seconds before and 

the first 5 seconds after each LiDCO measurement. PulseCO calibration, based on a LiDCO 

measurement, was performed after 60 minutes of anaesthesia and repeated 10 and 20 minutes 

later if LiDCO and PulseCO values differed by more than 5%. No further recalibrations were 

performed during the remaining anaesthetic period (120 minutes). At each of these three time 

points (T-30, T-20 and T-10), baseline values for heart rate (HR), systolic (SAP), diastolic 

(DAP) and mean arterial pressure (MAP) and RAP were also recorded.  

 

Experimental design 

Ninety minutes after induction, 1 of 4 treatments was administered: an IV bolus of 0.5 mg/kg 

enoximone 0.5%  at a rate of 20 mL/min (treatment E), an equivalent volume of saline (0.1 

mL/kg) at 20 mL/min (treatment S), an IV bolus of enoximone 0.5 mg/kg at 20 mL/min, 

followed by a constant rate infusion of 0.5 µg/kg/min dobutamine (Dobutamine Mayne
®
, 

Mayne Pharma, Brussels, Belgium) for 120 minutes (treatment ED) or an IV bolus of 

enoximone 0.5 mg/kg at 20 mL/min, followed by an infusion of calcium chloride at 0.5 

mg/kg/min (Calcii chloridum 10%, Federa, Brussels, Belgium) from T5 to T15 (treatment 

EC). T0 was defined as the end of the injection of saline or enoximone, after which data were 

recorded for 120 minutes. In a randomized order, each pony received all 4 treatments in a 

crossover trial setting, with a wash-out period of at least 2 weeks between treatments. 

   Heart rate, SAP, DAP, MAP, RAP,    LiDCO and    PulseCO were recorded at T5, T10, T20, 

T40, T60, T80, T100 and T120 (time expressed in minutes), except in the EC group, where 

LiDCO measurements were not performed at T5.  

   Stroke volume (SVLiDCO and SVPulseCO) and SVR (SVRLiDCO and SVRPulseCO) were 

calculated as follows: 
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Statistical analysis 

Statistical analysis was performed using a statistical software programme (S-Plus
®
 7.0 for 

Windows, Insightful Corp., Seattle, USA). Data are expressed as mean ± 1 standard deviation 

(SD). For each pair of    
 
measurements after T0, the absolute and relative differences in     

(AbsDiff   
 
and RelDiff   

 
respectively) were calculated as: 

                                                       

                     
                                  

               
 

                         

                      
                          

   

                     
                    

                          
  

                      
 

   To assess whether these differences were significant during treatment with saline, a paired 

t-test was performed. The evolution of these differences over time in the control group was 

assessed using a mixed model ANOVA with pony as random effect and time as continuous 

fixed effect.  

   The influence of treatment was analyzed using a mixed model ANOVA with pony as 

random effect, treatment as categorical fixed effect and time and its interaction with treatment 

as continuous fixed effects. To further document bias and precision, Bland-Altman plots were 

obtained and mean bias and limits of agreement between LiDCO and PulseCO techniques 

were calculated for each treatment group (Bland & Altman 1986). 

   To assess whether RelDiff    during treatment S was influenced by changes in HR, SAP, 

DAP, MAP, RAP, PCV or SVRLiDCO, mixed models were fitted with pony as random effect 

and the respective variable as continuous fixed effect.  Differences were considered 

significant if P < 0.05.  

 

Results  

In total, 186 comparisons between LiDCO and PulseCO values for     and SVR were 

obtained. The mean total lithium chloride dose per pony was 0.056 ± 0.011 mmol/kg, with a 
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maximum of 0.068 mmol/kg in one pony. Overall, during saline treatment (Fig. 1 & 2, Table 

1), PulseCO understimated    LiDCO by 0.70 ± 1.33 L/min (P < 0.001) (mean bias 4.9 ± 12.3 

%, limits of agreement -19.7 and +29.5 %) and overestimated overall SVR by 22.0 ± 58.0 

dyne.sec/cm
5
 (P = 0.011) or 6.9 ± 14.4 % (P = 0.002) (mean ± SD). The difference also 

increased over time: each minute, the absolute difference between    LiDCO and    PulseCO 

increased by 0.007 L/min (P = 0.023), while the relative difference increased by 0.06 % per 

minute (P = 0.042). The difference between SVRLiDCO and SVRPulseCO increased by 0.29 

dyne.sec/cm
5
 (P = 0.027) or 0.08 % (P = 0.018) each minute. 

    While    PulseCO was usually lower than    LiDCO during treatments S and E, PulseCO 

initially overestimated LiDCO values in groups ED and EC, but gradually became lower than 

LiDCO values during the remaining period of the anaesthesia (Fig. 1 & 2, Table 1). 

Consequently, there were significant differences between treatments in AbsDiff    (P < 

0.001), AbsDiffSVR (P = 0.009), RelDiff    (P = 0.001) and RelDiffSVR (P = 0.006).  

 

Fig. 1:  Cardiac output (   ) measured using lithium dilution (LiDCO) and Pulse Contour 

Analysis (PulseCO) in 6 anaesthetized ponies, receiving a bolus of enoximone (E), 

saline (S), enoximone followed by a dobutamine infusion during 120 minutes (ED) or 

enoximone followed by a calcium chloride infusion during 10 minutes (EC). T0 = end 

of administration of saline or enoximone; PulseCO calibration performed at T-30, T-

20 and T-10.  

Data are represented as mean ± 1 standard deviation.    
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Table 1:  Cardiac output (   ), stroke volume (SV) and systemic vascular resistance (SVR) measured by lithium dilution (LiDCO) and pulse contour 

analysis (PulseCO) in 6 anaesthetized ponies, during treatment (Trt) with saline (S), enoximone (E), enoximone followed by a dobutamine 

infusion (ED) or enoximone followed by a calcium chloride infusion (EC).  

 

Data are represented as mean ± SD. 

T0 = end of administration of saline or enoximone 

PulseCO calibration performed at T-30, T-20 and T-10. 
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Overall, the largest absolute difference in     was in the enoximone/dobutamine treatment, 

with PulseCO understimating    LiDCO (mean bias 2.28 ± 5.90 L/min, limits of agreement -

9.52 and +14.08 L/min), especially from T40 onwards, when     was also clearly higher 

compared to the other treatments. However, when looking at the relative differences, the 

largest overall difference in     was found after treatment E, where    PulseCO was lower than 

   LiDCO (mean bias 11.7 ± 20.4 %, limits of agreement -40.8 and +52.5 %). Mean bias during 

treatment ED was 10.0 ± 25.9 %. The smallest relative difference was found in the 

enoximone/calcium combination group, where overall PulseCO overestimated LiDCO values 

(mean bias -1.8 ± 23.3 %, limits of agreement -48.4 and +44.8%). RelDiffSVR in groups ED 

(20.7 ± 35.3 %) and E (20.4 ± 32.0 %) was significantly higher than in groups S (6.9 ± 14.4 

%) (P < 0.01) and EC (3.1 ±  22.2 %) (P < 0.001).   

 

Fig. 2:  Bland-Altman plots of cardiac output measured using lithium dilution (LiDCO) and 

Pulse Contour Analysis (PulseCO) in 6 anaesthetized ponies, receiving a bolus of 

enoximone (E), saline (S), enoximone followed by a dobutamine infusion during 120 

minutes (ED) or enoximone followed by a calcium chloride infusion during 10 minutes 

(EC).  

Mean bias (middle line) and limits of agreement (upper and lower line) are indicated. 
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   Systolic arterial pressure, DAP and MAP had a significant effect on RelDiff    during 

treatment S: as these pressures increased, RelDiff    became higher (P < 0.001) (Fig. 3). No 

significant influence of HR, RAP, PCV or SVR on RelDiff    could be detected.   

 

Fig. 3:  Mean arterial pressure and relative differences between lithium dilution and pulse 

contour analysis measurements of cardiac output (RelDiff   ) in 6 anaesthetized ponies 

receiving a bolus of saline at T0 (treatment S). Values are represented as mean ± SD.  

 

Discussion 

In the present study, significant differences between LiDCO and PulseCO estimations of both 

the     and the SVR were found in isoflurane anaesthetized ponies, even when no drugs were 

administered. Furthermore, these differences significantly increased over time and were 

influenced by the different treatments. These results indicate that in a clinical setting, relevant 

differences may occur if recalibration is not performed regularly, especially in 

haemodynamically unstable patients receiving inotropic/vasoactive drugs.     

   Although the thermodilution technique (TDCO) is widely used for     measurements in 

horses, the LiDCO technique was chosen as reference to validate PulseCO measurements in 

the present study. Indeed, comparison of TDCO and LiDCO measurements has demonstrated 

30

35

40

45

50

55

60

65

70

75

-10

0

10

20

30

40

50

-30 -20 -10 5 10 20 40 60 80 100 120

M
e

a
n

 a
rt

e
ri

a
l 
p

re
s

s
u

re
 (

M
A

P
)

R
e
la

ti
v
e

 d
if

fe
re

n
c
e

 c
a

rd
ia

c
 o

u
tp

u
t

Time (minutes)

RelDiffQt
MAP

. 



LiDCO & PulseCO in ponies 
 

100 

 

that the LiDCO technique is reliable, not only in humans (Linton et al. 1997), but also in 

anaesthetized horses (Linton et al. 2000) and foals (Corley et al. 2002). Although it has been 

shown in pigs that a peripheral injection site can be used for lithium chloride administration, 

a better correlation with an electromagnetic flowmeter around the aorta was found using a 

central injection site (Kurita et al. 1999). Therefore, a central venous injection of lithium 

chloride was preferred in the present study, in order to increase the accuracy of the reference 

technique. 

   In dogs and foals, LiDCO progressively exceeded TDCO over time. This was attributed to  

a decrease in the sensitivity of the older types of the LiDCO sensor (which had a relatively 

thin membrane) over time (Mason et al. 2001, Corley et al. 2002). However, newer sensors 

(as used in the present study) have a thicker membrane, which should increase their 

performance over longer time periods (Mason et al. 2001). Alternatively, increased 

background serum lithium concentrations can reduce the sensitivity of the sensor, leading to a 

smaller lithium peak and a consequent overestimation of true    . In the present study, 11 

measurements were performed over 150 minutes. Although 20 successive 3 mmol bolus 

injections given at 3-minute intervals to adult Standardbred horses did not interfere with the 

performance of the LiDCO, Hatfield et al. (2001) recommended a maximum of 10 

measurements in 2 hours. According to the manufacturer of LiDCO-plus
®
, increased 

background serum lithium only becomes important when serum lithium concentrations 

increase above 0.2 mmol/L. Corley et al. (2002) reported that the cumulative lithium dose to 

achieve this concentration in foals was approximately 0.08 ± 0.03 mmol/kg. In the present 

study, this mean dose was never exceeded, even in the pony receiving the highest dose (0.068 

mmol/kg).  

   It is also possible that the use of plasma sodium concentrations of the standing non-sedated 

ponies for LiDCO measurements during anaesthesia would affect the accuracy of the LiDCO 

measurements. However, plasma sodium concentrations have not been reported to change 

after induction of anaesthesia in horses (Tevik et al. 1968, Gasthuys et al. 1986). 

Furthermore, plasma sodium concentrations during anaesthesia should have been stable after 

the initial calibration, since none of the treatments should have affected plasma sodium 

concentrations. Therefore, the comparison between the 2 techniques should be reliable. 

Finally, calculation is less accurate than measurement of the haemoglobin concentration. 

However, as explained in the materials and methods section, the LiDCO-plus
®

 monitor uses 



Chapter 3: Discussion 
 

 101 

PCV and not haemoglobin in the formula applied to calculate    
 
 and actually derives PCV 

from the entered haemoglobin value using the same formula as the one used in the present 

study to calculate haemoglobin from PCV (Linton et al. 2000). In conclusion, the LiDCO 

measurements in the present study can be assumed to be as accurate as previously described 

(Linton et al. 2000, Corley et al. 2002). Consequently, the actual     was likely to be 

progressively underestimated by the PulseCO software. 

   During saline treatment, isoflurane anaesthesia was kept stable using the expiratory 

isoflurane concentration and a constant PaCO2. Nevertheless,    PulseCO became significantly 

lower than    LiDCO with a mean bias of 4.9%. Relative differences between the 2    
 

measurement techniques were calculated because Critchley and Critchley (1999) argued that 

these are more relevant compared to absolute differences. According to their report, limits of 

agreement of ± 30 % between the new and the reference technique  are acceptable. The limits 

of agreement were -19.7 and 29.5 % in the control treatment of the present study. As the 

difference was significantly larger during the other treatments (limits of agreement during 

enoximone treatment -40.8 and +52.5 %), PulseCO became more unreliable as the 

haemodynamic conditions changed. 

   Several hypotheses are possible to explain why PulseCO values were lower than LiDCO 

measurements during saline treatment and why this difference became larger over time. In the 

saline group, gradual but significant increases in SVRLiDCO and blood pressure and decreases 

in HR occurred over time (Chapter 4.1). Changes in blood pressure and especially in SVR 

were proven to affect the accuracy of various linear pulse contour analysis techniques 

(Kouchoukos et al. 1970, Starmer et al. 1973). Even the Modelflow method, although it takes 

aortic characteristic impedance, arterial compliance and SVR into account (Wesseling et al. 

1993), was found to be less accurate when pronounced changes in blood pressure and/or SVR 

occurred (Gödje et al. 1999, Rödig et al. 1999). The PulseCO software incorporates a model 

of pressure transfer from the aorta to peripheral arteries, takes wave reflection into account 

and should therefore be less sensitive to changes in SVR, as backward flow, resulting in 

augmentation of the pressure but retardation of the flow, is partly determined by SVR. In 

humans, PulseCO
®
 was accurate in conditions when the SVR changed but MAP remained 

constant and in conditions where the changes in SVR were small compared to changes in 

MAP (Linton & Linton 2001). In the present study, no significant influence of SVR on the 

difference between LiDCO and PulseCO could be demonstrated, although SVR increased 
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substantially and significantly during saline treatment (see chapter 4.1). However, statistical 

analysis confirmed that the difference in     estimated by the 2 methods became larger when 

blood pressure increased, possibly because aortic compliance decreased substantially in a 

non-linear way when pressure increased (Jansen et al. 2001). The respective curves during 

treatments E, ED and EC illustrated the same trend: after an initial increase in     following 

administration of enoximone, which was reliably tracked by the PulseCO, blood pressure 

gradually increased in all groups, accompanied by an increasing difference between LiDCO 

and PulseCO values. Similar to the present study, Chen et al. (2005) reported an 

underestimation of     by the PulseCO when blood pressure increased in dogs.  

   To the authors‟ knowledge, there is only one report about the accuracy of the PulseCO 

software in horses (Hallowell & Corley 2005). These authors reported a mean difference 

between LiDCO and PulseCO of 0.2%, with limits of agreement of -10.6 to + 11%, which 

was far better than the results of the present study. Although we did not use a continuous 

flushing device for the arterial catheter, it was frequently flushed manually using a 

heparinized saline solution and no obvious  signs of dampening of the arterial waveform were 

observed in any of the ponies. Secondly, blood pressure was recorded from the carotid artery, 

while either the facial or metatarsal arteries were used by Hallowell and Corley (2005). To a 

certain degree, the accuracy of pulse contour analysis techniques may differ according to the 

artery from which it is recorded (Gödje et al. 2002). However, PulseCO was designed for use 

with radial artery pressure in man, because it incorporates a model of the pressure transfer 

from the aorta to the radial artery (Linton & Linton 2001). Therefore, inaccuracy would 

mainly be expected with pressures monitored from the hind limb, as the most important sites 

of wave reflection are the vascular beds of the trunk (Karamanoglu et al. 1994). Changes in 

the reflection coefficient of these beds might change the relationship between the pressures in 

the ascending and abdominal aorta as well as arteries distal to this vessel (Linton & Linton 

2001). The accuracy of pulse contour analysis from the carotid artery should thus be 

comparable to the one from the facial artery.  

   Results of the present study indicated that the difference between the 2 methods increased 

over time. In the study of Hallowell and Corley (2005), LiDCO measurements were 

performed at 20-30 minute intervals and compared to the PulseCO readings immediately 

before each measurement. However, it is not mentioned whether the PulseCO was 

recalibrated with each LiDCO measurement. If recalibration was performed at 20-30 minute 
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intervals, differences between both techniques would be minimized. Furthermore, the number 

of comparisons per horse varied between 2 and 6, with 20 to 30 minute intervals between 

recordings, indicating that even if no recalibrations were performed, a large part of the 

comparisons was performed within the first hour after the initial calibration. As the present 

study was performed over a longer time period (120 minutes after calibration), a larger 

difference between the two methods was expected. Other factors which may affect PulseCO 

measurements, such as an aortic aneurysm or aortic valve abnormalities, were not present in 

these experimental ponies.  

   The LiDCO-plus
®
 user‟s manual recommends checking the calibration in humans every 8 

hours and each time a significant change is instituted in the haemodynamic management of 

the patient, when the arterial catheter or pressure line is changed or when the patient is moved 

to a new location. However, despite such measures, clinically relevant differences between 

TDCO and PulseCO (Linton and Linton 2001, Yamashita et al. 2005) or PiCCO (Halvorsen 

et al. 2006) have been reported in human patients during and after coronary artery bypass 

surgery and it has been recommended to check or redo the calibration before major clinical 

decisions are taken (Linton & Linton 2001). Based on the results of the present study, this can 

also be recommended in horses, since the accuracy of the PulseCO was significantly different 

between treatments, indicating that possible differences may be magnified in case of 

pronounced haemodynamic changes. Especially in these animals, where accurate knowledge 

of     would be of great value to the clinician, the PulseCO may thus become less reliable if 

recalibration is not performed.  

   Significant differences in SVR were expected between treatments, because enoximone 

induced vasodilation in humans (Vernon et al. 1991), dobutamine tended to reduce SVR in 

ponies (Gasthuys et al. 1991, Lee et al. 1998) and may increase SVR at higher doses in horses 

(Taylor & Clarke 1999), a combination of enoximone and dobutamine potentiated the 

systemic vasodilator effects of both drugs in humans (Thuillez et al. 1993) and administration 

of calcium increased SVR in anaesthetized ponies (Gasthuys et al. 1991). Nevertheless, in the 

present study, the only significant difference in SVR was found during treatment with 

enoximone and dobutamine, where SVRLiDCO was lowest. Although the largest absolute 

difference between LiDCO and PulseCO values was also found during treatment ED, no 

significant correlation was found between SVR and the difference between both techniques. 

Most likely, the large absolute difference found during treatment ED can simply be explained 
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by the fact that     values were also highest during this treatment. When relative differences 

were analyzed, the differences during treatments E and ED were comparable. 

   The smallest relative difference overall was found during treatment with a combination of 

enoximone and calcium chloride. PulseCO overestimated     in this group, especially during 

and immediately after calcium administration. It might be hypothesized that alterations in the 

concentration of ionized calcium have an influence on the voltage of the lithium sensor, 

thereby influencing LiDCO measurements. However, this is most unlikely, as the sensor 

should only be sensitive to ions with a single positive charge (like lithium and sodium) and 

not to ionized calcium, which carries a double positive charge. On the other hand, as HR, 

arterial blood pressure and SVRLiDCO were all comparable in groups E and EC, it remains 

unclear how calcium administration influenced PulseCO readings. During treatment EC, 

standard deviation of the LiDCO measurements was higher than during treatment E. This 

indicates that, compared to treatment E, there was more variation in the response to treatment 

EC between the different ponies. As a result, standard deviation of the PulseCO 

measurements was also increased. The overestimation of     by the PulseCO might therefore 

simply be the result of statistical coincidence. The large overlap of the PulseCO 

measurements during treatments E and EC confirms this hypothesis. 

   In conclusion, the present study indicated that, over a period of 120 minutes after 

calibration, PulseCO can significantly differ from LiDCO measurements in 

haemodynamically stable, isoflurane anaesthetized ponies. Furthermore, this difference 

gradually increased over time and was influenced by inotropic/vasoactive drugs and by 

changes in arterial blood pressure. It is therefore recommended to check the calibration 

before major clinical decisions are taken.             
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SUMMARY 

The cardiovascular effects of enoximone were examined in six healthy, isoflurane 

anaesthetized ponies, aged 5.0 ± 1.6 years and weighing 286 ± 52 kg. After sedation with 

romifidine (80 µg/kg intravenously (IV)), anaesthesia was induced with midazolam (0.06 

mg/kg IV) and ketamine (2.2 mg/kg IV) and maintained with isoflurane in oxygen 

(FE´Iso 1.7%). The ponies were ventilated to maintain normocapnia (PaCO2 4.66-6.00 

kPa). Each pony was anaesthetized twice to receive either enoximone 0.5 mg/kg IV (E) 

or saline (S) 90 minutes after induction, with a minimal interval of 3 weeks between 

treatments. Heart rate (HR), arterial blood pressure and right atrial pressure (RAP), 

cardiac output (   ) (lithium dilution technique) and blood gases (arterial and central 

venous samples) were recorded at regular intervals during a period of 120 minutes after 

treatment. Stroke volume (SV), systemic vascular resistance (SVR), venous admixture 

(       ) and oxygen delivery (DO2) were calculated.  

   Enoximone induced significant increases in HR,    , SV,         and DO2 and a 

significant decrease in RAP. No significant differences were detected for arterial blood 

pressure, SVR and blood gases. No cardiac arrhythmias or other side effects were 

observed. These results suggest that in isoflurane anaesthetized ponies, enoximone has 

beneficial effects on     and SV without significantly affecting blood pressure. Despite 

increases in        , DO2 to the tissues was improved.  
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Introduction 

Johnston et al. (2002) pointed out that most causes of perianaesthetic death in horses are 

linked with cardiovascular depression. Horses appear to be more susceptible to the 

cardiovascular and respiratory depressant effects of the inhalation anaesthetics than other 

species (Eberly et al. 1968, Gillespie et al. 1969, Hall 1971). This results in hypotension and 

poor tissue perfusion. As a result, tissue oxygen supply is often inadequate in anaesthetized 

horses, as delivery of oxygen (DO2) to the tissues is determined not only by the arterial 

oxygen content (CaO2) (which is often low in the recumbent horse) but also, and even more 

important, by the cardiac output (   ). In order to prevent postanesthetic myopathy, 

preventing myocardial depression and maintaining tissue blood flow are of major importance 

in the equine patient. 

   Reduction in anaesthetic depth, high-volume fluid therapy and inotropic support to 

maintain mean arterial pressure (MAP) above 70 mm Hg are recommended to reduce the 

severity of myopathy (Duke et al. 2006). Available inotropic drugs include digitalis 

glycosides, beta-adrenergic agonists, calcium sensitizers and phosphodiesterase (PDE) 

inhibitors (Notterman 1991, Via et al. 2003). Sympathomimetics are most frequently used in 

anaesthetized horses, although side-effects can occur, including sinus tachycardia, cardiac 

arrhythmias, muscular tremor and in some cases severe vasoconstriction (Swanson et al. 

1985, Trim et al. 1985, Gasthuys et al. 1991, Lee et al. 1998). 

   PDE III inhibitors (amrinone, milrinone, enoximone) are nonglycoside, noncatecholamine 

agents with positive inotropic and vasodilating effects (Vernon et al. 1991) and less 

proarrhythmic effects than dobutamine (Caldicott et al. 1993).  These drugs exert their action 

through inhibition of the enzymatic hydrolysis of cAMP. This leads to positive inotropic and 

lusitropic effects in the myocardium (Vernon et al. 1991) and systemic vasodilation (Evans 

1989). Amrinone is used less frequently in man, because accumulation can occur in critically 

ill patients and thrombocytopenia has been observed (Notterman 1991). Fewer side effects 

have been reported in man using the newer PDE III inhibitors, such as milrinone and 

enoximone (Kikura et al. 1995). The haemodynamic effects of milrinone have been 

investigated in halothane anaesthetized horses, whereby increases in heart rate (HR), MAP, 

   , ejection fraction and maximum rate of increase and decrease of left ventricular pressure 

(+/- dP/dtmax) were observed (Muir 1995).  
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   In man, enoximone increases coronary blood flow, reduces vascular resistances and has a 

positive inotropic effect, without significant increases in myocardial oxygen consumption 

(Dage and Okerholm 1990, Ghio et al. 2003). Myocardial oxygen consumption, as reflected 

by heart rate-pressure product, was significantly lower in patients who received enoximone 

than in patients receiving dobutamine following cardiopulmonary bypass (Lançon et al. 

1990). Even more, in patients with acute myocardial infarction, enoximone was tolerated 

better and produced fewer side-effects than dobutamine using doses which produced similar 

increases in     (Caldicott et al. 1993). The aim of the present study was to determine the 

effects of a single bolus of enoximone in isoflurane anaesthetized ponies.

 

Materials & Methods 

Animals 

After approval by the Ethical Committee of the Faculty of Veterinary Medicine of the 

University of Ghent (EC 2005/48), six ponies, aged 5.0 ± 1.6 years and weighing 286 ± 52 

kg, were selected for this study (5 geldings and 1 mare). The left carotid artery was 

transposed to a subcutaneous position at least two months before the experiment. The ponies 

were regularly vaccinated and dewormed. Based on a physical and general blood 

examination, they were regarded as ASA (American Society of Anesthesiologists) class I 

(normal, healthy patient).  

 

Determination of baseline values in the standing ponies 

In the first phase of the experiment, values for HR, arterial blood pressure and     were 

determined in the standing, unsedated ponies. A 14 gauge catheter (Vasocan
®

 Braunüle Luer 

Lock, B. Braun Melsungen AG, Melsungen, Germany) was placed in the right jugular vein 

and blood was withdrawn for measurement of plasma sodium level (AVL 9180 Electrolyte 

Analyzer
®
, AVL scientific corporation, Roswell, Georgia, USA 30076) and packed cell 

volume (PCV) (Haemofuge
®
, Heraeus Instruments, Osterode, Germany). A 20 gauge catheter 

(Vasocan
®

 Braunüle Luer Lock) was placed in the left carotid artery and connected to a 

pressure transducer (ST-33
®
, PVB Critical Care GmbH, Kirchseeon, Germany), zeroed at the 

level of the right atrium. A haemodynamic monitor (CMS Patientenmonitor HP M1165A
®
, 

model 56S, Hewlett-Packard GmbH, Böblingen, Germany) was used to record the 

electrocardiogram (ECG, base-apex lead) and systolic, diastolic and mean arterial pressures 
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(SAP, DAP and MAP respectively). The pressure monitoring system was calibrated against a 

mercury manometer before the experiment. Cardiac output measurements were performed 

with the lithium dilution technique (LiDCO-plus Haemodynamic Monitor
®
, LiDCO Ltd., 

London, UK): a 1.5 mmol bolus of lithium chloride was injected through the jugular catheter, 

while arterial blood for detection of lithium chloride by the LiDCO sensor (CM10 LiDCO 

sensor
®
, LiDCO Ltd.) was withdrawn from the carotid artery by the LiDCO Flow Regulator 

(4.5 mL/min). Haemoglobin (Hb) concentration, required by the LiDCO-plus
®
 monitor, was 

calculated from PCV (Hb (g/dL) = 34 * PCV (L/L) (Linton et al. 2000)). 

   The ponies were placed in a stock in a quiet environment. After 30 minutes of 

accommodation, values for HR, SAP, DAP, MAP and     were recorded twice with an 

interval of 10 minutes. Arterial blood samples were withdrawn anaerobically and analyzed 

immediately for oxygen and carbon dioxide partial pressures (PaO2 and PaCO2 respectively) 

and pH (ABL5
®
, Radiometer, Copenhagen, Denmark). Corrections for body temperature and 

inspiratory O2 fraction (FIO2) were performed. Haemoglobin saturation (SO2), bicarbonate, 

standard bicarbonate (SBC), total carbon dioxide (tCO2) and actual and standard base excess 

(ABE and SBE respectively) were calculated automatically by the ABL5
®
 Radiometer. PCV 

was obtained by centrifugation. 

 

General anaesthesia 

At least one week later, the second part of the study was performed in the anaesthetized 

ponies. Each pony was anaesthetized four times to receive one of four treatments 90 minutes 

after induction. The same anaesthetic protocol was used on all occasions. Food, but not water, 

was withheld during 12 hours before anaesthesia. Blood was withdrawn from the right 

jugular vein for measurement of plasma sodium level. Subsequently, the ponies were sedated 

with 80 µg/kg romifidine IV (Sedivet
®
, Boehringer Ingelheim, Brussels, Belgium) and a 12 

gauge catheter (Intraflon 2
®
, Vygon, Ecouen, France) was placed in the right jugular vein. 

Fifteen minutes after sedation, anaesthesia was induced with 0.06 mg/kg
 
midazolam IV 

(Dormicum
®
, Roche, Brussels, Belgium) and 2.2 mg/kg ketamine IV (Anesketin

®
, Eurovet, 

Heusden-Zolder, Belgium). An orotracheal tube (24-26 mm OD, Soft rubber tracheal tube, 

Rüsch AG, Kernen, Germany) was placed and the pony was positioned in right lateral 

recumbency, on a surgery table, with the legs upwards at an angle of 40° to the horizontal. 
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   General anaesthesia was maintained with isoflurane (Isoflo
®
, Abbott Laboratories Ltd., 

Queenborough, Kent, United Kingdom) in oxygen, using a large animal anaesthetic unit 

(Matrx medical inc., Orchard Park, New York, USA + Sulla 909V
®
, Dräger, Lübeck, 

Germany) with an out-of-circuit vaporizer (Drägerwerk AG, Lübeck, Germany) and a large 

animal ventilator (Smith respirator LA 2100
®

, model 2002, Veterinary Technics/BDO-

Medipass, Hoogezand, the Netherlands). The oxygen flow was started at 6 L/min and 

decreased to 10 mL/kg/min after 10 minutes. Respiration mode was assisted-controlled, with 

a tidal volume of 10 mL/kg. Respiratory frequency was set at 10 breaths/min, peak 

inspiratory pressure at 1.96 kPa (20 cm H2O) and inspiration time at 2 seconds. When 

necessary, these settings were adapted to maintain PaCO2 between 4.66 and 6.00 kPa (35-45 

mm Hg). Lactated Ringer‟s solution (Haemofiltration Formula E2, Clear-Flex
®
, Bieffe 

Medital, Grosotto, Italy) was infused throughout anaesthesia at a rate of 3 mL/kg/h. Air 

conditioning in the operating theatre maintained room temperature at 21 °C. 

   The skin over the left jugular vein and transposed carotid artery was surgically prepared. A 

20 gauge catheter (Vasocan
®

 Braunüle Luer Lock) was placed in the left carotid artery and 

connected to a pressure transducer, placed at the level of the right atrium. Using the Seldinger 

technique, a 7 French thermodilution catheter (3-lumen, Abbott Laboratories, North Chicago, 

IL60064, USA) was placed in the left jugular vein, with the distal port of the catheter in the 

right atrium to measure right atrial pressure (RAP). Correct positioning of the catheter was 

guided by the characteristic waveforms. The pressure monitoring system was zeroed at the 

level of the right atrium and calibrated against a mercury manometer before each experiment.  

   Inspiratory and expiratory CO2, O2 and isoflurane concentrations were monitored with a 

calibrated, methane-insensitive, multi-gas analyzer (HP M1025B
®
, Hewlett Packard 

Company, Houston, USA). The CMS-Patientenmonitor (HP M1165A
®
, model 56S, Hewlett-

Packard GmbH) was used to record the electrocardiogram (ECG) (base-apex lead), to 

monitor SAP, DAP, MAP and RAP and to measure body temperature. Cardiac output was 

measured with the lithium dilution technique (LiDCO-plus Haemodynamic Monitor
®
), using 

a 1.5 mmol bolus of lithium chloride, injected through the proximal port of the 

thermodilution catheter. As in the standing ponies, Hb concentration was estimated from the 

PCV, which was measured before each LiDCO determination. Plasma sodium level 

(determined before each anaesthetic episode) was entered into the LiDCO-plus
® 

monitor. 
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   The first 60 minutes of anaesthesia served as an instrumentation and stabilisation period to 

achieve an end-tidal isoflurane concentration of 1.7 % and a PaCO2 between 4.66 and 6.00 

kPa (ABL5
®
 Radiometer). After this period, three baseline values were recorded for 

inspiratory and expiratory isoflurane, CO2 and O2, HR, SAP, DAP, MAP, RAP, body 

temperature and    . Arterial (a) and central venous (v) blood samples were collected 

anaerobically from the carotid artery and the right atrium respectively, over a period of three 

breaths (both samples simultaneously), for determination of pH, PCO2, PO2, haemoglobin 

saturation with oxygen (SaO2), bicarbonate, SBC, tCO2, ABE, SBE and PCV (ABL5
®

, 

Radiometer). Time between baseline measurements was 10 minutes. Baseline values were 

calculated as the mean of these 3 recordings for each variable.    

   Ninety minutes after induction, one of four treatments was administered. Treatment S 

consisted of an IV bolus of 0.1 mL/kg saline (S). During treatments E, ED and EC, 0.5 mg/kg 

enoximone 0.5% (Perfan
®
, Myogen GmbH, Bonn, Germany) was administered at a rate of 20 

mL/min using an infusion pump (Ohmeda 9000 Syringe Pump
®
, Ohmeda, West Yorkshire, 

England), followed by either no additional drugs (treatment E), a constant rate infusion (CRI) 

of 0.5 µg/kg/min dobutamine (Dobutamine Mayne
®
, Mayne Pharma, Brussels, Belgium) 

during 120 minutes (treatment ED) or an infusion of calcium chloride at 0.5 mg/kg/min 

(Calcii chloridum 10%, Federa, Brussels, Belgium) from T5 to T15 (treatment EC). For 

treatment ED, dobutamine was dissolved in saline to obtain a concentration of 0.5 mg/mL 

and was administered through the cathether in the right jugular vein using a standard infusion 

pump (Ohmeda 9000 Syringe Pump
®
). T0 was defined as the end of the injection of saline or 

enoximone. After T0, data were recorded during 120 minutes. Each pony received all 

treatments in a randomized crossover trial, with a wash-out period of at least 2 weeks 

between treatments. 

   Values for inspiratory and expiratory CO2 and O2, HR, SAP, DAP, MAP, RAP and body 

temperature were recorded at T5, T10, T15, T20, T25, T30, T40, T50, T60, T70, T80, T90, 

T100, T110 and T120 (time expressed in minutes),     at T5, T10, T20, T40, T60, T80, T100 

and T120. In the EC group, LiDCO measurements were not performed at T5. Simultaneous 

arterial and central venous blood samples were collected at T10, T20, T40, T60, T80, T100 

and T120 and analyzed immediately (ABL5
®
, Radiometer).  
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   The ponies recovered in a padded recovery box. The endotracheal tube was removed once 

the ponies were able to swallow. A recovery score was given (Table 1) and the times to 

regain sternal recumbency and to standing were recorded.  

Table 1: Scoring system used to grade recovery 

Score Description 

1 1 attempt to stand, no ataxia 

2 1 - 2 attempts to stand, some ataxia 

3 >2 attempts to stand, but quiet recovery 

4 >2 attempts to stand, excitation 

5 severe excitation/pony wounded 

 

 

Calculations 

   Stroke volume (SV) was calculated as: 

              
                 

              
 

   Cardiac index and stroke index were expressed in mL/kg/min and mL/kg respectively. 

   Systemic vascular resistance (SVR) was calculated using the formula:  

          
   

   
  

                             

           
 

   Alveolar oxygen partial pressure (PAO2), blood oxygen content (CzO2), DO2, oxygen 

consumption (  O2) and degree of venous admixture (       ) were calculated as follows 

(Lumb 2005): 

               
     

   
 

 Where 0.8 = respiratory quotient and PIO2 is partial pressure of inspired oxygen. 

 

                                                                 

     Where z = a, v or ć for arterial (CaO2), central venous (CvO2) and end-capillary pulmonary oxygen 

content (CćO2) respectively. PćO2 is taken as PAO2. Arterial haemoglobin concentration was 

used to calculate CaO2 and CćO2, while venous haemoglobin concentration was used to 

calculate CvO2. 
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   The alveolar dead space-to-tidal volume ratio (VD/VT) was calculated as: 

       
             

     
 

where PE´CO2 = end tidal carbon dioxide tension. 

 

Statistical analysis 

The standing values for HR, SAP, DAP, MAP,     and SV were compared to the overall mean 

during the 120 min period following treatments S and E by a mixed model with treatment as 

fixed categorical effect and pony as random effect, using a 5 % significance level. 

   The effects of enoximone and saline were compared using a mixed model with treatment, 

time and their interaction as fixed categorical effects and pony as random effect, comparing 

the treatments S and E both globally (at α = 0.05) and at 8 timepoints: T0 (= mean of the 3 

baseline measurements), T10, T20, T40, T60, T80, T100 and T120 (at Bonferroni-adjusted α 

= 0.00625).   

 

Results 

Cardiovascular system 

Standing values for    , HR and SV were 27.7 ± 7.4 L/min, 38 ± 2 beats/min and 731 ± 162 

mL respectively. Standing values for SAP, DAP and MAP are presented in Table 2. All of 

these parameters significantly decreased during inhalation anaesthesia, but were not 

significantly different between groups at T0 (baseline values during anaesthesia). 
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   Compared to saline treatment, administration of enoximone resulted in significant increases 

in     (Fig. 1), HR (Fig. 2), SV (Fig. 3), SAP, DAP and MAP (Table 2). For     and SV, this 

difference was significant up to T100 (except SV at T80). Heart rate was significantly 

increased for 40 minutes after enoximone administration. As     and HR decreased slowly but 

significantly over time in the saline group, the interaction between treatment and time was 

significant for both parameters.  

   In both groups, DAP, MAP and SVR gradually increased over time. RAP was more or less 

stable throughout the anaesthesia after treatment S. After treatment E however, an initial 

decrease in RAP (E 10 ± 2 vs. S 15 ± 2 mm Hg at T10) was followed by a gradual increase, 

although RAP remained significantly lower than in the S group throughout the anaesthesia 

(120 minutes). The different evolution over time in the two groups resulted in a significant 

interaction effect between treatment and time for RAP.  

 Fig. 1: Cardiac Output (   ) in 6 anaesthetized ponies receiving a bolus of enoximone or saline.  

Values are displayed as mean ± SD. Statistical analysis was performed at T10, T20, T40, 

T60, T80, T100 and T120.  

* indicates a significant difference between the 2 treatments (P<0.00625) 
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 Fig. 2: Heart Rate (HR) in 6 anaesthetized ponies after a bolus of enoximone or saline.  

Values are displayed as mean ± SD. Statistical analysis was performed at T10, T20, T40, T60, 

T80, T100 and T120.  

* indicates a significant difference between treatments (P<0.00625) 

 

 
 
 Fig. 3: Stroke Volume (SV) in 6 anaesthetized ponies after a bolus of enoximone or saline.  

Values are displayed as mean ± SD. Statistical analysis was performed at T10, T20, T40, 

T60, T80, T100 and T120.   

* indicates a significant difference between treatments (P<0.00625) 
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Table 2: Systolic (SAP), diastolic (DAP), mean arterial (MAP) and right atrial (RAP) pressures and systemic vascular resistance (SVR) in 6 anaesthetized ponies 

receiving a bolus of enoximone (E) or saline (S). 

 

 

 

Values at individual timepoints are represented as mean  ±  SD (SD calculated for each treatment group separately).  

Overall values are represented as mean ± SE (SE calculated assuming homogeneity of variances). 

* significant difference between E and S for the overall comparison (P<0.05)  

§ significant difference between E and S at individual timepoints (P<0.00625) 

  

Variable Unit Standing Trt Time after treatment (min)   

  Values  T0 T10 T20 T40 T60 T80 T100 T120 Overall 

SAP mm Hg 143 ± 16 E 83 ± 7 86 ± 14 84 ± 12 84 ± 11 88 ± 11 89 ± 10 87 ± 10 85 ± 10 86 ± 5 

   S 79 ± 8 78 ± 7 81 ± 9 85 ± 10 84 ± 13 82 ± 12 82 ± 11 83 ± 6 82 ± 5 

DAP mm Hg 90 ± 11 E 51 ± 6 54 ± 14 54 ± 14 56 ± 15 60 ± 14 62 ± 12 61 ± 9 60 ± 10 57 ± 4 

   S 49 ± 5 49 ± 3 53 ± 4 57 ± 7 57 ± 8 57 ± 7 57 ± 6 57 ± 3 55 ± 4 

MAP mm Hg 114 ± 11 E 63 ± 6 65 ± 14 65 ± 14 67 ± 14 72 ± 13 73 ± 11 71 ± 9 69 ± 9 68 ± 4 

   S 60 ± 6 60 ± 4 63 ± 7 68 ± 9 67 ± 11 66 ± 10 65 ± 12 67 ± 4 65 ± 4 

RAP mm Hg  E 15 ± 2 10 ± 2 10 ± 2 11 ± 3 11 ± 2 12 ± 3 13 ± 3 13 ± 3 11 ± 1 

   S 15 ± 2 15 ± 2 § 15 ± 2 § 15 ± 2 § 15 ± 2 § 15 ± 2 § 15 ± 2 § 15 ± 2 § 15 ± 1 * 

SVR dyne.sec/cm
5
  E 261 ± 63 232 ± 66 257 ± 85 282 ± 77 352 ± 90 394 ± 114 400 ± 143 395 ± 143 318 ± 33 

   S 275 ± 49 307 ± 77 344 ± 83 406 ± 133 429 ± 111 444 ± 97 436 ± 99 440 ± 126 386 ± 33 
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Blood gas analysis, packed cell volume and body temperature 

Baseline values during anaesthesia were not significantly different between groups for any of 

the parameters. After enoximone treatment, no significant differences were found for tCO2, 

ABE and SBE. SvO2, CvO2 and body temperature significantly decreased over time (Tables 3 

& 4). Administration of enoximone induced no significant differences in overall blood gas 

results, PCV or body temperature compared to saline treatment. A significant interaction 

between treatment and time was detected for SaO2: in the S group, SaO2 decreased over time, 

while in the E group, SaO2 was initially lower, but increased over time and became slightly 

higher than in the S group from T60 onwards. The differences in SaO2 were however not 

statistically significant between the 2 groups (data not shown).  

   Analysis of the individual differences at selected timepoints (T10, T20, T40, T60, T80, 

T100 and T120) revealed that after enoximone administration venous PCV was significantly 

higher at T40, CvO2 at T40 and T60, SvO2 at T80 and T120.  

 

  

Fig. 4: Oxygen delivery (DO2) in 6 anaesthetized ponies after a bolus of enoximone or saline.  

Values are displayed as mean ± SD. Statistical analysis was performed at T10, T20, T40, 

T60, T80, T100 and T120.  

* indicates a significant difference between the 2 treatments (P<0.00625) 
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Venous Admixture, Oxygen Consumption and Oxygen Delivery 

No significant differences in baseline values were detected between groups for any of these 

parameters (Table 4). Oxygen delivery (Fig. 4) significantly decreased over time during the  

course of the anaesthesia after treatment S, but increased significantly after administration of 

enoximone, despite significant increases in         (overall and at T10 and T40). The increase 

in DO2 remained significant until T100.  

   For   O2, the difference between treatments was small (0.01 ± 0.15 L/min) and not 

statistically significant. 

Recovery  

Recovery scores were comparable in both groups (Table 5). Time for complete recovery 

(standing up) was 24 ± 7 minutes in the enoximone group, compared to 26 ± 9 minutes in the 

saline group. 

 

 

Table 5: Recovery scores of 6 ponies, receiving either a bolus of enoximone or saline during 

anaesthesia.  

 

Pony Enoximone Saline 

1 2 3 

2 4 2 

3 2 4 

4 2 3 

5 4 1 

6 2 2 
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Table 3: Blood gas results, packed cell volume (PCV) and body temperature in 6 anaesthetized ponies receiving a bolus of enoximone (E) or saline (S).  

 

Values at individual timepoints are represented as mean  ±  SD (SD calculated for each treatment group separately).  

Overall values are represented as mean ± SE (SE calculated assuming homogeneity of variances). 

No significant differences were found between E and S for the overall comparison (P<0.05)  

§ significant difference between E and S at individual timepoints (P<0.00625) 

Variable Unit Standing Trt Time after treatment (minutes)   

   Values  T0 T10 T20 T40 T60 T80 T100 T120 Overall 

Body temperature °C   E 36.3 ± 0.3 35.8 ± 0.6 35.7 ± 0.6 35.5 ± 0.7 35.3 ± 0.8 35.1 ± 0.8 35.0 ± 0.9 34.9 ± 0.9 35.4 ± 0.2 

    S 36.1 ± 0.3 35.9 ± 0.3 35.8 ± 0.4 35.5 ± 0.4 35.4 ± 0.4 35.2 ± 0.4 35.2 ± 0.3 35.1 ± 0.3 35.5 ± 0.2 

Central venous blood             

 pH  7.40 ± 0.02 E 7.41 ± 0.05 7.42 ± 0.05 7.43 ± 0.05 7.44 ± 0.05 7.44 ± 0.04 7.43 ± 0.05 7.43 ± 0.05 7.43 ± 0.06 7.43 ± 0.01 

    S 7.41 ± 0.03 7.43 ± 0.03 7.43 ± 0.04 7.43 ± 0.03 7.43 ± 0.03 7.43 ± 0.03 7.41 ± 0.03 7.41 ± 0.04 7.42 ± 0.01 

 pCO2 kPa 6.15 ± 0.21 E 6.85 ± 0.89 6.51 ± 0.93 6.35 ± 0.97 6.29 ± 0.89 6.47 ± 0.52 6.58 ± 0.77 6.53 ± 0.73 6.60 ± 0.80 6.50 ± 0.19 

    S 6.82 ± 0.53 6.53 ± 0.15 6.49 ± 0.34 6.47 ± 0.37 6.60 ± 0.50 6.64 ± 0.36 7.00 ± 0.47 7.00 ± 0.52 6.70 ± 0.19 

 pO2  kPa 4.69 ± 0.55 E 4.86 ± 0.72 6.69 ± 5.13 4.78 ± 0.80 4.42 ± 0.76 4.20 ± 0.65 3.93 ± 0.54 3.73 ± 0.70 4.91 ± 2.62 4.70 ± 0.43 

    S 4.46 ± 0.66 4.27 ± 0.90 6.15 ± 5.89 3.71 ± 0.75 3.22 ± 0.73 3.18 ± 0.75 3.13 ± 0.59 3.18 ± 0.47 3.80 ± 0.43 

 SBC mmol/L 26.5 ± 1.8 E 29 ± 3 29 ± 2 29 ± 2 30 ± 2 30 ± 2 30 ± 2 30 ± 2 30 ± 2 30 ± 1 

    S 29 ± 2 30 ± 3 30 ± 3 29 ± 2 29 ± 2 29 ± 2 29 ± 1 29 ± 2 29 ± 1 

 PCV L/L 31.0 ± 2.4 E 0.27 ± 0.04 0.26 ± 0.05 0.26 ± 0.04 0.28 ± 0.05 0.26 ± 0.03 0.24 ± 0.02 0.24 ± 0.04 0.24 ± 0.02 0.25 ± 0.01 

    S 0.25 ± 0.02 0.25 ± 0.02 0.25 ± 0.03 0.24 ± 0.04§ 0.25 ± 0.03 0.24 ± 0.04 0.24 ± 0.04 0.24 ± 0.04 0.24 ± 0.01 

Arterial blood             

 pH  7.42 ± 0.03 E 7.45 ± 0.05 7.46 ± 0.06 7.47 ± 0.05 7.48 ± 0.05 7.47 ± 0.04 7.47 ± 0.04 7.48 ± 0.05 7.47 ± 0.05 7.47 ± 0.01 

    S 7.45 ± 0.03 7.49 ± 0.04 7.48 ± 0.05 7.50 ± 0.04 7.49 ± 0.05 7.49 ± 0.05 7.48 ± 0.04 7.47 ± 0.05 7.49 ± 0.01 

 pCO2 kPa 5.47 ± 0.74 E 5.93 ± 0.68 5.87 ± 0.73 5.71 ± 0.69 5.53 ± 0.72 5.80 ± 0.52 5.71 ± 0.44 5.64 ± 0.49 5.69 ± 0.54 5.70 ± 0.34 

    S 6.01 ± 0.51 5.49 ± 0.52 5.47 ± 0.29 5.22 ± 0.58 5.33 ± 0.61 5.42 ± 0.60 5.71 ± 0.44 5.87 ± 0.70 5.50 ± 0.34 

 pO2 kPa 12.62 ± 1.21 E 25.51 ± 13.85 18.62 ± 14.54 24.00 ± 19.74 24.62 ± 18.21 26.71 ± 17.66 25.69 ± 14.67 20.64 ± 7.49 20.80 ± 12.10 23.00 ± 4.98 

    S 31.86 ± 21.29 30.04 ± 19.66 33.44 ± 15.58 32.13 ± 13.53 29.49 ± 18.85 28.09 ± 18.69 24.53 ± 15.76 23.60 ± 17.33 28.80 ± 4.98 

 SBC mmol/L 26.0 ± 3.5 E 30 ± 2 30 ± 3 30 ± 3 30 ± 2 31 ± 2 30 ± 2 31 ± 2 31 ± 2 30 ± 1 

    S 30 ± 3 31 ± 3 31 ± 3 30 ± 2 31 ± 1 31 ± 2 31 ± 2 31 ± 1 31 ± 1 

 PCV L/L 0.312 ± 0.019 E 0.27 ± 0.03 0.25 ± 0.05 0.26 ± 0.04 0.26 ± 0.03 0.24 ± 0.03 0.27 ± 0.04 0.25 ± 0.03 0.24 ± 0.02 0.25 ± 0.01 

    S 0.25 ± 0.02 0.25 ± 0.03 0.25 ± 0.04 0.24 ± 0.03 0.25 ± 0.03 0.25 ± 0.03 0.23 ± 0.04 0.24 ± 0.04 0.24 ± 0.01 
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Table 4: Arterial (CaO2), central venous (CvO2) and end-capillary pulmonary oxygen content (CćO2), venous admixture, oxygen delivery (DO2) and oxygen 

consumption (  O2) in 6 anaesthetized ponies receiving a bolus of enoximone (E) or saline (S). 
 

Values at individual timepoints are represented as mean  ±  SD (SD calculated for each treatment group separately).  

Overall values are represented as mean ± SE (SE calculated assuming homogeneity of variances). 

* significant difference between E and S for the overall comparison (P<0.05)  

§ significant difference between E and S at individual timepoints (P<0.00625) 

Variable Unit Standing Trt Time after treatment (min)   

  values  T0 T10 T20 T40 T60 T80 T100 T120 Overall 

CaO2 mL/ L 145.3 ± 8.7 E 128 ± 7 118 ± 12 122 ± 10 122 ± 9 118 ± 9 129 ± 19 121 ± 13 116 ± 5 121 ± 4 

   S 124 ± 12 122 ± 14 123 ± 18 120 ± 14 118 ± 8 119 ± 16 111 ± 10 113 ± 9 118 ± 4 

CvO2 mL/ L  E 90 ± 11 90 ± 18 90 ± 10 93 ± 13 82 ± 6 72.1 ± 11 70 ± 16 76 ± 12 82 ± 5 

   S 81 ± 13 78 ± 14 79 ± 24 66 ± 19§ 59 ± 18§ 55.9 ± 18 54 ± 14 55 ± 9 64 ± 5 

CćO2 mL/L  E 145 ± 8 136 ± 14 140 ± 11 139 ± 10 134 ± 11 146 ± 20 139 ± 13 134 ± 5 138 ± 4 

   S 140 ± 10 138 ± 14 138 ± 18 136 ± 15 134 ± 8 135 ± 15 129 ± 12 131 ± 11 134 ± 4 

Venous admixture %  E 32 ± 7 47 ± 24 35 ± 8 43 ± 19 32 ± 5 24 ± 7 28 ± 8 35 ± 16 35 ± 2 

   S 26 ± 7 28 ± 6§ 33 ± 20 23 ± 4§ 23 ± 6 22 ± 7 23 ± 3 23 ± 3 25 ± 2* 

DO2  L/min 4.13 ± 1.27 E 1.93 ± 0.33 2.25 ± 0.31 2.16 ± 0.44 1.96 ± 0.26 1.66 ± 0.31 1.66 ± 0.41 1.53 ± 0.45 1.41 ± 0.33 1.80 ± 0.31 

   S 1.62 ± 0.25 1.46 ± 0.28§ 1.40 ± 0.30§ 1.35 ± 0.44§ 1.21 ± 0.38§ 1.14 ± 0.33§ 1.04 ± 0.30§ 1.12 ± 0.27 1.20 ± 0.31* 

  O2 L/min 1.31 ± 0.50 E 0.57 ± 0.23 0.51 ± 0.30 0.57 ± 0.18 0.46 ± 0.26 0.51 ± 0.19 0.73 ± 0.31 0.61 ± 0.22 0.51 ± 0.25 0.56 ± 0.13 

   S 0.57 ± 0.12 0.52 ± 0.17 0.48 ± 0.27 0.60 ± 0.21 0.58 ± 0.19 0.58 ± 0.12 0.51 ± 0.08 0.57 ± 0.13 0.55 ± 0.13 
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Discussion 

Inhalation anaesthesia produces a dose-related cardiovascular depression in horses (Steffey & 

Howland 1980). In the present study, comparison of the values in the standing, unsedated 

ponies with the baseline values during inhalation anaesthesia, revealed clear and significant 

decreases in SAP, DAP, MAP,     and SV. During the further course of the anaesthesia in the 

saline group, DAP, MAP and SVR increased slowly, while HR,    , SV and DO2 gradually 

decreased. The cellular mechanisms responsible for the negative effects of volatile 

anaesthetics on cardiac contractility are generally attributed to alterations in intracellular 

calcium homeostasis in the myocardium (Pagel et al. 1993). These alterations include 

reductions in the influx of calcium through slow channels (Komai & Rusy 1987, Rusy & 

Komai 1987), impaired calcium uptake and release by the sarcoplasmic reticulum (Casella et 

al. 1987, Housmans & Murat 1988) and decreased calcium sensitivity of the myofilaments 

(Rusy & Komai 1987, Housmans & Murat 1988).  

   The drugs most commonly used for inotropic support in horses are the β-adrenergic 

sympathomimetic agents (e.g. dobutamine). When these agents bind to the ß1 receptor, the G-

protein coupled to this receptor splits and stimulates adenylylcyclase, the enzyme responsible 

for the synthesis of cAMP. An increase in cAMP concentration in the cardiac muscle 

activates a cAMP-dependent protein kinase, which phosphorylates the L-type calcium 

channels, leading to an increase in the mean open probability of individual channels (Hove-

Madsen et al. 1996). The subsequent increase in intracellular calcium levels in turn causes 

calcium-induced calcium release from the sarcoplasmic reticulum (Fabiato 1983), which 

leads to an increase in the contractile forces (Vernon et al. 1991). Furthermore, cAMP 

augments calcium-ATPase activity in the sarcoplasmic reticulum, promoting increased 

calcium storage during diastole (Muir 1995) and facilitating relaxation of the heart (Vernon et 

al. 1991). 

   Another class of drugs, the PDE inhibitors, increase the intracellular levels of cAMP and/or 

cGMP in different tissues through inhibition of their breakdown by phosphodiesterase 

enzymes (Hall 1993). At least five different phosphodiesterase isoenzymes have been 

described, with each family containing at least 2 subfamilies. Selective inhibition of these 

isoenzymes produces partially tissue specific effects. This leads to different clinical 

applications for different isoenzyme selective PDE inhibitors, including stimulation of 
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myocardial contractility, vasodilation, inhibition of platelet aggregation, bronchodilation and 

the use as anti-inflammatory drugs or antidepressants (Hall 1993).  

   Enoximone is a selective inhibitor of the type III PDE isoenzyme (Vernon et al. 1991), 

which is principally present in the myocardium, smooth muscles and platelets and breaks 

down both cAMP and cGMP (Calvey & Williams 2001, Hall 1993). In the myocardium 

enoximone induces inotropic and lusitropic effects, with a significantly lower myocardial 

oxygen consumption than after dobutamine therapy in man (Lançon et al. 1990). In vascular 

smooth muscle, cAMP phosphorylates protein kinase and myosin-light-chain kinase and 

alters ion fluxes, resulting in vasodilation (Evans 1989, Calvey & Williams 2001). Because of 

an increase in platelet cAMP, platelet aggregation is diminished (Calvey & Williams 2001). 

Possible side-effects of enoximone are usually only seen after long term oral treatment in 

men and include tachyarrhythmias, hypotension, thrombocytopenia, nausea, dyspepsia, 

diarrhoea, vomiting, fever, oliguria and limb pain (Vernon et al. 1991, Calvey & Williams 

2001). Side effects using a bolus or constant rate infusion during anaesthesia are rare and 

were not observed in the ponies of the present study. Although adverse effects during 

recovery have been reported with some sympathomimetics, such as dopexamine in horses 

(Young et al. 1997, Lee et al. 1998), the recovery scores were comparable in the two 

treatment groups.   

   Enoximone‟s principal effects are positive inotropism and vasodilation (Dage and 

Okerholm 1990, Vernon et al. 1991, Hall 1993). In the present study, a bolus of 0.5 mg/kg 

enoximone significantly augmented     for a period of 100 minutes in healthy ponies during 

isoflurane anaesthesia. This increase in     is in agreement with the reported effects of 

enoximone in dogs (Dage et al. 1982) and milrinone in halothane anaesthetized horses (Muir 

1995). Cardiac output is determined by HR and SV, which both increased after the 

administration of enoximone (HR until T40, SV until T100).  

   Mild and transient chronotropic effects have also been reported in dogs (Dage et al. 1982) 

and humans (Amin et al. 1985, Installe et al. 1987) after enoximone administration and can 

be explained by the consistent electrophysiological changes with this drug. Indeed, this PDE 

inhibitor shortens basic sinus cycle length, sinus node recovery time and sinoatrial 

conduction time and decreases Wenckebach cycle length and atrioventricular and atrial 

refractoriness, leading to positive chronotropic and dromotropic effects. Despite these 

changes during bolus administration, enoximone did not appear to be arrhythmogenic (Pop et 
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al. 1986). Only chronic, long-term oral administration in humans has been associated with 

tachyarrhythmias (Calvey & Williams 2001). In the present study, no arrhythmias were 

observed in our ponies and the maximal difference in mean HR between treatments occurred 

5 minutes after administration of the bolus (7 ± 1 beats per minute). Heart rate remained 

below 50 beats per minute in all ponies, except in 1 animal where HR temporarily increased 

from 45 (T0) to 59 beats per minute at T5. After T5, the difference in HR between the two 

groups gradually decreased and was no longer significant from T40 onwards.  

   In the present study, enoximone significantly increased SV for 100 minutes.  The three 

parameters which determine SV are preload, contractility and afterload, which are all 

influenced by enoximone in man (Vernon et al. 1991). Muir (1995) observed a reduction in 

mean right atrial and pulmonary artery pressures during and after milrinone infusions in 

horses. In the present study, a significant decrease in RAP during at least 120 minutes after 

administration of enoximone to our ponies was also observed, indicating a reduction in 

preload of the right heart. This finding might be explained by venous pooling, which has been 

described in man after enoximone treatment (Boldt et al. 1993, Lehtonen et al. 2004). While 

RAP reflects preload of the right heart, preload of the left heart is reflected by pulmonary 

capillary wedge pressure, which was reported to decrease after administration of enoximone 

in man (Vernon et al. 1991). This reduction in left ventricular filling pressure was larger than 

the one produced by dobutamine (Amin et al. 1985).   

   Contractility, the second factor which influences SV, was enhanced by the positive 

inotropic effects of enoximone in both dogs and humans (Installe et al. 1987, Dage & 

Okerholm 1990, Vernon et al. 1991, Boldt et al. 1992, Hall 1993, Ghio et al. 2003, Lehtonen 

et al. 2004, Calvey & Williams 2001). Ringe et al. (2003) even stated that in patients with 

severe prolonged catecholamine and volume refractory endotoxin shock, enoximone could 

restore myocardial contractility. In the present study, we observed an increase in SV without 

a decrease in SVR. Although contractility was not measured directly in the present study, it 

was most likely also enhanced. 

   The third factor, namely the afterload, was reported to be reduced by enoximone in man 

(Lehtonen et al. 2004). A frequently used clinical index of left ventricular afterload is SVR 

(Lang et al. 1986), which decreased after enoximone administration in man because of 

vasodilation (Vernon et al. 1991, Boldt et al. 1992, Calvey & Williams 2001). Similary, SVR 

decreased in response to administration of enoximone in dogs (Dage et al. 1982) and 
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milrinone in horses (Muir 1995). In the present study, the decrease in SVR after enoximone 

treatment was not significant. It might be hypothesized that sedation with romifidine 

attenuated the vasodilating properties of enoximone, since α2 agonists induce 

vasoconstriction by binding to postsynaptic α2 receptors, leading to a reduced synthesis of 

cAMP in the vascular smooth muscle cells. However, it has been reported that the increase in 

SVR in standing horses after administration of romifidine at doses of 80 and 120 µg/kg IV 

was only significant with the highest dose and no longer than 15 minutes (Freeman et al. 

2002). In the present study, a low dose of romifidine (80 µg/kg) was used and the time 

between sedation and administration of enoximone was 105 minutes. It is therefore most 

unlikely that the pre-anaesthetic use of romifidine was responsible for the lack of a significant 

effect of enoximone on SVR.  

   On the other hand, SVR reflects only peripheral vasomotor tone. A better measure of  left 

ventricular afterload is left ventricular end-systolic wall stress (σes), which combines the 

effects of peripheral loading conditions and left ventricular chamber pressure, dimension and 

wall thickness (Lang et al. 1986). When afterload is decreased and contractility increased, 

SVR actually underestimates the decrease in left ventricular σes (up to 50% when dobutamine 

is administered) (Lang et al. 1986). This phenomenon may also have occurred in the present 

study, as enoximone was reported to cause both arterial vasodilation (Boldt et al. 1993) and 

increased myocardial contractility (Installe et al. 1987, Dage and Okerholm 1990, Vernon et 

al. 1991, Boldt et al. 1992, Hall 1993, Ghio et al. 2003, Lehtonen et al. 2004, Calvey & 

Williams 2001).  

   Because of its actions as smooth muscle relaxant, enoximone was responsible for a 

decrease in blood pressure in some studies (Dage et al. 1982, Installe et al. 1987, Boldt et al. 

1993, Hall 1993, Schmidt et al. 2001, Calvey & Williams 2001). However, several other 

authors could not detect significant influences of enoximone on arterial pressure (Vernon et 

al. 1991, Paulus et al. 1994), even in patients with severe cardiogenic shock (Vincent et al. 

1988). In the present study, using normovolemic ponies, arterial pressure even tended to be 

slightly higher after the enoximone bolus; none of the observed differences in blood pressure 

were however statistically significant. Nevertheless, in cases of severe hypotension or 

endotoxaemia with major vasodilation, enoximone should be used with caution until its 

cardiovascular effects in case of hypovolemia/endotoxaemia are fully investigated. At the 

same time, more studies are necessary to determine whether horses respond in a similar way 

as ponies. 
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   In the present study,         was significantly higher after enoximone treatment (overall and 

at T10 and T40). In the study of Muir (1995), no data was given about the influence of 

milrinone infusions on arterial blood gases or the degree of        . Although Boldt et al. 

(1992) did not detect any differences in intrapulmonary shunting, increased venous admixture 

after enoximone administration in man has been reported by other authors (Vincent et al. 

1988, Paulus et al. 1994) and was probably related to an increased cardiac index and the 

inhibition of hypoxic pulmonary vasoconstriction (HPV) (Lynch et al. 1979, Paulus et al. 

1994). In the present study,     was indeed significantly higher after enoximone treatment. An 

inhibition of HPV may also have occurred and could be explained by two factors, namely the 

administration of enoximone on itself and an induced increase in mixed venous oxygen 

content (C  O2). In man, enoximone reduces pulmonary vascular resistance, indicating 

vasodilation in the pulmonary circulation, which would counteract HPV. Secondly, C  O2 is a 

partial determinant of HPV: with increasing C  O2, the stimulus for HPV decreases (Domino 

et al. 1983). However, in the present study, the increase in         after enoximone treatment 

was attributable to extreme values for PvO2 at T10 in 1 pony and for venous PCV at T40 in 2 

ponies, which explains the large standard deviations for PvO2, PCV, CvO2 and         at the 

respective timepoints in tables 3 and 4. These extreme values were the main reason why 

venous PCV and CvO2 were also significantly higher at T40. In the authors‟ opinion, these 

findings are therefore probably incidental, as in all other ponies, the values were comparable 

to saline treatment.  

    Despite the increase in         after enoximone administration in the present study, no 

significant decrease in CaO2 was observed. As CvO2 was increased,         could indeed be 

expected to have less influence on CaO2. Also, although PaO2 was somewhat lower in the E 

group, mean PaO2 always remained in the range to fully saturate haemoglobin, which is the 

main determinant of CaO2. Possibly, in cases of severe hypoxemia, where a small reduction 

in PaO2 can result in a severe decrease in SaO2, the effects of increased        , if present, 

might be more pronounced. However, it must be noted that, although they are generally 

accepted, the equations for calculation of blood oxygen content and degree of         are 

based on a few assumptions which can lead to inaccuracy. Firstly, during calculation of 

oxygen content, standard values are routinely used for the oxygen solubility coefficient and 

the oxygen-combining capacity of haemoglobin, which may not always be constant under all 

circumstances and in all subjects. Secondly, the equation for the degree of         does not 
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take Thebesian and bronchial venous blood into account (Lumb 2005). It may also be argued 

that the use of central venous blood (taken from the right atrium) instead of true mixed 

venous blood led to inaccuracy, but different authors documented that central venous blood 

collected from the right atrium can replace mixed venous blood to calculate the degree of 

pulmonary shunt (Tahvanainen et al. 1982, López Escárcega et al. 1985). Finally, while 

haemoglobin saturation is required for calculation of blood oxygen content, the ABL5 

Radiometer
®
 does not measure haemoglobin saturation but calculates it, as it is not equipped 

with a co-oximeter. For all of these reasons, and especially because there was no significant 

difference in PaO2 in the present study, the importance of the increase in         should not be 

overinterpreted until further studies are performed in hypoxaemic horses. 

   Because     was increased without changes in CaO2, a significant increase in DO2 during 

100 minutes was found, which is in agreement with several reports in man (Teboul et al. 

1992, Paulus et al. 1994, Loick et al 1997, Kern et al. 2001). Especially in equine anaesthesia, 

where hypoxaemia and cardiovacular depression are common clinical findings and can have 

detrimental effects, improved oxygen delivery is one of the most important goals of the 

anaesthetist. Furthermore, in humans, enoximone increased organ perfusion and skin 

capillary blood flow (Boldt et al. 1992), while indications for an improved nutritive 

microcirculation have been reported (Boldt et al. 1993). During an early stage of sepsis in 

anaesthetized rats, enoximone prevented mucosal hypoperfusion of the ileum (Schmidt et al. 

2001). In fluid-optimized septic shock in man, enoximone also improved hepatosplanchnic 

function and helped to attenuate the inflammatory response (Kern et al. 2001). This PDE 

inhibitor additionally seemed to have a beneficial effect on tissue damage and barrier 

function of the gut, since it diminished the increase in endotoxin concentrations in liver 

venous blood following cardiopulmonary bypass (Loick et al. 1997). Limb blood flow was 

also increased in response to a single oral dose of enoximone in man (Vernon et al. 1991). 

However, before assumptions are made in ponies or horses, the effects of enoximone on 

peripheral perfusion should be studied in depth in these species. 

   In conclusion, a single bolus of enoximone in isoflurane anaesthetized ponies induced 

increases in HR,     and SV without obvious effects on arterial pressure or SVR. Right atrial 

pressure, a reflection of right heart preload, was significantly reduced. Despite significant 

increases in        , oxygen delivery to the tissues was higher. Further studies are needed to 

determine whether the effects of enoximone are similar in horses as in ponies, to detect 
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possible interactions with other drugs and to investigate the effects of enoximone in horses 

with hypoxaemia, when increased         may have more importance and in horses with 

hypovolemia and/or hypotension, when vasodilation might have more pronounced effects on 

blood pressure.    
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SUMMARY 

The cardiovascular and respiratory effects of dobutamine after a bolus of enoximone 

were examined in 6 healthy, isoflurane anaesthetized ponies, weighing 286 ± 52 kg and 

aged 5.0 ± 1.6 years. After sedation with romifidine [80 µg/kg intravenously (IV)], 

anaesthesia was induced with midazolam (0.06 mg/kg IV) and ketamine (2.2 mg/kg IV) 

and maintained with isoflurane in oxygen. The ponies were ventilated to maintain 

normocapnia. After 90 minutes (= T0), enoximone alone (0.5 mg/kg IV) (E) or 

enoximone followed by a constant rate infusion of dobutamine (0.5 g/kg/min) (ED) for 

120 minutes were administered. Each pony received both treatments in a crossover 

trial, with at least 2 weeks between treatments. Heart rate (HR), cardiac output (   ), 

stroke volume (SV), right atrial (RAP), systolic (SAP), diastolic (DAP) and mean 

arterial pressure (MAP), blood gases, systemic vascular resistance (SVR), oxygen 

delivery (DO2) and several respiratory gas exchange variables were obtained before 

treatment and until T120.  

   Compared to enoximone alone, ED treatment induced overall increases in HR,    , SV, 

RAP, SAP, DAP, MAP, packed cell volume (PCV) and DO2. The difference was 

significant from T60 to T120 (except at T80) for HR, throughout the observational 

period for    , SAP, MAP, PCV and DO2, from T40 to T120 for DAP, at T10, T60, T80 

and T120 for SV and at T10 and T20 for RAP. Overall values for SVR and dead space 

ventilation (VD/VT) were lower after treatment ED compared to treatment E. VD/VT was 

lower at T20 and from T80 to T120. Venous oxygen saturation was higher after 

treatment ED than after treatment E from T60 onwards. These results suggest that 

enoximone and dobutamine have additive cardiovascular effects and reduce VD/VT in 

isoflurane anaesthetized ponies. 

 

 

 

  



Enoximone & dobutamine in ponies 

142 

 

Introduction 

To maintain oxygen delivery (DO2) to the tissues during equine anaesthesia, inotropic drugs 

are often needed. For this purpose ß-adrenergic sympathomimetics are used most frequently 

in horses. These agents increase the intracellular level of cyclic adenosine monophosphate 

(cAMP) through stimulation of adenylyl cyclase. As a result, myocardial contractility is 

enhanced. However, the administration of these drugs increases cardiac work and myocardial 

oxygen demand (Notterman 1991) and can be accompanied by several side-effects (Swanson 

et al. 1985, Trim et al. 1985, Gasthuys et al. 1991, Notterman 1991). The phosphodiesterase 

(PDE) III inhibitors, a second class of inotropic drugs, exert their action through inhibition of 

the enzymatic hydrolysis of cAMP (Vernon et al. 1991). In horses or ponies, only the effects 

of milrinone (Muir 1995) and enoximone (Chapter 4.1) have been described. 

   As ß-sympathomimetics and PDE III inhibitors both increase the intracellular concentration 

of cAMP through independent, additive mechanisms, their combined use has been studied in 

man. A combination of adrenaline and amrinone produced additive effects on stroke volume 

(SV) after cardiopulmonary bypass surgery (Royster et al. 1993). Also, enoximone‟s 

favourable cardiovascular effects were additive to those produced by dobutamine in patients 

with class IV heart failure. Larger increases in cardiac index (CI), left ventricular stroke work 

index and heart rate (HR) were observed, together with more pronounced decreases in right 

atrial pressure (RAP), pulmonary artery pressure, pulmonary wedge pressure, systemic 

vascular resistance (SVR) and pulmonary vascular resistance (Gilbert et al. 1995). 

   In horses, no studies have been performed on the combined use of a PDE III inhibitor with 

a ß-sympathomimetic. Therefore, the objective of the present study was to evaluate the 

effects on the cardiovascular system and on respiratory gas exchange of a constant rate 

infusion (CRI) of dobutamine after bolus administration of enoximone in isoflurane 

anaesthetized ponies.  
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Materials & Methods 

The experimental protocol has been described in chapter 4.1. For statistical analysis, 

treatments E and ED were compared using a mixed model with treatment, time and their 

interaction as fixed categorical effects and pony as random effect. This model was used to 

analyze the overall difference between the two treatments (at α = 0.05) and the difference at 8 

selected time points: Baseline, T10, T20, T40, T60, T80, T100 and T120 (at Bonferroni-

adjusted α = 0.00625).   

 

Results  

Cardiovascular system  

Compared to enoximone alone (treatment E), cardiac output (   ) (P=0.004) and SV (P=0.006) 

were higher during treatment with enoximone and dobutamine (treatment ED) (Table 1, Fig. 1 

& 2). Analysis at the selected time points revealed that the difference was significant 

throughout the observational time for     and at T10, T60, T80 and T120 for SV. Mean CI was 

54.08 ± 7.19 mL/kg/min with enoximone alone versus 82.40 ± 7.19 mL/kg/min when 

enoximone and dobutamine were combined. 

   Heart rate (Table 1) increased after administration of enoximone in both groups, but was 

higher during treatment ED (50.3 ± 3.3 beats/min) compared to treatment E (40.5 ± 3.3 

beats/min) (P=0.026). This difference was significant from T60 onwards (except at T80).    

   The addition of a CRI of dobutamine also resulted in increases in blood pressure (Table 1) 

compared to enoximone alone: overall systolic (SAP) (P=0.0015), diastolic (DAP) 

(P=0.0018) and mean (MAP) (P=0.0007) arterial pressures were higher during treatment ED. 

As this difference gradually became larger over time, a significant interaction effect between 

treatment and time was detected. On T10 and T20, RAP was also significantly larger during 

treatment ED compared to treatment E. 

   Systemic vascular resistance increased over time during both treatments (P<0.0001) (Table 

1). Analysis of the overall values revealed a lower SVR during treatment ED (ED 318 ± 65 vs 

E 274 ± 77 dynes.sec/cm
5
, P=0.0423). However, after Bonferroni correction, no significant 

differences between the two treatments could be detected at any of the selected time points.  
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Fig. 1: Cardiac index (CI) in 6 anaesthetized ponies receiving enoximone alone or enoximone 

followed by a CRI of dobutamine.  

Values are displayed as mean ± SD.  

* indicates a significant difference between the 2 treatments (P<0.00625). 

 
Fig. 2: Stroke volume index (SI) in 6 anaesthetized ponies receiving enoximone alone or 

enoximone followed by a CRI of dobutamine.  

Values are displayed as mean ± SD.  

* indicates a significant difference between the 2 treatments (P<0.00625) 

Body temperature, blood gas analysis and packed cell volume  

During the observational period, body temperature gradually decreased over time (P<0.0001) 

(Table 2). Although the overall values for body temperature were not significantly different 

between treatments, body temperature decreased more rapidly during treatment ED, leading to 

an interaction effect between the factors treatment and time (P<0.0001). 
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Table 1: Heart rate (HR), systolic (SAP), diastolic (DAP), mean arterial (MAP) and right atrial (RAP) pressures, cardiac output (   ), stroke volume 

(SV) and systemic vascular resistance (SVR) in 6 anaesthetized ponies receiving enoximone alone (E) or enoximone followed by a CRI of 

dobutamine (ED).  

 
Values at individual timepoints are represented as mean  ±  SD (SD calculated for each treatment group separately).  

Overall values are represented as mean ± SE (SE calculated assuming homogeneity of variances). 

* significant difference between E and ED for the overall comparison (P<0.05)  

§ significant difference between E and ED at individual timepoints (P<0.00625) 

 

Variable Unit Trt   Time after treatment (min)   

      Baseline T10 T20 T40 T60 T80 T100 T120 Overall 

HR beats/min E 39 ± 4 46 ± 6 44 ± 6 41 ± 5 39 ± 5 38 ± 4 37 ± 4 36 ± 3 41 ± 3 

  ED 39 ± 6 51 ± 5 49 ± 6 50 ± 9  51 ± 12 § 49 ± 14  51 ± 18 § 52 ± 19 § 50 ± 3 * 

SAP mm Hg E 83 ± 7 86 ± 14 84 ± 12 84 ± 11 88 ± 11 89 ± 10 87 ± 10 85 ± 10 86 ± 5 

  ED 80 ± 5 113 ± 8 § 112 ± 6 § 115 ± 13 § 119 ± 19 § 121 ± 22 § 121 ± 23 § 118 ± 23 § 115 ± 5 * 

DAP mm Hg E 51 ± 6 54 ± 14 54 ± 14 56 ± 15 60 ± 14 62 ± 12 61 ± 9 60 ± 10 57 ± 4 

  ED 47 ± 3 62 ± 8 63 ± 8  69 ± 9 § 77 ± 9 § 80 ± 15 § 80 ± 15 § 79 ± 15 § 71 ± 4 * 

MAP mm Hg E 63 ± 6 65 ± 14 65 ± 14 67 ± 14 72 ± 13 73 ± 11 71 ± 9 69 ± 9 68 ± 4 

  ED 59 ± 3 77 ± 7 § 79 ± 7 § 85 ± 9 § 92 ± 12 § 96 ± 17 § 97 ± 17 § 95 ± 17 § 87 ± 4 * 

RAP mm Hg E 15 ± 2 10 ± 2 10 ± 2 11 ± 3 11 ± 2 12 ± 3 13 ± 3 13 ± 3 11 ± 1 

  ED 16 ± 5 14 ± 4 § 14 ± 4 § 14 ± 5  15 ± 6  15 ± 5  15 ± 4  15 ± 5 15 ± 1 * 

     L/min E 15.01 ± 2.15 19.13 ± 1.44 17.53 ± 2.22 16.04 ± 1.26 14.05 ± 1.86 12.83 ± 2.41 12.56 ± 2.90 12.11 ± 2.54 15.45 ± 1.27 

  ED 15.39 ± 2.10 25.13 ± 4.95 § 22.89 ± 4.32 § 23.21 ± 6.09 § 21.76 ± 4.32 § 21.18 ± 4.20 § 20.30 ± 5.38 § 19.96 ± 5.34 § 22.12 ± 1.27 * 

SV mL E 378 ± 48 425 ± 51 406 ± 73 395 ± 50 363 ± 56 340 ± 63 340 ± 78 334 ± 69 379 ± 20 

  ED 396 ± 70 494 ± 50 § 466 ± 33  458 ± 46  432 ± 42 § 444 ± 63 § 407 ± 82  403 ± 100 § 445 ± 20 * 

SVR dyne.sec/cm
5
 E 261 ± 63 232 ± 66 257 ± 85 282 ± 77 352 ± 90 394 ± 114 400 ± 143 395 ± 143 318 ± 29 

    ED 225 ± 29  206 ± 37 231 ± 37 262 ± 79 296 ± 71 318 ± 98 356 ± 170 355 ± 180 274 ± 29 * 
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   No differences in arterial oxygen tension (PaO2) (Table 2) and haemoglobin saturation with 

oxygen (SaO2) could be detected between treatments, but an interaction effect between 

treatment and time was observed. During treatment E, PaO2 and SaO2 decreased at T10, 

returned to baseline values at T20 and gradually decreased again after T80. After a similar 

decrease at T10, a steady increase was observed throughout the remaining anaesthetic period 

during treatment ED. Also, venous haemoglobin oxygen saturation (SvO2) was higher during 

treatment ED (P=0.0084). This difference was significant from T60 onwards. At T80, a 

significant difference in venous oxygen tension (PvO2) was detected, most likely due to 

abnormally high values recorded in 2 ponies (15.8 and 17.7 kPa respectively). When these 

ponies were excluded from analysis, this difference was no longer significant.    

   Packed cell volume (PCV) was higher during treatment ED (P = 0.0018) with an interaction 

effect between treatment and time (P = 0.0348): PCV increased with treatment ED but 

remained constant with treatment E (Table 2). 

Respiratory system, oxygen delivery and oxygen consumption  

Overall RR was not different between treatments (E 11.3 ± 1.6 vs ED 12.5 ± 2.1 

breaths/min). While no differences in overall venous admixture (       ) were detected 

between the 2 treatments, overall alveolar dead space-to-tidal volume ratio (VD/VT) was 

lower during treatment ED (ED 35.3 ± 1.9 vs E 42.6 ± 1.9 %; P=0.0132) (Fig. 3). This 

difference was significant at T20 and from T80 onwards. For the alveolar-to-arterial oxygen 

tension difference (P(A-a)O2), an interaction effect between treatment and time was 

observed: it remained stable during treatment E, but gradually decreased over time during 

treatment ED (P=0.0067) (Fig. 4). 

   Overall and at each selected timepoint, higher values were found during treatment ED for 

the arterial oxygen content (CaO2) (P=0.0003), central venous oxygen content (CvO2) 

(P=0.0002) and end-capillary pulmonary oxygen content (CćO2) (P=0.0008) (Table 3). A 

significant interaction effect between treatment and time was also detected for all 3 variables: 

while these values remained stable throughout anaesthesia after treatment E, a gradual 

increase was observed during treatment ED. 
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Table 2: Body temperature, blood gas results and packed cell volume (PCV) in 6 anaesthetized ponies receiving enoximone alone (E) or enoximone 

followed by a CRI of dobutamine (ED). 

 

Values at individual timepoints are represented as mean  ±  SD (SD calculated for each treatment group separately).  

Overall values are represented as mean ± SE (SE calculated assuming homogeneity of variances).  

  * significant difference between E and ED for the overall comparison (P<0.05)  

  § significant difference between E and ED at individual timepoints (P<0.00625) 

Variable Unit Trt   Time after treatment (minutes)   

    Baseline T10 T20 T40 T60 T80 T100 T120 Overall 

Body temperature °C E 36.3 ± 0.3 35.8 ± 0.6 35.7 ± 0.6 35.5 ± 0.7 35.3 ± 0.8 35.1 ± 0.8 35.0 ± 0.9 34.9 ± 0.9 35.4 ± 0.3 

   ED 36.0 ± 0.4 35.7 ± 0.4 35.5 ± 0.4 35.1 ± 0.5 34.7 ± 0.7 34.5 ± 0.7 34.3 ± 0.8  34.1 ± 0.9  34.9 ± 0.3 

Central venous blood            

 pH  E 7.41 ± 0.05 7.42 ± 0.05 7.43 ± 0.05 7.44 ± 0.05 7.44 ± 0.04 7.43 ± 0.05 7.43 ± 0.05 7.43 ± 0.06 7.43 ± 0.02 

   ED 7.44 ± 0.03 7.42 ± 0.02 7.43 ± 0.03 7.44 ± 0.03 7.45 ± 0.04 7.46 ± 0.03 7.47 ± 0.05 7.47 ± 0.06 7.45 ± 0.02 

 pCO2 kPa E 6.85 ± 0.89 6.51 ± 0.93 6.35 ± 0.97 6.29 ± 0.89 6.47 ± 0.52 6.58 ± 0.77 6.53 ± 0.73 6.60 ± 0.80 6.50 ± 0.24 

   ED 6.30 ± 0.56 6.42 ± 0.32 6.40 ± 0.42 6.04 ± 0.44 6.02 ± 0.54 5.91 ± 0.53 5.84 ± 0.70 5.80 ± 0.80 6.06 ± 0.24 

 pO2  kPa E 4.86 ± 0.72 6.69 ± 5.13 4.78 ± 0.80 4.42 ± 0.76 4.20 ± 0.65 3.93 ± 0.54 3.73 ± 0.70 4.91 ± 2.62 4.70 ± 0.78 

   ED 4.70 ± 1.79 5.51 ± 1.78 5.98 ± 1.92 5.95 ± 2.30 5.95 ± 2.28 8.82 ± 6.22 § 5.95 ± 1.83 5.84 ± 2.02 6.29 ± 0.78 

 SBC mmol/L E 29 ± 3 29 ± 2 29 ± 2 30 ± 2 30 ± 2 30 ± 2 30 ± 2 30 ± 2 30 ± 1 

   ED 29 ± 1 29 ± 1 29 ± 1 29 ± 1 30 ± 1 30 ± 1 30 ± 1 30 ± 2 29 ± 1 

 PCV L/L E 0.27 ± 0.04 0.26 ± 0.05 0.26 ± 0.04 0.28 ± 0.05 0.26 ± 0.03 0.24 ± 0.02 0.24 ± 0.04 0.24 ± 0.02 0.25 ± 0.01 

   ED 0.27 ± 0.03 0.30 ± 0.04 § 0.31 ± 0.03 § 0.33 ± 0.04  0.33 ± 0.05 § 0.33 ± 0.04 § 0.33 ± 0.04 § 0.33 ± 0.04 § 0.32 ± 0.01 * 

Arterial blood            

 pH  E 7.45 ± 0.05 7.46 ± 0.06 7.47 ± 0.05 7.48 ± 0.05 7.47 ± 0.04 7.47 ± 0.04 7.48 ± 0.05 7.47 ± 0.05 7.47 ± 0.02 

   ED 7.47 ± 0.04 7.44 ± 0.03 7.45 ± 0.03 7.46 ± 0.04 7.47 ± 0.05 7.48 ± 0.04 7.50 ± 0.06 7.51 ± 0.06 7.47 ± 0.02 

 pCO2 kPa E 5.93 ± 0.68 5.87 ± 0.73 5.71 ± 0.69 5.53 ± 0.72 5.80 ± 0.52 5.71 ± 0.44 5.64 ± 0.49 5.69 ± 0.54 5.70 ± 0.20 

   ED 5.53 ± 0.50 5.98 ± 0.37 5.73 ± 0.42 5.51 ± 0.53 4.71 ± 2.12  5.40 ± 0.51 5.22 ± 0.78 5.07 ± 0.75 5.37 ± 0.20 

 pO2 kPa E 25.51 ± 13.85 18.62 ± 14.54 24.00 ± 19.74 24.62 ± 18.21 26.71 ± 17.66 25.69 ± 14.67 20.64 ± 7.49 20.80 ± 12.10 23.00 ± 5.28 

   ED 26.09 ± 18.25 17.93 ± 8.34 25.62 ± 15.14 32.26 ± 15.95 35.26 ± 14.44 37.69 ± 11.87 39.08 ± 12.84  39.26 ± 12.70  32.44 ± 5.28 

 SBC mmol/L E 30 ± 2 30 ± 3 30 ± 3 30 ± 2 31 ± 2 30 ± 2 31 ± 2 31 ± 2 30 ± 1 

   ED 30 ± 2 30 ± 1 29 ± 1 29 ± 2 30 ± 1 30 ± 1 30 ± 1 30 ± 2 30 ± 1 

 PCV L/L E 0.27 ± 0.03 0.25 ± 0.05 0.26 ± 0.04 0.26 ± 0.03 0.24 ± 0.03 0.27 ± 0.04 0.25 ± 0.03 0.24 ± 0.02 0.25 ± 0.01 

      ED 0.27 ± 0.03 0.30 ± 0.03  0.31 ± 0.03 § 0.33 ± 0.04 § 0.33 ± 0.05 § 0.32 ± 0.04 § 0.33 ± 0.04 § 0.32 ± 0.04 § 0.32 ± 0.01 * 
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Fig. 3:  Alveolar dead space-to-tidal volume ratio (VD/VT) in 6 anaesthetized ponies receiving 

enoximone alone or enoximone followed by a CRI of dobutamine.  

Values are displayed as mean ± SD.  

* indicates a significant difference between the 2 treatments (P<0.00625) 

 

 

 

 

Fig. 4: Alveolar - arterial oxygen tension difference [P(A-a)O2] in 6 anaesthetized ponies 

receiving enoximone alone or enoximone followed by a CRI of dobutamine.  

Values are displayed as mean ± SD.  

 

 

   Compared to enoximone alone, overall DO2 was higher with treatment ED (P=0.0011) 

(Table 3). This difference was significant at each selected timepoint during the observational 

period. No difference in overall oxygen consumption (  O2) could be detected between the 2 

treatments (Table 3). 
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Table 3: Arterial (CaO2), central venous (CvO2) and end-capillary pulmonary oxygen content (CćO2), degree of venous admixture (       ), oxygen 

delivery (DO2) and oxygen consumption (  O2) in 6 anaesthetized ponies receiving enoximone alone (E) or enoximone followed by a CRI of 

dobutamine (ED). 

 
Values at individual timepoints are represented as mean  ±  SD (SD calculated for each treatment group separately).  

Overall values are represented as mean ± SE (SE calculated assuming homogeneity of variances).   

* significant difference between E and ED for the overall comparison (P<0.05)  

§ significant difference between E and ED at individual timepoints (P<0.00625) 

 

 

 

Variable Unit Trt   Time after treatment (min)   

   Baseline T10 T20 T40 T60 T80 T100 T120 Overall 

CaO2 mL/L E 128 ± 7 118 ± 12 122 ± 10 122 ± 9 118 ± 9 129 ± 19 121 ± 13 116 ± 5 121 ± 5 

  ED 130 ± 13 140 ± 9 § 150 ± 10 § 160 ± 15 § 165 ± 23 § 161 ± 16 § 162 ± 17 § 161 ± 18 § 157 ± 5 * 

CvO2 mL/L E 90 ± 11 90 ± 18 90 ± 10 93 ± 13 82 ± 6 72 ± 11 70 ± 16 76 ± 12 82 ± 5 

  ED 85 ± 15 112 ± 17 § 118 ± 12 § 126 ± 14 § 128 ± 17 § 134 ± 15 § 131 ± 16 § 128 ± 19 § 125 ± 5 * 

CćO2 mL/L E 145 ± 8 136 ± 14 140 ± 11 139 ± 10 134 ± 11 146 ± 20 139 ± 13 134 ± 5 138 ± 5 

  ED 147 ± 15 158 ± 9 § 166 ± 10 § 175 ± 16 § 180 ± 23 § 175 ± 17 § 176 ± 18 § 175 ± 19 § 172 ± 5 * 

Venous admixture % E 32 ± 7 47 ± 24 35 ± 8 43 ± 19 32 ± 5 24 ± 7 28 ± 8 35 ± 16 35 ± 3 

  ED 29 ± 9 44 ± 15 36 ± 10 34 ± 13 31 ± 11 41 ± 18  32 ± 9 33 ± 14 36 ± 3 

DO2  L/min E 1.93 ± 0.33 2.25 ± 0.31 2.16 ± 0.44 1.96 ± 0.26 1.66 ± 0.31 1.66 ± 0.41 1.53 ± 0.45 1.41 ± 0.33 1.80 ± 0.25 

  ED 2.00 ± 0.34 3.51 ± 0.80 § 3.43 ± 0.76 § 3.69 ± 0.95 § 3.60 ± 0.95 § 3.39 ± 0.69 § 3.29 ± 0.97 § 3.21 ± 1.01 § 3.45 ± 0.25 * 

2OV


 L/min E 0.57 ± 0.23 0.51 ± 0.30 0.57 ± 0.18 0.46 ± 0.26 0.51 ± 0.19 0.73 ± 0.31 0.61 ± 0.22 0.51 ± 0.25 0.56 ± 0.09 

    ED 0.68 ± 0.25 0.70 ± 0.36 0.72 ± 0.26 0.74 ± 0.26  0.79 ± 0.39  0.53 ± 0.33 0.61 ± 0.20 0.63 ± 0.28 0.68 ± 0.09 
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Recovery (Table 4) 

The recovery scores were comparable for both treatments, although two ponies showed some 

excitation during recovery after treatment E, which was not observed after treatment ED. 

Time to stand up was 23.7 ± 7.1 minutes after treatment E, compared to 21.3 ± 5.4 minutes 

after treatment ED. 

 

Table 4: Recovery scores of 6 ponies, receiving either a bolus of enoximone or enoximone 

followed by dobutamine during anaesthesia. 

 

Pony Enoximone 
Enoximone + 
Dobutamine 

1 2 3 

2 4 3 

3 2 2 

4 2 2 

5 4 2 

6 2 3 

 

 

Discussion 

Compared to enoximone alone, a combination of enoximone and dobutamine increased HR, 

   , SV, arterial blood pressure and DO2. When comparing these results to those found with 

enoximone in ponies (Chapter 4.1) and with dobutamine in horses (Swanson et al. 1985, 

Swanson & Muir 1986, Gasthuys et al. 1991, Lee et al. 1998, Young et al. 1998, Raisis et al. 

2000), the cardiovascular effects of enoximone and dobutamine appeared to be at least 

additive, but perhaps even synergistic. Additive effects of PDE III inhibitors and ß-adrenergic 

sympathomimetics have also been reported in man (Royster et al. 1993, Thuillez et al. 1993, 

Gilbert et al. 1995, Cracowski et al. 1999, Via et al. 2003). Furthermore, the results of the 

present study indicate that a combination of enoximone and dobutamine may have beneficial 

effects on respiratory gas exchange, as a reduction in VD/VT was observed.  

   By increasing the intracellular concentration of cAMP through different pathways, 

enoximone and dobutamine can have additive or even synergistic effects. In horses, 

dobutamine was shown to increase     at dosages of 1.25 µg/kg/min
 
or higher (Swanson et al. 

1985, Swanson & Muir 1986, Gasthuys et al. 1991, Lee et al. 1998, Young et al. 1998). 

However, infusion rates up to 1 µg/kg/min did not induce significant changes in     in several 

studies (Swanson & Muir 1986, Lee et al. 1998, Raisis et al. 2000). In the present study, a 
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dobutamine CRI of only 0.5 µg/kg/min
 
significantly increased CI from 54.08 ± 7.19 to 82.40 

± 7.19 mL/kg/min. In literature, such an increase was only reported with higher doses of 

dobutamine (Swanson et al. 1985, Gasthuys et al. 1991). It can be concluded that enoximone 

and dobutamine may have synergistic effects on     in isoflurane anaesthetized ponies. 

Furthermore, the difference between treatments E and ED was fairly constant throughout the 

observational period, indicating that a single bolus of enoximone potentiated the effects of 

dobutamine during at least 2 hours. This is in agreement with the results of chapter 4.1, where 

enoximone significantly increased     during 100 minutes.  

   The increase in     found in our ponies was due to increases in both SV and HR. 

Dobutamine was reported to increase SV at doses of 1 µg/kg/min or higher (Gasthuys et al. 

1991, Lee et al. 1998) but not at a low dose of 0.5 µg/kg/min (Raisis et al. 2000). Again this 

indicates that enoximone increases the effects of dobutamine in isoflurane anaesthetized 

ponies, as was reported in man for combinations of PDE III inhibitors and ß-adrenergic 

sympathomimetics (Royster et al. 1993, Gilbert et al. 1995). An increase in SV can result 

from an increase in preload, a decrease in afterload and/or an increase in contractility. 

Although RAP, which reflects preload, increased during administration of dobutamine, this 

difference was only significant during the first 20 minutes. Systemic vascular resistance, 

which reflects afterload, was significantly lower during treatment ED when overall data were 

analyzed. However, this difference was small and could not be confirmed statistically when 

analyzing the data at specific time points. These findings indicate that in the present study, 

dobutamine increased SV mainly by increasing contractility.  

    Heart rate, a second determinant of    , was also increased during treatment ED. The 

difference between the 2 treatments became larger over time, but was only significant from 

T60 onwards. In chapter 4.1 it was shown that a bolus of 0.5 mg/kg enoximone increased HR 

during 40 minutes in isoflurane anaesthetized ponies. During this time period, dobutamine 

did not induce further increases in HR in the present study, although human patients with 

class IV heart failure receiving enoximone and dobutamine had a higher increase in HR than 

patients receiving either of the drugs alone (Gilbert et al. 1995). The reason for this different 

response is not clear: the effects of dobutamine on HR reported in horses vary largely in 

literature, while no clear correlation seems to exist with the administered dose of dobutamine. 

Indeed, the influence of dobutamine on HR in anaesthetized horses varied between no effects 

with doses between 0.5 and 10 µg/kg/min (Swanson et al. 1985, Gasthuys et al. 1991, Lee et 
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al. 1998, Raisis et al. 2000), decreases with doses between 1.5 and 5 µg/kg/min (Swanson et 

al. 1985, Donaldson 1988) and increases with doses between 2.5 and 10 µg/kg/min (Gasthuys 

et al. 1991, Lee et al. 1998). In the present study, a low dose of dobutamine only increased 

HR after the effects of enoximone on HR had weaned off. As the time between sedation and 

administration of enoximone was 105 minutes, it is unlikely that romifidine influenced HR 

during the observational period. After a similar time period and compared to baseline, no 

differences in HR were reported after romifidine administration (Freeman et al. 2002). 

Alternatively, the increase in blood pressure during dobutamine administration may have 

elicited a vagal response, preventing a further increase in HR (Alexander & De Cuir 1963). 

Also, the influence of the infusion of dobutamine might have been delayed, similar to the 

findings of Young et al. (1998), where an increase in HR was not observed until 60 minutes 

after initiating an infusion of dobutamine at 4 µg/kg/min. Despite the increase in HR and 

similar to the human studies in patients with class IV heart failure (Gilbert et al. 1995), no 

arrhythmias occurred during the combined use of enoximone and dobutamine in the ponies of 

the present study. 

   Although enoximone did not induce any changes in blood pressure in healthy, isoflurane 

anaesthetized ponies (Chapter 4.1), it has been reported that the use of PDE inhibitors can be 

accompanied by a sudden decrease of the arterial blood pressure (Kulka & Tryba 1993). In 

those cases, excessive vasodilation had to be counteracted by catecholamine α-stimulation 

(Via et al. 2003). Results of the present study indicate that an infusion of dobutamine may be 

useful in such cases, as arterial blood pressure was always higher during treatment ED. 

Indeed, dobutamine is well known to increase arterial pressure in anaesthetized horses 

(Swanson et al. 1985, Gasthuys et al. 1991, Hellyer et al. 1998, Raisis et al. 2000). However, 

further studies are necessary in hypovolaemic horses, as the effects of dobutamine may be 

limited in those cases. 

   Dobutamine has been reported to reduce total peripheral and pulmonary resistances, 

suggesting vasodilation of the peripheral and pulmonary vascular beds (Gasthuys et al. 1991, 

Thuillez et al. 1993). Furthermore, combining dobutamine and enoximone potentiates the 

systemic and brachial vasodilator effects of each drug in man (Thuillez et al. 1993, Gilbert et 

al. 1995, Cracowski et al. 1999). Yet, in the present study, the overall difference in SVR, 

although statistically significant, was quite small (317.6 ± 29.3 vs 274.0 ± 29.3 

dynes.sec/cm
5
). Also, after Bonferroni correction, the differences were not significant at any 

of the selected timepoints. Apparently, both drugs appeared to reduce SVR to a lesser extent 
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in horses than in man: enoximone did not reduce SVR in isoflurane anaesthetized ponies 

(Chapter 4.1) and reported effects of racemic dobutamine on SVR in horses are only small 

and often not significant (Swanson et al. 1985, Raisis et al. 2000). This can be explained by 

the physiologic and pharmacologic antagonisms of the individual stereoisomers of the 

racemic mixture (Ruffolo et al. 1981). Also, the observed decrease in SVR in the present 

study may have been attenuated by an increase in PCV, which increases viscosity and thus 

SVR.  

   Right atrial pressure was larger during treatment ED compared to enoximone alone. 

Increases in RAP have indeed been reported with the use of dobutamine in horses (Swanson 

et al. 1985, Raisis et al. 2000). In the present study, this difference was significant during the 

first 20 minutes after the administration of enoximone. Dobutamine appeared to attenuate the 

venous vasodilating effect of enoximone, which has been shown to reduce RAP in isoflurane 

anaesthetized ponies (Chapter 4.1). This finding is in agreement with reports about the 

combination of enoximone and dobutamine in man (Gilbert et al. 1995). 

   During the observational period, general anaesthesia induced a gradual decrease in body 

temperature over time. An interaction effect between the factors treatment and time was also 

detected, with a more rapid decrease in body temperature during treatment ED, despite a 

similar room temperature. The reason for this difference is unclear. To the authors‟ 

knowledge, neither enoximone nor dobutamine have been reported to cause a decrease in 

body temperature. Perhaps a more pronounced vasodilation of the peripheral vasculature 

occurred during treatment ED. As hypothermia has been shown to reduce the MAC of 

isoflurane (Vitez et al. 1974, Antognini 1993), it is likely that anaesthetic depth gradually 

increased in the present study. However, the difference in body temperature between the two 

treatments was small and not significant and should therefore not have interfered with the 

comparison of both treatments.  

   Using a CRI of dobutamine at rates of 1, 3 and 5 µg/kg/min, Swanson and Muir (1986) did 

not detect any differences in the degree of venous admixture, VD/VT or P(A-a)O2. Similarly, 

no difference in the degree of venous admixture was detected between the two treatments in 

the present study. However, we did observe a decrease in VD/VT, which suggests increased 

blood flow to adequately ventilated lung regions, possibly due to vasodilation of the 

pulmonary circulation in these areas. In man, a combination of enoximone and dobutamine 

reduced pulmonary vascular resistance compared to enoximone treatment alone (Gilbert et al. 
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1995). While this reduction in dead space ventilation, which was most pronounced after T80, 

did not result in differences in P(A-a)O2 or PaO2, an interaction effect between treatment and 

time was observed for both of these variables: during treatment ED, P(A-a)O2 gradually 

became smaller and PaO2 larger than after enoximone treatment alone.  

   Partly due to this gradual increase in PaO2, but mainly due to the increase in PCV, CaO2 

was higher during treatment ED. Increases in PCV have indeed been described during or after 

dobutamine administration (Gasthuys et al. 1991, Hellyer et al. 1998, Raisis et al. 2000). The 

combination of increased     and augmented CaO2 resulted in a higher oxygen delivery with 

treatment ED. It should be noted however that increases in microcirculatory PCV may result 

in increased viscosity, which might reduce the flow in small vessels and limit oxygen 

delivery to the tissues (Raisis et al. 2000). Also, central indices of left ventricular function, 

(   , MAP and SVR) do not always predict the effects of agents on regional perfusion (Raisis 

et al. 2000). Therefore, further studies are needed to investigate the effects of enoximone and 

dobutamine on intramuscular blood flow. 

   In conclusion, the results of the present study indicate that a combination of a bolus of 

enoximone and a CRI of dobutamine produces greater cardiovascular stimulation than 

enoximone alone, whereby enoximone potentiated the effects of dobutamine on     and SV in 

isoflurane anaesthetized ponies. Although SVR was reduced, blood pressure was always 

higher during the infusion of dobutamine. Also, a reduction in VD/VT was detected, indicating 

that the combination of enoximone and dobutamine had beneficial effects on pulmonary 

perfusion. As the present study was conducted in ponies, further studies are necessary to 

examine the effects of a combination of enoximone and dobutamine in horses, especially in 

cases of dehydration and/or hypovolaemia.   
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SUMMARY 

The aim of this study was to examine the influence of calcium chloride (CaCl2) on the 

cardiorespiratory effects of enoximone in isoflurane anaesthetized ponies in a 

prospective, randomized, experimental trial. Six healthy ponies, weighing 287 ± 55 kg, 

were sedated with romifidine, 80 µg/kg intravenously (IV). Anaesthesia was induced 

with midazolam (0.06 mg/kg) and ketamine (2.2 mg/kg) and maintained with isoflurane 

in oxygen. The ponies' lungs were ventilated to maintain normocapnia. After 90 minutes, 

enoximone alone (0.5 mg/kg) (treatment E) or enoximone followed by a CaCl2 infusion 

(0.5 mg/kg/min over 10 minutes) (treatment EC) was administered. Each pony received 

both treatments on separate occasions, with a minimal interval of 2 weeks between 

treatments. Sodium, potassium, ionized and total calcium concentrations, cardiovascular 

variables and blood gases were measured during 120 minutes after treatment.  

   Ionized and total calcium concentrations were higher during treatment EC, but the 

cardiorespiratory effects of enoximone were comparable for both treatments. A small 

but significant difference in packed cell volume was detected. It can be concluded that 

calcium chloride does not influence the effects of enoximone in normocalcaemic 

anaesthetized ponies. 
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Introduction 

Calcium ions are essential for cardiac membrane depolarization, excitation-contraction 

coupling and actin-myosin interaction during muscle contraction (Abernethy et al. 1995). 

Volatile anaesthetics depress myocardial function by altering myocardial cell calcium 

homeostasis (Pagel et al. 1993) and by decreasing intracellular calcium transients (Bosnjak 

and Kampine 1986). Calcium influx through slow channels is reduced, resulting in a 

depression of the rate of upstroke of the slow calcium-mediated action potential (Rusy & 

Komai 1987). Inhalational agents also depress the maximal uptake of calcium by the 

sarcoplasmic reticulum (Casella et al. 1987) and may even cause a net loss of calcium from 

the sarcoplasmic reticulum (Wheeler et al. 1988). Finally, volatile anaesthetics decrease the 

myofibrillar responsiveness to calcium and/or the calcium sensitivity of the contractile 

proteins (Housmans & Murat 1988) and induce small but significant decreases in serum 

ionized and total calcium concentrations in horses (Gasthuys et al. 1985, Grubb et al. 1999). 

   Enoximone, a phosphodiesterase (PDE) III inhibitor, exerts powerful inotropic and 

lusitropic effects by increasing the cyclic adenosine monophosphate (cAMP) concentration in 

cardiac muscle. A cAMP dependent protein kinase is activated, which phosphorylates the L-

type calcium channels, facilitating calcium flux across myocardial cell membranes. 

Intracellular calcium concentrations increase, stimulating a further release of calcium from the 

sarcoplasmatic reticulum and resulting in an increase of the contractile forces (Vernon et al. 

1991). In ponies, enoximone induced significant increases in cardiac output (


Q


   ), stroke 

volume (SV) and heart rate (HR) (Chapter 4.1). 

   The inotropic state of the myocardium can also be ameliorated by increasing circulatory 

calcium concentrations. Calcium attenuated or completely reversed the negative lusitropic 

actions of halothane and isoflurane (Pagel et al. 1993) and produced positive inotropic effects 

in cats (Bosnjak and Kampine 1986), dogs (Pagel et al. 1993) and calves (Stanley et al. 1976). 

Increases in     and/or SV were demonstrated in conscious (Grubb et al. 1996) and 

anaesthetized horses (Grubb et al. 1999), anaesthetized ponies (Gasthuys et al. 1991), 

hypocalcaemic dogs (Drop and Scheidegger 1980) and humans with cardiac disease (Eriksen 

et al. 1983).  

   Because the effects of PDE III inhibitors result from an increased calcium influx in the 

myocardium, the effects of these drugs may be enhanced when administered simultaneously 

with calcium. On the other hand, calcium stimulates PDE activity, thereby increasing cAMP 
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degradation and possibly attenuating the effects of PDE inhibitors (Teo & Wang 1973). Also, 

calcium overload can induce side effects such as marked shortening of the QT interval, 

bradyarrhythmias (Drop 1985), impaired diastolic function (Schiffman et al. 2001) and even 

cardiac arrest (Bergman & Sellers 1953). To the authors‟ knowledge, no studies have reported 

the influence of calcium on the effects of enoximone in any species. The aim of the present 

study was to investigate if a calcium chloride infusion could increase the cardiovascular 

effects of enoximone in anaesthetized ponies.  

 

Materials & Methods 

The general experimental protocol has been described in chapter 4.1. Additionally, blood 

samples for measurement of serum total calcium (Spotchem SP-4420
®
, A. Menarini 

Diagnostics, Zaventem, Belgium) and plasma ionized calcium, sodium and potassium (AVL 

9180 Electrolyte Analyzer
®
, AVL scientific corporation, Roswell, Georgia, USA 30076) 

concentrations were collected before sedation (= standing values), at T-10 (= baseline), T30, 

T60, T90, T120 and T150 (= during recovery, 30 minutes after the end of anaesthesia) during 

treatments E and EC.  

   For statistical analysis, a paired samples t-test was performed to analyze the differences 

between pre-anaesthetic values and baseline values during anaesthesia for plasma sodium, 

potassium and ionized calcium and serum total calcium levels (α = 0.05). The same test was 

used to compare the pre-anaesthetic levels of these ions to the respective levels during 

recovery. For all variables, differences between treatments E and EC were compared using a 

mixed model with treatment, time and their interaction as fixed categorical effects and pony 

as random effect, comparing the treatments both globally over the entire period after treatment 

(at α = 0.05) and also at specific timepoints: baseline, T30, T60, T90, T120 and T150 for the 

different ions (at Bonferroni adjusted α = 0.0083) and baseline, T10, T20, T40, T60, T80, 

T100 and T120 for all other variables (at Bonferroni-adjusted α = 0.00625).   

 

Results 

Sodium, potassium and ionized and total calcium concentrations  

At baseline, ion concentrations were not significantly different between the 2 treatments 

(Table 1), but baseline Na
+
 (P = 0.008), ionized  (P < 0.001) and total Ca

2+ 
concentrations (P < 
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Table 1: Sodium, potassium and ionized and total calcium concentrations in 6 anaesthetized ponies receiving enoximone (0.5 mg/kg) alone (E), or 

enoximone (0.5 mg/kg) followed by a calcium chloride infusion (0.5 mg/kg/min during 10 minutes) (EC).  

 

 

 

 

Data are represented as mean  ±  SD (SD calculated assuming homogeneity of variances).  

* significant difference between E and EC for the overall comparison (P<0.05)  

§ significant difference between E and EC at individual timepoints (P<0.0083) 

£ baseline value and/or value during recovery significantly different from standing value (α = 0.05).  

          Time after enoximone treatment (minutes), CaCl2 infused from T5 to T15 during treatment EC   

Ion Unit Standing Trt Baseline T30 T60 T90 T120 Recovery Overall 

Sodium mmol/L
 

137 ± 1 E 133 ± 1 £ 132 ± 1 133 ± 1 131 ± 1 132 ± 1 132 ± 1 132 ± 1 

   EC 130 ± 1 £ 130 ± 1 135 ± 1 132 ± 1 132 ± 1 133 ± 1 132 ± 1 

Potassium mmol/L
 

3.8 ± 0.1 E 3.8 ± 0.2 3.9 ± 0.2 3.8 ± 0.2 4.2 ± 0.2 4.1 ± 0.2 4.2 ± 0.2 4.0 ± 0.2 

   EC 4.2 ± 0.2 4.0 ± 0.2 4.2 ± 0.2 4.2 ± 0.2 4.1 ± 0.2 4.3 ± 0.2 4.2 ± 0.2 

Ionized calcium mmol/L
 

1.49 ± 0.03 E 1.37 ± 0.01 £ 1.29 ± 0.01 1.29 ± 0.01 1.26 ± 0.01 1.26 ± 0.01 1.26 ± 0.01 £ 1.27 ± 0.01 

   EC 1.41 ± 0.01 £ 1.49 ± 0.01 § 1.43 ± 0.01 § 1.42 ± 0.01 § 1.40 ± 0.01 § 1.40 ± 0.01 £ 1.43 ± 0.01 * 

Total calcium mmol/L
 

3.00 ± 0.03 E 2.71 ± 0.03 £ 2.63 ± 0.03 2.59 ± 0.03 2.58 ± 0.03 2.58 ± 0.03 2.56 ± 0.03 £ 2.59 ± 0.03 

      EC 2.56 ± 0.03 £ 2.72 ± 0.03 2.69 ± 0.03 2.71 ± 0.03 2.69 ± 0.03 2.78 ± 0.03 £ 2.70 ± 0.03 * 
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0.001) were lower than their respective standing values, with a significantly higher 

ionized/total Ca
2+ 

ratio (P = 0.037). Ionized Ca
2+ 

concentration decreased over time in both 

groups (P = 0.003), but was significantly higher throughout the anaesthesia after treatment EC 

compared to treatment E. Overall, total Ca
2+ 

concentration was also significantly higher 

during treatment EC than during treatment E (P = 0.042), but this difference was quite small 

and not significant at the different time points separately. As a result, the ratio ionized/total 

Ca
2+ 

was higher during treatment EC (P<0.001). No differences in Na
+
 and K

+ 
concentrations 

were found between treatments. 

   During recovery, Na
+
 and K

+
 concentrations were not different from standing values and 

comparable for both treatments. Ionized and total Ca
2+ 

concentrations were still lower than 

before anaesthesia (P < 0.001), but not different between the 2 treatments. 

 

Cardiovascular system  

The cardiovascular effects of treatment EC were not significantly different from those 

previously reported for treatment E at any of the selected timepoints for any of the measured 

variables (Table 2). Diastolic (DAP) and mean (MAP) arterial pressure gradually increased 

over time (P < 0.0001). Systemic vascular resistance (SVR) and right atrial pressure (RAP) 

initially decreased after enoximone treatment, but increased significantly over time (P < 

0.0001) during the remaining anaesthetic period.  

 

Body temperature, respiratory gas exchange, packed cell volume  

Body temperature gradually decreased over time (P<0.0001), but was not different between 

the two treatments. Arterial and central venous blood gas results (Table 3) and parameters 

derived from these values (Table 4) were comparable for both treatments. Arterial pH 

gradually increased over time (P = 0.0048), while central venous oxygen content (CvO2) 

(P<0.0001) and haemoglobin saturation (SvO2) (P=0.0002) slowly, but significantly decreased 

over time. Overall, packed cell volume (PCV) was higher during treatment EC than during 

treatment E, both in arterial (P = 0.0345) and central venous (P = 0.0184) blood. 

 

Recovery  

The recovery scores after both treatments are represented in table 5. Time to stand up was 

23.7 ± 7.1 minutes after treatment E, compared to 30.3 ± 7.1 minutes after treatment EC. 
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Table 2: Systolic (SAP), diastolic (DAP), mean arterial (MAP) and right atrial (RAP) pressures, heart rate (HR), cardiac index (CI), stroke volume 

index (SI) and systemic vascular resistance (SVR) in 6 anaesthetized ponies receiving enoximone (0.5 mg/kg) alone (E), or enoximone (0.5 

mg/kg) followed by a calcium chloride infusion (0.5 mg/kg/min during 10 minutes) (EC).  

 

Variable Unit Trt   
Time after enoximone treatment (min), CaCl2 infused from T5 to T15 during 

treatment EC   

   
Baseline T10 T20 T40 T60 T80 T100 T120 Overall 

SAP 
§
 mm Hg E 83 ± 7 86 ± 14 84 ± 12 84 ± 11 88 ± 11 89 ± 10 87 ± 10 85 ± 10 86 ± 3 

  
EC 80 ± 5 84 ± 5 84 ± 5 82 ± 7 82 ± 7 83 ± 7 85 ± 7 86 ± 8 84 ± 3 

DAP 
§,#

 mm Hg E 51 ± 6 54 ± 14 54 ± 14 56 ± 15 60 ± 14 62 ± 12 61 ± 9 60 ± 10 57 ± 4 

  
EC 48 ± 4 49 ± 8 51 ± 6 52 ± 9 54 ± 8 55 ± 10 57 ± 8 59 ± 8 53 ± 4 

MAP 
§,#

 mm Hg E 63 ± 6 65 ± 14 65 ± 14 67 ± 14 72 ± 13 73 ± 11 71 ± 9 69 ± 9 68 ± 4 

  
EC 60 ± 4 61 ± 7 62 ± 6 62 ± 8 63 ± 8 65 ± 9 67 ± 9 69 ± 9 64 ± 4 

RAP 
#
 mm Hg E 15 ± 2 10 ± 2 10 ± 2 11 ± 3 11 ± 2 12 ± 3 13 ± 3 13 ± 3 11 ± 2 

  
EC 18 ± 5 14 ± 6 15 ± 6 16 ± 6 17 ± 6 17 ± 7 17 ± 6 18 ± 5 16 ± 2 

HR 
§,#

 beats/min E 40 ± 4 46 ± 6 44 ± 6 41 ± 5 39 ± 5 38 ± 4 37 ± 4 36 ± 3 41 ± 2 

  
EC 39 ± 2 46 ± 4 44 ± 3 42 ± 4 40 ± 3 41 ± 4 40 ± 3 40 ± 4 42 ± 2 

CI 
§,#

 mL/kg/min E 53.0 ± 12.2 67.5 ± 14.3 61.4 ± 11.2 56.5 ± 11.4 49.1 ± 9.8 44.7 ± 10.3 43.4 ± 10.1 42.0 ± 9.2 54.1 ± 5.8 

  
EC 53.3 ± 17.3 66.0 ± 19.9 58.8 ± 21.5 56.0 ± 20.3 52.6 ± 18.9 50.0 ± 16.7 49.1 ± 15.9 45.8 ± 16.3 56.9 ± 5.8 

SI 
§,#

 mL/kg E 1.3 ± 0.2 1.5 ± 0.2 1.4 ± 0.2 1.4 ± 0.2 1.3 ± 0.1 1.2 ± 0.1 1.2 ± 0.2 1.1 ± 0.2 1.3 ± 0.1 

  
EC 1.4 ± 0.4 1.4 ± 0.4 1.3 ± 0.4 1.3 ± 0.4 1.3 ± 0.5 1.2 ± 0.4 1.2 ± 0.4 1.2 ± 0.4 1.3 ± 0.1 

SVR 
#
 dyne.sec/cm

5
 E 261 ± 63 232 ± 66 257 ± 85 282 ± 77 352 ± 90 394 ± 114 400 ± 143 395 ± 143 318 ± 25 

    EC 228 ± 36 208 ± 36 240 ± 70 248 ± 80 268 ± 73 288 ± 67 295 ± 60 328 ± 64 255 ± 25 

  
 

 
Values at individual timepoints are represented as mean  ±  SD (SD calculated for each treatment group separately).  

Overall values are represented as mean ± SE (SE calculated assuming homogeneity of variances). 
 
§ significantly lower at baseline compared to the respective standing values (α = 0.05).  

 
#
 significant change over time during anaesthesia (α = 0.05).  

No significant differences between the 2 treatments were detected for any of the measured variables (α = 0.05).  
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Table 3: Blood gas results, packed cell volume (PCV) and body temperature in 6 anaesthetized ponies receiving enoximone (0.5 mg/kg) alone (E), or 

enoximone (0.5 mg/kg) followed by a calcium chloride infusion (0.5 mg/kg/min during 10 minutes) (EC).  

 

Variable Unit Trt   Time after enoximone treatment (minutes), CaCl2 infused from T5 to T15 during treatment EC   

    Baseline T10 T20 T40 T60 T80 T100 T120 Overall 

Body temperature 
# 

°C E 36.3 ± 0.3 35.8 ± 0.6 35.7 ± 0.6 35.5 ± 0.7 35.3 ± 0.8 35.1 ± 0.8 35.0 ± 0.9 34.9 ± 0.9 35.4 ± 0.2 

   EC 36.0 ± 0.3 35.6 ± 0.2 35.5 ± 0.2 35.4 ± 0.2 35.2 ± 0.2 35.2 ± 0.2 35.0 ± 0.3 35.0 ± 0.4 35.5 ± 0.2 

Central venous blood            

 pH  E 7.41 ± 0.05 7.42 ± 0.05 7.43 ± 0.05 7.44 ± 0.05 7.44 ± 0.04 7.43 ± 0.05 7.43 ± 0.05 7.43 ± 0.06 7.43 ± 0.02 

   EC 7.42 ± 0.03 7.43 ± 0.05 7.43 ± 0.05 7.45 ± 0.04 7.44 ± 0.05 7.46 ± 0.04 7.45 ± 0.05 7.45 ± 0.06 7.44 ± 0.02 

 pCO2 kPa E 6.85 ± 0.89 6.51 ± 0.93 6.35 ± 0.97 6.29 ± 0.89 6.47 ± 0.52 6.58 ± 0.77 6.53 ± 0.73 6.60 ± 0.80 6.50 ± 0.19 

   EC 6.84 ± 0.48 6.73 ± 0.95 6.67 ± 0.88 6.35 ± 0.96 6.64 ± 1.14 6.27 ± 1.07 6.49 ± 1.01 6.40 ± 1.18 6.51 ± 0.19 

 pO2  kPa E 4.86 ± 0.72 6.69 ± 5.13 4.78 ± 0.80 4.42 ± 0.76 4.20 ± 0.65 3.93 ± 0.54 3.73 ± 0.70 4.91 ± 2.62 4.70 ± 0.43 

   EC 4.44 ± 0.80 4.73 ± 1.30 4.69 ± 1.09 4.38 ± 1.40 4.20 ± 1.35 4.11 ± 1.53 3.96 ± 1.47 3.82 ± 1.47 4.27 ± 0.43 

 SBC mmol/L
 

E 29± 3 29 ± 2 29 ± 2 30 ± 2 30 ± 2 30 ± 2 30 ± 2 30 ± 2 30 ± 1 

   EC 30 ± 2 30 ± 2 30 ± 2 30 ± 2 30 ± 2 31 ± 2 31 ± 2 31 ± 2 30 ± 1 

 PCV L/L
 

E 0.27 ± 0.04 0.26 ± 0.05 0.26 ± 0.04 0.28 ± 0.05 0.26 ± 0.03 0.24 ± 0.02 0.24 ± 0.04 0.24 ± 0.02 0.25 ± 0.01 

   EC 0.28 ± 0.02 0.27 ± 0.03 0.27 ± 0.03 0.27 ± 0.04 0.27 ± 0.04 0.27 ± 0.04 0.27 ± 0.05 0.27 ± 0.04 0.27 ± 0.01 * 

Arterial blood            

 pH 
# 

 E 7.45 ± 0.05 7.46 ± 0.06 7.47 ± 0.05 7.48 ± 0.05 7.47 ± 0.04 7.47 ± 0.04 7.48 ± 0.05 7.47 ± 0.05 7.47 ± 0.02 

   EC 7.46 ± 0.03 7.45 ± 0.05 7.46 ± 0.05 7.49 ± 0.04 7.49 ± 0.04 7.50 ± 0.04 7.50 ± 0.06 7.50 ± 0.06 7.48 ± 0.02 

 pCO2 kPa E 5.93 ± 0.68 5.87 ± 0.73 5.71 ± 0.69 5.53 ± 0.72 5.80 ± 0.52 5.71 ± 0.44 5.64 ± 0.49 5.69 ± 0.54 5.70 ± 0.34 

   EC 6.15 ± 0.46 6.15 ± 0.79 5.95 ± 0.80 5.60 ± 0.67 5.60 ± 0.57 5.49 ± 0.66 5.47 ± 0.73 5.44 ± 0.83 5.60 ± 0.34 

 pO2 kPa E 25.51 ± 13.85 18.62 ± 14.54 24.00 ± 19.74 24.62 ± 18.21 26.71 ± 17.66 25.69 ± 14.67 20.64 ± 7.49 20.80 ± 12.10 23.00 ± 5.47 

   EC 15.09 ± 13.55 13.38 ± 12.97 13.55 ± 8.44 13.69 ± 12.34 14.58 ± 15.11 13.95 ± 15.23 15.64 ± 16.46 16.73 ± 17.20 14.50 ± 5.47 

 SBC mmol/L
 

E 30 ± 2 30 ± 3 30 ± 3 30 ± 2 31 ± 2 30 ± 2 31 ± 2 31 ± 2 30 ± 1 

   EC 31 ± 2 31 ± 2 31 ± 2 31 ± 2 31 ± 2 32 ± 2 31 ± 2 31 ± 2 31 ± 1 

 PCV L/L
 

E 0.27 ± 0.03 0.25 ± 0.05 0.26 ± 0.04 0.26 ± 0.03 0.24 ± 0.03 0.27 ± 0.04 0.25 ± 0.03 0.24 ± 0.02 0.25 ± 0.01 

      EC 0.27 ± 0.02 0.27 ± 0.03 0.26 ± 0.04 0.27 ± 0.03 0.27 ± 0.04 0.27 ± 0.04 0.28 ± 0.04 0.27 ± 0.05 0.27 ± 0.01 * 
 

Values at individual timepoints are represented as mean  ±  SD (SD calculated for each treatment group separately).  

Overall values are represented as mean ± SE (SE calculated assuming homogeneity of variances). 

* significant difference between E and EC at the 5% global significance level  
 #
 significant change over time during anaesthesia (α = 0.05).  
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Table 4: Arterial (CaO2), central venous (CvO2) and end-capillary pulmonary oxygen content (CćO2), degree of venous admixture, alveolar dead 

space-to-tidal volume ratio (VD/VT), alveolar-arterial O2 tension difference, oxygen delivery (DO2) and oxygen consumption (  O2) in 6 

anaesthetized ponies receiving enoximone (0.5 mg/kg) alone (E), or enoximone (0.5 mg/kg) followed by a calcium chloride infusion (0.5 

mg/kg/min during 10 minutes) (EC).  

 

 

Variable Unit Trt   Time after enoximone treatment (minutes), CaCl2 infused from T5 to T15 during treatment EC   

   Baseline T10 T20 T40 T60 T80 T100 T120 Overall 

CaO2 mL/L
 

E 128 ± 7 118 ± 12 122 ± 10 122 ± 9 118 ± 9 129 ± 19 121 ± 13 116 ± 5 121 ± 4 

  EC 124 ± 11 117 ± 18 120 ± 21 117 ± 11 115 ± 4 117 ± 15 124 ± 8 118 ± 12 118 ± 4 

CvO2 
# 

mL/L
 

E 90 ± 11 90 ± 18 90 ± 10 93 ± 13 82 ± 6 72 ± 11 70 ± 16 76 ± 12 82 ± 7 

  EC 88 ± 15 90 ± 20 91 ± 19 84 ± 23 76 ± 22 80 ± 31 76 ± 30 72 ± 23 81.3 ± 7 

CćO2 m/ L
 

E 145 ± 8 136 ± 14 140 ± 11 139 ± 10 134 ± 11 146 ± 20 139 ± 13 134 ± 5 138 ± 4 

  EC 143 ± 11 137 ± 18 140 ± 20 137 ± 10 135 ± 4 136 ± 15 143 ± 9 137 ± 12 138.0 ± 4 

Venous admixture % E 32 ± 7 47 ± 24 35 ± 8 43 ± 19 32 ± 5 24 ± 7 28 ± 8 35 ± 16 35 ± 3 

  EC 29 ± 9 44 ± 15 36 ± 1 34 ± 13 31 ± 11 41 ± 18 32 ± 9 33 ± 14 38 ± 3 

VD/VT % E 39 ± 8 43 ± 4 42 ± 4 41 ± 5 42 ± 5 43 ± 5 42 ± 4 45 ± 6 43 ± 2 

  EC 40 ± 7 41 ± 6 40 ± 7 41 ± 6 42 ± 7 41 ± 6 41 ± 7 41 ± 7 41 ± 2 

P(A-a)O2 kPa E 76.14 ± 12.79 81.98 ± 12.46 76.60 ± 17.94 76.39 ± 17.32 74.17 ± 17.05 75.50 ± 14.46 81.02 ± 7.98 80.62 ± 13.24 78.04 ± 4.75 

  EC 84.43 ± 11.76 86.86 ± 10.85 87.53 ± 6.19 87.64 ± 10.86 86.75 ± 14.01 87.51 ± 13.94 86.25 ± 14.74 85.38 ± 15.27 86.84 ± 4.75 

DO2 
# 

L/min
 

E 1.93 ± 0.33 2.25 ± 0.31 2.16 ± 0.44 1.96 ± 0.26 1.66 ± 0.31 1.66 ± 0.41 1.53 ± 0.45 1.41 ± 0.33 1.80 ± 0.18 

  EC 1.84 ± 0.39 2.20 ± 0.63 2.01 ± 0.75 1.87 ± 0.67 1.70 ± 0.45 1.68 ± 0.65 1.76 ± 0.59 1.54 ± 0.51 1.82 ± 0.18 

  O2 L /min
 

E 0.57 ± 0.23 0.51 ± 0.30 0.57 ± 0.18 0.46 ± 0.26 0.51 ± 0.19 0.73 ± 0.31 0.61 ± 0.22 0.51 ± 0.25 0.56 ± 0.06 

    EC 0.51 ± 0.07 0.51 ± 0.19 0.48 ± 0.27 0.50 ± 0.12 0.50 ± 0.21 0.47 ± 0.24 0.62 ± 0.24 0.55 ± 0.18 0.52 ± 0.06 

 
Values at individual timepoints are represented as mean  ±  SD (SD calculated for each treatment group separately).  

Overall values are represented as mean ± SE (SE calculated assuming homogeneity of variances). 
#
 significantly changing over time during anaesthesia (α = 0.05).  

No significant differences between the 2 treatments were detected for any of the measured variables (α = 0.05).  
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Table 5: Recovery scores of 6 ponies, receiving either a bolus of enoximone or enoximone 

followed by a calcium chloride infusion during anaesthesia. 

 

Pony Enoximone 
Enoximone + 

calcium 

1 2 3 

2 4 1 

3 2 1 

4 2 1 

5 4 1 

6 2 1 

 

Discussion 

In the present study, Na
+
, ionized and total Ca

2+ 
concentrations were significantly lower at 

baseline compared to the respective preanaesthetic values. Although this may reflect fluid 

shifts, with some plasma dilution as a result, the changes in ionized and total calcium 

concentrations were greater than the difference in Na
+
 concentration. Most likely, isoflurane 

additionally reduced calcium concentrations, since volatile anaesthetics reduced blood 

calcium concentrations in ponies (Gasthuys et al. 1985) and horses (Grubb et al. 1999, Boscan 

et al. 2007), while no changes in Na
+
 concentrations were reported after induction of 

anaesthesia in horses (Tevik et al. 1968, Gasthuys et al. 1986, Boscan et al. 2007). As 

enoximone exerts its effects by increasing calcium entry into the myocardial cells (Vernon et 

al. 1991) and peak effects were observed 5 minutes after administration in ponies (Chapter 

4.1), CaCl2 was administered from 5 to 15 minutes after the injection of enoximone, to 

maximize possible combined effects. Nonetheless, cardiovascular function and respiratory gas 

exchange were comparable with both treatments, despite a significant increase in the ionized 

calcium concentration after CaCl2 administration. 

   The absence of any effects of calcium administration on cardiovascular performance is in 

contrast with other studies in ponies (Gasthuys et al. 1991) and horses (Grubb et al. 1996, 

Grubb et al. 1999), where significant cardiovascular effects were reported after administration 

of calcium in doses comparable to or lower than the dose used in the present study. However, 

in dogs and humans, calcium administration has not always been found to increase     

(Marone et al. 1981, Butterworth et al. 1992, Royster et al. 1992). Furthermore, the effects of 

CaCl2 may in fact be limited when administered in combination with enoximone, since CaCl2 

also had no influence on the haemodynamic responses to other inotropic drugs, such as 

amrinone (Butterworth et al. 1992) and adrenaline (Royster et al. 1992). Apparently, when 
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intracellular calcium concentrations increase above a certain value, a negative feedback 

mechanism becomes active in the myocardium. In some cases, the inotropic effects of PDE III 

inhibitors were actually reduced when calcium was administered (Goyal & McNeill 1986), 

which would be due to a reduced activity of adenylyl cyclase (Drummond & Duncan 1970, 

Abernethy et al. 1995) and an increased PDE activity (Teo & Wang 1973) when calcium 

concentrations increase in the myocardium. Finally, all ponies in the present study were 

normocalcaemic before anaesthesia. Drop and Scheidegger (1980) reported increases in     

and SV after calcium administration in hypocalcaemic, but not in normocalcaemic dogs.  

   In the present study, HR was not influenced by the infusion of CaCl2, although calcium 

administration decreased HR in halothane anaesthetized ponies (Gasthuys et al. 1991) and 

horses (Grubb et al. 1999). Possibly, bradycardia in response to calcium is more likely during 

halothane anaesthesia, since HR was also not influenced by calcium during isoflurane 

anaesthesia in horses (Grubb et al. 1999) or neuroleptanaesthesia in humans (Eriksen et al. 

1983). Furthermore, the effects of calcium on HR may have been attenuated by the positive 

chronotropic effects of enoximone in ponies (Chapter 4.1). 

   Arterial blood pressure was also not affected by CaCl2 in our ponies. Although calcium 

gluconate infusion did not influence arterial pressure in conscious horses (Grubb et al. 1996), 

significant increases were reported in anaesthetized ponies (Gasthuys et al. 1991), horses 

(Grubb et al. 1999), dogs (Drop & Scheidegger 1980) and humans (Marone et al. 1981, 

Eriksen et al. 1983), mainly due to an increase in SVR. Calcium induces vasoconstriction by 

binding to calmodulin and activating myosin light chain kinase, which then phosphorylates 

myosin, initiating smooth muscle contraction. Calcium would further enhance smooth muscle 

contraction by binding directly to myosin and by activating protein kinase C, which 

phosphorylates myosin at a different site than myosin light chain kinase (Adelstein & Sellers 

1987). 

   In the present study, after administration of enoximone, infusion of CaCl2 did not increase 

SVR. The fact that enoximone promotes vasodilation through an increase in the cAMP level 

in vascular smooth muscle cells (Vernon et al. 1991) may interfere with the contractile 

response of smooth muscle cells to calcium in several ways. Firstly, cAMP decreases 

myoplasmic calcium concentrations (Itoh et al. 1993) by inhibiting calcium influx in vascular 

smooth muscle cells (Ishikawa et al. 1993) and by enhancing calcium pump activity by 

phosphorylation of phospholamban (Kimura et al. 1991). Secondly, when intracellular cAMP 
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levels rise, a cAMP-dependent protein kinase catalyzes the phosphorylation of myosin kinase. 

This decreases the activity of myosin kinase by interfering with the binding of calcium-

calmodulin (Adelstein et al. 1982). Finally, enoximone might also cause vasorelaxation 

through a decrease in calcium sensitivity of contractile elements (Itoh et al. 1993). In 

conclusion, enoximone may blunt the effects of calcium on the peripheral vasculature by 

decreasing intracellular calcium concentrations, lowering the activity of myosin light chain 

kinase and diminishing the calcium sensitivity of contractile elements. 

   Packed cell volume was not influenced by calcium administration in ponies (Gasthuys et al. 

1991) and horses (Grubb et al. 1996). However, in the present study, PCV was higher during 

treatment EC. This is in agreement with the results of Marone et al. (1981) in humans, who 

found a significant increase in PCV after administration of calcium gluconate. As in several 

similar studies (Gasthuys et al. 1991, Grubb et al. 1996), blood gases were not influenced by 

calcium administration in the present study.  

   Future studies are justified to determine whether the results of the present study in ponies 

also apply in horses and whether CaCl2 can increase the effects of enoximone in cases of 

hypocalcaemia and/or endotoxaemia. It might also be hypothesized that CaCl2 would produce 

clearer effects when administered during a constant rate infusion of enoximone. However, a 

bolus of enoximone produced long lasting effects in anaesthetized ponies, with increases in 

HR for 40 minutes and     and SV for 100 minutes (Chapter 4.1). Since CaCl2, infused shortly 

after administration of enoximone, did not induce any significant changes in the present study, 

it is unlikely that clearer effects would be observed during a constant rate infusion of 

enoximone. Furthermore, pharmacokinetic data on enoximone in ponies or horses, required to 

determine a suitable constant rate, are not available up to now. Finally, in the authors‟ 

opinion, it is unlikely that different results would be obtained when using calcium gluconate 

instead of CaCl2, since it has been demonstrated that equal elemental calcium doses of 

calcium gluconate and CaCl2, injected over the same time period, were equivalent in their 

ability to raise calcium concentrations during normocalcaemic situations and produced 

equivalent cardiovascular effects in children and dogs (Cote et al. 1987). 

   In conclusion, the previously reported positive cardiovascular effects of a bolus of 0.5 

mg/kg enoximone were not affected by a CaCl2 infusion in the present study in ponies.  
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SUMMARY 

The aim of this study was to examine whether enoximone improves cardiovascular 

function and reduces dobutamine requirement in anaesthetized colic horses. Forty eight 

adult colic horses were enrolled in this prospective, randomized clinical trial. After 

sedation [xylazine 0.7 mg/kg intravenously (IV)] and induction [midazolam 0.06 mg/kg 

IV,  ketamine 2.2 mg/kg IV], anaesthesia was maintained with isoflurane in oxygen and 

a lidocaine constant rate infusion (1.5 mg/kg, 2 mg/kg/h). All horses were ventilated 

(PaCO2<8.00 kPa). When hypotension occurred, dobutamine and/or colloids were 

administered. Ten minutes after skin incision, horses randomly received an IV bolus of 

enoximone (0.5 mg/kg) or saline. Monitoring included respiratory and arterial blood 

gases, heart rate (HR), arterial pressure and cardiac index (CI). Systemic vascular 

resistance (SVR), stroke index (SI) and oxygen delivery index (DO2I) were calculated. 

For each variable, changes between baseline and T10 within each treatment group 

and/or colic type (small intestines (SMA), large intestines (LAR) or mixed (MIX)) were 

analyzed and compared between treatments in a fixed effects model. Differences 

between treatments until T30 were investigated using a mixed model (α=0.05). 

   Ten minutes after enoximone treatment, CI (P=0.0010), HR (P=0.0033) and DO2I 

(P=0.0007) were higher and SVR lower (P=0.0043) than at baseline. The changes in CI, 

HR and SVR were significantly different from those after saline treatment. During the 

first 30 minutes after enoximone treatment, DO2I (P=0.0224) and HR (P=0.0003) were 

higher than after saline administration. Because the difference in HR between 

treatments was much clearer in LAR colic cases, an interaction was detected between 

treatment and colic type in both analyses (P=0.0076; P=0.0038 respectively). It is 

concluded that enoximone produces significant, but short lasting, cardiovascular effects 

in colic horses. 
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Introduction 

Emergency abdominal surgery carries a very high risk in horses: during or within 7 days after 

surgery, 11.7 % of the patients died unexpectedly or were euthanized because of perioperative 

complications (unrelated to pre-existing disease) (Johnston et al. 2002). Variables which 

assess cardiovascular status, including heart rate (HR), packed cell volume (PCV), capillary 

refill time, mucous membrane colour and/or blood pressure, are good prognostic indicators 

(Parry et al. 1983; Pascoe et al. 1983; Puotunen-Reinert 1986; French et al. 2002; Proudman 

et al. 2006). Furthermore, most causes of perianaesthetic death, including post-operative 

problems such as myopathies, were linked with cardiovascular depression (Johnston et al. 

2002). Perioperative cardiovascular support is thus crucial to improve outcome of horses 

anaesthetized for colic surgery.  

   Despite high-volume fluid therapy, sympathomimetic drugs, such as dobutamine 

(Donaldson 1988, Dugdale et al. 2007), dopamine (Trim et al. 1991) and ephedrine (McGrath 

1984) often remain an essential part of the supportive therapy in these patients. Another class 

of inotropic drugs are the phosphodiesterase (PDE) III inhibitors, who inhibit enzymatic 

cAMP breakdown, producing positive inotropic and lusitropic effects, as well as systemic 

vasodilation (Vernon et al. 1991). In chapter 4.1 it was shown that the PDE III inhibitor 

enoximone induced significant increases in cardiac output (   ), HR, stroke volume (SV) and 

oxygen delivery (DO2), without affecting arterial pressure in anaesthetized ponies. When 

combining this drug with a constant rate infusion (CRI) of dobutamine, further increases in 

   , SV and DO2 were observed, together with increases in arterial pressure (chapter 4.2). The 

results even suggested that enoximone potentiates the effects of dobutamine in ponies. Since 

the effects of enoximone have not been studied in horses under clinical conditions and 

because cardiovascular function may be quite compromised in colic horses, the aim of this 

study was to evaluate the cardiorespiratory effects of enoximone in horses undergoing 

emergency laparotomy. It was hypothesized that enoximone would increase    , SV, HR and 

DO2 and reduce the dobutamine requirement.  
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Materials & Methods 

Patients and anaesthetic protocol  

This prospective, randomized, clinical study included 48 horses undergoing emergency colic 

surgery at the Faculty of Veterinary Medicine of Ghent University. Before surgery, all horses 

received broad spectrum antibiotics and flunixin meglumine 1.1 mg/kg intravenously (IV) 

(Finadyne
®
, Schering Plough Animal Health, Heist-Op-Den-Berg, Belgium) intravenously 

(IV). When indicated based on a physical examination and/or PCV, hypertonic saline (4 

mL/kg bwt) or a colloid (2–4 mL/kg bwt Geloplasma
®
, Fresenius Kabi, Schelle, Belgium) 

was infused before sedation.  

   Horses which had already been sedated during clinical examination received the same α2 

adrenoreceptor agonist as premedication; the other horses were sedated with xylazine (Xyl-

M
®
, VMD, Arendonk, Belgium). Doses varied depending on the condition of the individual 

horse and prior administration of sedatives, but in general, standard doses (IV) were 0.7 

mg/kg for xylazine, 10 µg/kg for detomidine (Domosedan
®
, Pfizer Animal Health S.A., 

Louvain-la-Neuve, Belgium) and 80 µg/kg for romifidine (Sedivet
®
, Boehringer Ingelheim, 

Brussels, Belgium). After sedation, a nasogastric tube was placed to evacuate stomach 

contents. Anaesthesia was induced using a combination of 0.06 mg/kg midazolam IV 

(Dormicum, Roche, Brussels, Belgium) and 2.2 mg/kg ketamine IV (Anesketin, Eurovet, 

Heusden-Zolder, Belgium). After orotracheal intubation (26-30 mm OD, soft rubber tracheal 

tube, Rüsch AG, Kernen, Germany), the horse was hoisted onto a padded surgery table, in 

dorsal recumbency. 

   General anaesthesia was maintained with isoflurane (Isoflo
®
, Abbott Laboratories Ltd., 

Queenborough, Kent, United Kingdom) in oxygen, using a large animal anaesthetic unit 

(Matrx
®
, Matrx medical inc., Orchard Park, New York, USA + Sulla 909V

®
, Dräger, Lübeck, 

Germany). A bolus of 1.5 mg/kg lidocaine (Laocaïne
®
, Schering-Plough Vétérinaire, 

Levallois Perret, France) was administered over 10 minutes, followed by a CRI at 2 

mg/kg/hour. This CRI was discontinued 30-45 minutes before the end of anaesthesia. 

Mechanical ventilation (Smith respirator LA 2100
®
, model 2002, Veterinary Technics/BDO-

Medipass, Hoogezand, the Netherlands)
 
was applied in all horses to maintain PaCO2 < 8 kPa, 

in an assisted, volume controlled, pressure limited mode, delivering a tidal volume (TV) of 10 

mL/kg, with a maximal peak inspiratory pressure (PIP) of 20-30 cm H2O. When respiration 

rate (RR) was lower than 4 breaths/minute during more than 3 minutes or if arterial blood gas 
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analysis (ABL5
®
, Radiometer, Copenhagen, Denmark) revealed a high PaCO2 (>8 kPa) or a 

low PaO2 (<13 kPa), respirations were both assisted and controlled (RR6-12 breaths/minute). 

Crystalloids were infused at 10 mL/kg/h. Fluid choice depended on the base excess (BE), 

using lactated Ringer‟s solution (Haemofiltration Formula E2
®
, Bieffe Medital, Grosotto, 

Italy) or saline (NaCl 0.9%, Baxter, Lessines, Belgium) if BE was below or above 5 mEq/L
 

respectively. If BE was below -5 mEq/L and PaCO2 did not exceed 8 kPa, bicarbonate 

(Bicarbonate de sodium 8.4 %
®
, B Braun, Melsungen, Belgium) was additionally infused. 

When mean arterial pressure was lower than 70 mm Hg, dobutamine (Dobutamine Mayne
®
, 

Mayne Pharma, Brussels, Belgium) was administered at a rate of 0.3-1.5 µg/kg/min. When 

arterial pressure was unresponsive to dobutamine or when PCV exceeded 0.45 L/L, 

Geloplasma
®

 (4 mL/kg) was infused and a second jugular catheter was placed for additional 

administration of crystalloids. At the end of anaesthesia, 0.2 mg/kg xylazine was administered 

IV. The horses recovered spontaneously in a padded recovery box. The recovery time and 

recovery score, based on a simple grading system, were recorded. 

 

Monitoring 

Anaesthetic gases were monitored using a calibrated multi-gas analyzer (HP M1025B
®
, 

Hewlett Packard Company, Houston, USA). Cardiovascular monitoring consisted of pulse 

oximetry, a base-apex electrocardiogram (ECG), invasive blood pressure measurement from 

the facial artery (HP M1165A
®
, model 56S, Hewlett-Packard, GmbH, Böblingen, Germany) 

and     measurements using the lithium dilution technique (LiDCO-plus Hemodynamic 

Monitor, LiDCO Ltd., London, UK). For     measurements, a lithium chloride bolus of 5 

µmol/kg was used. The pressure monitoring system was calibrated against a mercury 

manometer and zeroed at the level of the right atrium before anaesthesia in each horse. Blood 

samples withdrawn from the arterial catheter were immediately analyzed for pH, partial 

pressures of oxygen (PaO2) and carbon dioxide (PaCO2), saturation (SaO2), base excess (BE) 

and bicarbonate level (ABL5
®
, Radiometer, Copenhagen, Denmark). The PCV was obtained 

by centrifugation. 

 

Experimental design 

Ten minutes after skin incision, baseline measurements (T0) were obtained for inspiratory and 

expiratory CO2, O2 and isoflurane, pulse saturation (SpO2), HR, systolic (SAP), diastolic 

(DAP) and mean arterial pressure (MAP),     and arterial blood gases. Subsequently, a bolus 
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of 0.5 mg/kg enoximone 0.5% (Perfan
®
, Myogen GmbH, Bonn, Germany) (treatment E) or an 

equivalent volume of saline (treatment S) was administered at a rate of 20 mL/min. The 

random treatment assignment of E and S was stratified for colic type (small intestines (SMA), 

large intestines (LAR) or a combination of both (MIX)). Cardiac output measurements and 

arterial blood gas analysis were performed at T10 and T30; all other measurements were 

performed at T10, T20 and T30.  

   Stroke volume, systemic vascular resistance (SVR) and DO2 were calculated according to 

standard formulae (Muir 2007), with right atrial pressure (RAP) arbitrarily taken as 7 mm Hg. 

Cardiac index (CI), and oxygen delivery index (DO2I) were expressed in mL/kg/min, stroke 

index (SI) in mL/kg.  

 

Statistical analysis 

To investigate the short term effects of enoximone administration, it was tested whether there 

was a significant change between baseline and T10 within each treatment group and/or colic 

type for the different variables, using a mixed model with time as categorical fixed effect and 

horse as random effect. The difference between T10 and baseline was also used as the 

response variable in a fixed effects model with colic type, treatment and their interaction as 

fixed effects, to investigate whether the change between baseline and T10 was different 

between treatments and/or between colic types. Finally, the effects of enoximone during a 

period of 30 minutes after treatment were investigated using a mixed model with horse as 

random effect and colic type, treatment, time and interaction between colic type and treatment 

as categorical fixed effects.  

   The need for a colloid or a second jugular catheter for additional fluid administration and 

the ventilation mode used (assisted or assisted-controlled) were compared between treatments 

using Fisher‟s exact tests. 

   The recovery scores and recovery times for both treatments were compared using the 

Wilcoxon rank sum test.  

   For all analyses mentioned, a 5% significance level was used. 
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Results 

Patient data 

The study population included 23 mares, 11 stallions and 14 geldings. The horses were 

between 1 and 24 years old (mean age 8.3 ± 5.5 years), their body weight ranged between 252 

and 703 kg (mean weight 522.7 ± 97.3 kg). All horses were Dutch, French or Belgian 

warmbloods, except for 5 Thoroughbreds, 1 Standardbred, 1 Friesian horse, 2 Haflingers, 1 

Belgian Draught horse and 2 Quarter horses. Colic causes are listed in Table 1.  

Table 1: Causes of colic in 48 horses undergoing emergency laparotomy, receiving an 

intravenous bolus of enoximone (0.5 mg/kg bwt) or an equivalent volume of saline 10 

minutes after skin incision. Total numbers are written in bold. 

      Treatment 

   Enoximone Saline 

Small intestines  9 8 
 Strangulations  6 5 

  with resection 3 2 

  no resection necessary 0 2 

  euthanasia 3 1 

 Gastro-enteritis 1 1 

 Impaction ileum 2 2 

     

Large intestines  14 12 
 Displacement colon 4 2 

 Impaction 3 3 

  Large colon 2 3 

  Small colon 1 0 

 Torsions/strangulations  3 3 

  Strangulation colon 0 1 

  Torsion colon 1 2 

  Torsion caecum 2 0 

 Other  4 4 

  Type 2 caecal impaction 1 1 

  Nephrosplenic entrapment 2 1 

  Caecocolic intussusception 1 0 

  Intramural haematoma colon 0 1 

  Enterolith 0 1 

     

Mixed disorders  2 3 
 Generalized tympany 1 1 

 Colon displacement    

  with ileum obstipation 0 1 

  with ileum strangulation 0 1 

 Colon impaction   

  with strangulation small intestine 1 0 

     

Overall total 25 23 
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   Seven horses were euthanized intraoperatively (Table 2), including 4 horses with 

strangulation of the small intestines, 2 colonic torsions and 1 horse with impaction of the 

colon and necrosis of the colon wall. In 3 of these horses, values were only available until 

T20, all other horses were euthanized after completion of the study period (T30). Three horses 

within colic type LAR were premedicated with detomidine (2 of group E and 1 of group S) 

and 1 with romifidine (group E), all other horses were sedated with xylazine. 

 

Infusions, ventilation and recovery 

In groups S and E, a second catheter was placed to administer additional fluids in 7/23 (30%) 

and 7/25 (28%) horses respectively, while colloids were administered in 6/23 (26%) and 7/25 

(28%) horses respectively. Bicarbonate was infused intraoperatively in 2 horses in group E 

and in 1 horse in group S, while 2 horses in group E were hypocalcaemic and received an 

infusion with calcium gluconate (Calcii borogluconas
®
, Eurovet) during anaesthesia. 

Ventilation mode was assisted throughout the 30 minute period after treatment in 7/23 (30%) 

and 6/25 (24%) horses of groups S and E respectively. In all other horses, ventilation mode 

was assisted-controlled. Recovery scores and duration (Table 2) were not significantly 

different between groups. In one horse in group S, with a strangulation of the small intestines, 

recovery duration was 360 minutes. This value was not included in the calculation of mean 

recovery duration of group S. 

 

Table 2:  Recovery and euthanasia data in 48 colic horses, receiving an intravenous 

bolus of enoximone (0.5 mg kg
-1

) or an equivalent volume of saline during 

anaesthesia. Because 7 horses were euthanized during surgery and recovery 

lasted 6 hours in 1 horse of the saline group, calculation of the recovery 

duration is based on data of 40 horses. For the recovery scores, the values 

represent the number of horses receiving the respective scores. 

                  

 

Enoximone Saline

Duration of recovery (min)

52 ± 20 47 ± 14

Recovery Score 

1 1 3

2 10 7

3 7 9

4 3 0

5 0 1

Peroperative euthanasia 4 3

Treatment

mean ± SD      
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Table 3:  Systolic (SAP), diastolic (DAP) and mean arterial pressure (MAP), stroke index (SI) 

and oxygen delivery index (DO2I) in 48 anaesthetized colic horses, receiving an 

intravenous bolus of enoximone (0.5 mg/kg) or an equivalent volume of saline 10 

minutes after incision of the skin (=Baseline). 

 

 

 

SMA = small intestines, LAR = large intestines, MIX = mixed disorders 

Data are displayed as mean ± SD, α = 0.05 for all analyses 

* Value at T10 significantly different from baseline 
b
 Changes between baseline and T10 significantly different between colic types 

c
 Values from T10 to T30 significantly different between treatments within colic type 'all' 

d
 Overall values from T10 to T30 significantly different between colic types 

Time after treatment (min)

Variable Colic type Baseline T10 T20 T30

SAP d All S 105 ± 23 105 ± 16 95 ± 16 92 ± 13

(mm Hg) E 103 ± 26 101 ± 29 100 ± 26 95 ± 22

SMA S 106 ± 21 114 ± 15 102 ± 19 96 ± 15

E 107 ± 29 109 ± 26 114 ± 23 105 ± 15

LAR S 106 ± 26 99 ± 16 90 ± 14 90 ± 13

E 101 ± 27 96 ± 32 92 ± 26 91 ± 26

MIX S 100 ± 13 106 ± 9 96 ± 12 92 ± 3

E 95 ± 0 96 ± 1 98 ± 4 95 ± 5

DAP d All S 69 ± 18 71 ± 17 61 ± 16 57 ± 15

(mm Hg) E 66 ± 20 64 ± 19 66 ± 19 65 ± 14

SMA S 71 ± 16 78 ± 14 70 ± 19 62 ± 18

E 73 ± 20 74 ± 19 77 ± 21 71 ± 11

LAR S 69 ± 20 66 ± 20 55 ± 14 54 ± 16

E 62 ± 22 59 ± 19 59 ± 17 60 ± 16

MIX S 68 ± 19 75 ± 9 65 ± 10 62 ± 10

E 66 ± 3 62 ± 11 69 ± 8 69 ± 1

MAP b,d All S 82 ± 18 81 ± 16 73 ± 15 69 ± 14

(mm Hg) E 78 ± 20 77 ± 22 77 ± 21 76 ± 15

SMA S 83 ± 16 89 ± 14 80 ± 16 74 ± 15

E 84 ± 22 86 ± 22 89 ± 22 82 ± 12

LAR S 83 ± 21 75 ± 16 * 68 ± 14 67 ± 15

E 75 ± 21 71 ± 22 70 ± 19 72 ± 17

MIX S 79 ± 18 87 ± 6 77 ± 11 72 ± 10

E 77 ± 1 75 ± 4 80 ± 6 78 ± 2

SI All S 1.64 ± 0.56 1.69 ± 0.76 1.64 ± 0.50

(mL/kg) E 1.45 ± 0.51 1.59 ± 0.62 1.61 ± 0.65

SMA S 1.50 ± 0.59 1.59 ± 0.73 1.60 ± 0.42

E 1.52 ± 0.45 1.76 ± 0.64 1.57 ± 0.45

LAR S 1.76 ± 0.56 1.71 ± 0.83 1.68 ± 0.61

E 1.45 ± 0.58 1.49 ± 0.6 1.65 ± 0.76

MIX S 1.58 ± 0.54 1.89 ± 0.75 1.58 ± 0.25

E 1.18 ± 0.28 1.58 ± 0.92 1.32 ± 0.54

DO2I 
c All S 11.19 ± 3.49 11.92 ± 4.03 11.88 ± 4.22

(mL/kg/min) E 12.06 ± 3.28 13.83 ± 4.27 * 14.27 ± 4.94

SMA S 11.46 ± 3.66 12.87 ± 4.26 13.01 ± 4.61

E 12.76 ± 2.93 15.02 ± 5.23 * 13.77 ± 4.55

LAR S 11.77 ± 3.35 11.37 ± 4.18 11.91 ± 4.47

E 11.87 ± 3.66 13.32 ± 3.72 14.5 ± 5.38

MIX S 8.15 ± 3.01 11.90 ± 3.89 * 9.50 ± 1.67

E 10.29 ± 2.12 12.07 ± 4.09 12.38 ± 5.18
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Figure 1:  Cardiac index (CI) in 48 anaesthetized colic horses, receiving an intravenous bolus of 

enoximone (0.5 mg/kg) or an equivalent volume of saline 10 minutes after incision of 

the skin (=T0). 

Data are displayed as mean ± SD, * indicates a significant difference between baseline 

and T10, § indicates that the change between baseline and T10 was significantly 

different between treatments (P<0.05). No significant difference was found between 

treatments in overall CI over a 30 minute period after drug administration. 

 

 
 

Figure 2:  Systemic vascular resistance (SVR) in 48 anaesthetized colic horses, receiving an 

intravenous bolus of enoximone (0.5 mg/kg) or an equivalent volume of saline 10 

minutes after incision of the skin (=T0). 

Data are displayed as mean ± SD, * indicates a significant difference between baseline 

and T10, § indicates that the change between baseline and T10 was significantly 

different between treatments (P<0.05). No significant difference was found between 

treatments in overall SVR over a 30 minute period after drug administration. 
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Table 4: pH, arterial partial pressures of carbon dioxide (PaCO2) and oxygen (PaO2), packed 

cell volume (PCV) and arterial oxygen content (CaO2) in 48 anaesthetized colic horses, 

receiving an intravenous bolus of enoximone (0.5 mg/kg) or an equivalent volume of 

saline 10 minutes after incision of the skin (=Baseline). 

 
SMA = small intestines, LAR = large intestines, MIX = mixed disorders 

Data are displayed as mean ± SD, α = 0.05 for all analyses 

* Value at T10 significantly different from baseline 
a
 Change between baseline and T10 significantly different between treatments within colic type 

'all'  
c
 Values from T10 to T30 significantly different between treatments within colic type 'all' 

f
 Significant interaction between treatment and colic type in comparison of 30 minute period 

after treatment 

Time after treatment (min)

Variable Colic type Treatment Baseline T10 T30

pH All S 7.24 ± 0.10 7.25 ± 0.10 7.25 ± 0.09

E 7.24 ± 0.10 7.24 ± 0.09 7.27 ± 0.07

SMA S 7.26 ± 0.09 7.25 ± 0.09 7.23 ± 0.09

E 7.28 ± 0.07 7.28 ± 0.05 7.29 ± 0.07

LAR S 7.23 ± 0.11 7.24 ± 0.12 7.26 ± 0.10

E 7.21 ± 0.11 7.21 ± 0.11 7.25 ± 0.07

MIX S 7.23 ± 0.10 7.25 ± 0.09 7.28 ± 0.06

E 7.29 ± 0.02 7.30 ± 0.01 7.30 ± 0.01

PaCO2 
f All S 8.40 ± 2.27 8.40 ± 2.13 8.13 ± 1.33

(kPa) E 8.40 ± 1.47 8.27 ± 1.60 7.60 ± 0.93

SMA S 7.33 ± 0.93 7.73 ± 1.87 8.13 ± 1.20

E 7.87 ± 0.93 7.87 ± 0.67 7.33 ± 0.53

LAR S 8.53 ± 1.87 8.27 ± 2.00 8.13 ± 1.07

E 8.67 ± 1.73 8.40 ± 2.00 7.60 ± 1.07

MIX S 10.40 ± 4.40 10.00 ± 3.20 8.80 ± 2.53

E 9.20 ± 1.73 8.40 ± 1.07 8.27 ± 0.13

PaO2 
c All S 17.46 ± 9.07 20.66 ± 12.93 * 21.60 ± 13.33

(kPa) E 24.26 ± 14.00 27.60 ± 16.53 * 30.26 ± 17.20

SMA S 19.06 ± 10.53 24.13 ± 16.93 21.20 ± 13.33

E 26.80 ± 11.47 28.66 ± 13.87 31.20 ± 13.47

LAR S 17.60 ± 8.80 19.73 ± 11.2 23.06 ± 15.07

E 20.26 ± 14.67 23.46 ± 16.93 26.66 ± 17.86

MIX S 12.13 ± 6.00 16.53 ± 11.73 16.13 ± 4.53

E 40.93 ± 2.80 50.79 ± 2.27 * 51.73 ± 0.53

PCV a All S 37 ± 6 39 ± 6 * 39 ± 7

(%) E 40 ± 8 39 ± 8 38 ± 8

SMA S 37 ± 5 39 ± 4 40 ± 8

E 40 ± 8 39 ± 7 40 ± 7

LAR S 38 ± 8 40 ± 7 39 ± 7

E 40 ± 8 39 ± 10 37 ± 8

MIX S 35 ± 4 39 ± 2 39 ± 1

E 43 ± 1 43 ± 1 44 ± 1

CaO2 
a All S 168.5 ± 28.8 179.8 ± 29.0 * 182.6 ± 31.3

(mL/L) E 188.6 ± 37.1 185.1 ± 37.5 185.2 ± 35.1

SMA S 173.5 ± 28.0 183.9 ± 16.6 189.9 ± 32.0

E 193.2 ± 39.7 187.0 ± 30.4 192.3 ± 31.1

LAR S 168.7 ± 31.5 178.3 ± 37.1 179.0 ± 35.6

E 182.3 ± 37.8 179.7 ± 43.1 177.7 ± 36.4

MIX S 154.2 ± 22.9 176.3 ± 18.1 * 182.1 ± 4.5

E 212.4 ± 6.0 214.6 ± 7.2 217.2 ± 3.2
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Figure 3:  Heart rate (HR) in 48 anaesthetized colic horses, receiving an intravenous bolus of 

enoximone (0.5 mg/kg) (E) or an equivalent volume of saline (S) 10 minutes after 

incision of the skin (=T0). Because a significant interaction was found between 

treatment and colic type, separate curves are displayed per colic type (curves a, b and 

c represent colic types ‘small intestines’, ‘large intestines’ and ‘mixed’ respectively). 

Data are displayed as mean ± SD  

* indicates a significant difference between baseline and T10.  
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Comparison between baseline and T10 

Irrespective of treatment, significant changes occurred between baseline and T10 in all colic 

types, but especially in colic type LAR, where HR, DO2I, PaO2 and TV were higher and the 

end tidal carbon dioxide tension (PE´CO2), SAP and MAP lower at T10 than at baseline. 

When comparing the changes between baseline and T10 for the 2 treatments (Tables 3, 4 & 5, 

Fig. 1, 2 & 3), significant differences were detected for CI (P=0.0133), HR (P=0.0027), SVR 

(P=0.0080), TV (P=0.0446), PCV (P=0.0078) and CaO2 (P=0.0317). Indeed, CI (P=0.0010), 

HR (P=0.0033) and TV (P=0.0405) increased and SVR (P=0.0043) decreased after treatment 

E, while none of these variables changed after treatment S. Packed cell volume (P=0.0116) 

and CaO2 (P=0.0142) both increased after treatment S, but not after treatment E. There was a 

significant interaction between treatment and colic type (P=0.0076) for HR: a significant 

difference between E and S was only observed in colic type LAR, with an increase in HR 

after treatment E compared to treatment S (Fig. 3). A similar interaction effect was found for 

TV (P=0.0161). Finally, DO2I  increased (P=0.0007) after treatment E and not after treatment 

S, but the difference between treatments was not significant. 

 

Differences between treatments and colic types from T10 to T30 

Only PaO2 (P=0.0016), SaO2 (P=0.0092) and DO2I (P=0.0224) were higher during the first 30 

minutes after treatment E than after treatment S (Tables 3 & 4). Although HR was not 

significantly different between treatments, a significant interaction between treatment and 

colic type was again detected for HR (P=0.0038), which was always higher after treatment E 

than after treatment S, but with a much clearer difference in group LAR than in the other 

groups (Fig. 3). During the first 30 minutes after treatment, significant differences were also 

detected between the 3 colic types for several variables, which are represented in Tables 3, 4 

& 5.  

 

Discussion 

In the present study, DO2I, CI and HR increased and SVR decreased 10 minutes after 

administration of enoximone, but in the overall analysis comparing the first 30 minutes after 

treatment, only DO2I and HR were higher after treatment E, while a clinically relevant 

difference in HR was only found in colic type LAR. These results do not agree with reports in 

anaesthetized ponies under standardized experimental conditions, where long lasting 

cardiovascular effects were observed after a single bolus, with increases in     and SV during  
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Table 5: Rate of dobutamine infusion, end-tidal isoflurane concentration (FE´Iso) and end-tidal 

carbon dioxide partial pressure (PE´CO2), tidal volume and peak inspiratory pressure 

(PIP) in 48 anaesthetized colic horses, receiving a bolus of enoximone (0.5 mg/kg) or an 

equivalent volume of saline 10 minutes after skin incision (=Baseline). 

 
SMA = small intestines, LAR = large intestines, MIX = mixed disorders 

Data are displayed as mean ± SD, α=0.05 for all analyses 

* Value at T10 significantly different from baseline 
a
 Change from baseline at T10 significantly different between treatments within colic type 'all'  

d
 Overall values from T10 to T30 significantly different between colic types 

e
 Significant interaction between treatment and colic type in analysis of changes between 

baseline and T10 

Time after treatment (min)

Variable Colic type Treatment Baseline T10 T20 T30

Dobutamine d All S 0.41 ± 0.29 0.34 ± 0.30 * 0.35 ± 0.33 0.42 ± 0.33

(µg/kg/min) E 0.36 ± 0.23 0.38 ± 0.23 0.42 ± 0.37 0.46 ± 0.40

SMA S 0.31 ± 0.28 0.15 ± 0.30 * 0.15 ± 0.30 0.21 ± 0.31

E 0.28 ± 0.23 0.33 ± 0.20 0.27 ± 0.19 0.28 ± 0.19

LAR S 0.44 ± 0.29 0.45 ± 0.28 0.50 ± 0.31 0.57 ± 0.29

E 0.38 ± 0.25 0.39 ± 0.27 0.51 ± 0.45 0.55 ± 0.47

MIX S 0.55 ± 0.33 0.40 ± 0.24 0.30 ± 0.27 0.30 ± 0.27

E 0.51 ± 0.11 0.51 ± 0.11 0.44 ± 0.21 0.44 ± 0.21

FÉ Iso d All S 0.93 ± 0.17 0.95 ± 0.19 1.01 ± 0.20 1.11 ± 0.17

(%) E 1.00 ± 0.18 0.98 ± 0.19 1.01 ± 0.21 1.06 ± 0.26

SMA S 1.01 ± 0.20 0.92 ± 0.26 1.02 ± 0.28 1.19 ± 0.24

E 0.89 ± 0.17 0.92 ± 0.20 0.94 ± 0.22 1.00 ± 0.25

LAR S 0.95 ± 0.16 1.00 ± 0.12 1.04 ± 0.14 1.08 ± 0.12

E 1.07 ± 0.18 1.03 ± 0.18 1.06 ± 0.20 1.10 ± 0.26

MIX S 0.93 ± 0.21 0.87 ± 0.14 0.88 ± 0.08 1.07 ± 0.16

E 0.95 ± 0.14 0.93 ± 0.18 0.90 ± 0.14 0.90 ± 0.14

PE'CO2 All S 5.79 ± 1.11 5.47 ± 0.63 * 5.43 ± 0.71 5.49 ± 0.77

(kPa) E 5.99 ± 0.81 5.83 ± 0.80 5.57 ± 0.85 5.48 ± 1.06

SMA S 5.49 ± 0.94 5.43 ± 0.87 5.47 ± 0.80 5.65 ± 0.75

E 6.01 ± 0.80 6.01 ± 0.73 5.88 ± 0.60 5.77 ± 0.63

LAR S 5.85 ± 0.78 5.47 ± 0.37 5.36 ± 0.54 5.29 ± 0.77

E 6.08 ± 0.85 5.77 ± 0.90 5.42 ± 0.99 5.35 ± 1.28

MIX S 6.34 ± 2.50 5.55 ± 0.99 5.64 ± 1.30 5.93 ± 0.82

E 5.28 ± 0.07 5.37 ± 0.07 5.42 ± 0.27 5.56 ± 0.07

Tidal volume a,e All S 7.9 ± 1.8 7.9 ± 1.7 8.3 ± 1.9 9.0 ± 1.5

(mL/kg) E 8.0 ± 3.3 8.8 ± 2.4 * 9.2 ± 1.9 9.0 ± 2.1

SMA S 8.4 ± 1.7 8.4 ± 1.7 8.2 ± 1.5 8.4 ± 1.4

E 9.3 ± 2.6 9.3 ± 2.6 10.1 ± 1.8 9.5 ± 2.6

LAR S 8.1 ± 1.7 7.9 ± 1.6 8.6 ± 1.9 9.0 ± 1.5

E 7.1 ± 3.6 8.8 ± 2.4 * 9.1 ± 1.8 8.9 ± 1.7

MIX S 5.3 ± 0.2 5.9 ± 0.9 7.8 ± 3.0 10.1 ± 1.2

E 7.8 ± 3.6 6.9 ± 2.4 6.9 ± 2.4 6.1 ± 1.2

PIP All S 21 ± 3 21 ± 3 21 ± 3 21 ± 3

(cm H2O) E 21 ± 4 22 ± 4 22 ± 4 21 ± 3

SMA S 20 ± 0 20 ± 0 20 ± 0 20 ± 0

E 20 ± 4 21 ± 3 22 ± 2 22 ± 2

LAR S 20 ± 3 21 ± 3 21 ± 3 21 ± 3

E 23 ± 4 23 ± 4 22 ± 5 21 ± 3

MIX S 24 ± 6 24 ± 7 24 ± 7 24 ± 7

E 19 ± 1 19 ± 1 19 ± 1 19 ± 1
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100 minutes and increases in HR during 40 minutes (Chapter 4.1). It may therefore be 

concluded that the effects of enoximone are either less pronounced and of shorter duration in 

horses with compromised cardiovascular function, or that the effects were masked by the 

administration of other drugs and by haemodynamic differences between or changes within 

patients.   

   Although a stratified treatment assignment was used to attain a more equal distribution in 

colic types between both treatment groups, a large variability in the cardiovascular status of 

individual horses in each group was still possible, depending on many factors such as the 

actual aetiology (Table 1), duration of symptoms, treatments initiated or drugs administered 

prior to admission/surgery. To minimize the influence of differences between individual 

horses when analyzing the short term effects of enoximone, the changes between baseline and 

T10 were calculated and compared between treatments, rather than comparing the absolute 

values at T10. By using this approach, it became clear that in all colic types, clear and 

significant changes occurred during this phase of surgery, irrespective of the treatment 

administered, which may be related to waning of the effects of induction/sedative drugs,  

increasing effects from fluids/inotropes, and surgical factors such as decompression of the 

abdomen. 

   The most pronounced and significant changes occurred in the LAR group, where HR, TV 

and PaO2 were higher at T10 than at baseline, while the opposite was observed for PE´CO2, 

SAP and MAP. These changes were most likely related to fast surgical decompression of the 

abdomen by removal of gas from tympanic large intestines and/or by partial exteriorization of 

intestines. By using a volume controlled, pressure limited mode of ventilation, the set TV was 

often not delivered in the initial phase of the anaesthesia in tympanic horses, because PIP 

exceeded the preset pressure limit of the ventilator. In these cases, TV would indeed be 

expected to increase when pressure on the diaphragm is reduced by surgical decompression of 

the abdomen. The decrease in PE´CO2 and improvement in arterial oxygenation confirm this 

hypothesis. Although PaCO2 was also lower at T10 than at baseline, this difference was not 

significant. This disagreement between PE´CO2 and PaCO2 may be statistical coincidence, or 

may result from an increase in alveolar dead space ventilation due to reduced pulmonary 

perfusion. Indeed, a second possible effect of reducing intra-abdominal pressure is 

hypotension, due to decompression of the mesenteric vascular bed and larger abdominal 

vessels, leading to reductions in venous return (Vos et al. 1995), central venous pressure 

(Mohapatra 2004) and SVR (Shelly et al. 1987, Mohapatra 2004). In the present study, SAP 
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and MAP were indeed lower and HR higher at T10 than at baseline in colic type LAR, while 

no changes in these variables were observed in the other 2 colic types. 

   Ten minutes after enoximone administration, CI and HR were higher and SVR lower than at 

baseline. These changes were significantly different from those after saline treatment, where 

these variables remained constant. Stroke index also tended to increase after enoximone 

administration, but this difference was not significant (P=0.0519). Finally, DO2I increased 

significantly in the enoximone group and not in the saline group, but the change was not 

significantly different between treatments. The cardiovascular effects of enoximone in this 

study are in agreement with the inotropic, vasodilating and mild chronotropic effects of 

enoximone described in humans (Vernon et al. 1991, Lehtonen et al. 2004), dogs (Dage et al. 

1982) and ponies (Chapter 4.1). Due to its vasodilating properties, enoximone can induce a 

decrease in SVR (arterial vasodilation) (Dage et al. 1982, Boldt et al. 1993) and a certain 

degree of venous pooling (venous vasodilation) (Boldt et al. 1993, Lehtonen et al. 2004). 

Indeed, RAP was lower after enoximone administration in isoflurane anaesthetized ponies 

(Chapter 4.1). Because of these combined arterial and venous vasodilating effects, it may be 

expected that enoximone would induce pronounced arterial hypotension and be 

contraindicated in patients with low SVR, such as hypovolemic and/or endotoxaemic colic 

horses during isoflurane anaesthesia. Nevertheless, it was hypothesized that enoximone may 

still be valuable in colic horses, since this drug was shown to have beneficial effects in 

humans with endotoxin shock (Ringe et al. 2003) or sepsis (Schmidt et al. 2001) and induced 

increases in CI without influencing arterial pressure in isoflurane anaesthetized ponies 

(Chapter 4.1). Similarly, in the present study in colic horses, the effect of enoximone on 

arterial pressure was not different from the effect of saline. These results and those in ponies 

indicate that the increase in CI outweighs possible vasodilatory effects of enoximone and/or 

that enoximone induces less pronounced reductions in SVR in equids compared to humans. It 

must also be remembered that central venous/right atrial pressure was not measured, but 

arbitrarily taken as 7 mm Hg, since placement of a central venous catheter was not feasible in 

these client-owned horses during emergency surgery. This may have biased our calculation of 

absolute values of SVR, as well as the relative comparison between both treatments. Saline 

treatment is not expected to affect RAP, but since enoximone has been shown to reduce RAP 

in ponies (Chapter 4.1), we may have slightly overestimated the reduction in SVR in response 

to enoximone.  
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   When analyzing the changes between baseline and T10, a significant interaction effect was 

observed for HR and TV, indicating that the response to treatment depended on the type of 

colic. Indeed, compared to the other colic types, the increases in HR and TV 10 minutes after 

enoximone administration were much more pronounced in the LAR group. As mentioned 

earlier, TV could only increase when airway resistance decreased and/or compliance 

increased , since pressure-limited ventilation was used in this study and because the pressure 

limit was not different between baseline and T10. A higher compliance would most likely 

result from a decrease in intra-abdominal pressure, which agrees with the observed increase in 

HR, as described earlier. Since enoximone should not affect intra-abdominal pressure and 

because TV was already lower at baseline in group E than in group S, it seems likely that, as a 

coincidence, the initial intra-abdominal pressure of horses in group E was higher and 

therefore decreased more after surgical decompression of the abdomen. The increase in tidal 

volume could also have resulted from increased inspiratory effort by the patient during 

assisted respiration. However, this seems unlikely since no significant changes in PaCO2, 

PaO2, end tidal isoflurane concentration or RRwere noted between baseline and T10 and 

because enoximone would not be expected to influence respiratory drive. Finally, it has been 

shown that combined PDE IV/III inhibitors relax airway smooth muscles and may even be 

effective for the long-term therapy of asthma (Nicholson et al. 1995). Enoximone, a selective 

PDE III inhibitor, would also have bronchodilating properties, since this drug reduced lung 

resistance and increased dynamic lung compliance in spontaneously breathing and artificially 

ventilated patients with decompensated chronic obstructive pulmonary disease (Leeman et al. 

1987). Although bronchodilation would additionally reduce airway resistance, this effect 

appears less important in the present study since no change in TV was observed after 

enoximone treatment in the other colic types. 

   The immediate cardiovascular effects of enoximone in this study (including increases in 

HR, CI, SI and DO2I and a decrease in SVR) were in agreement with those observed in ponies 

(Chapter 4.1), but most of these effects were less pronounced and not significant in the overall 

analysis of the first 30 minutes after treatment. Several factors may have contributed to this 

finding. First, the cardiovascular status of individual colic horses can vary widely, leading to 

high standard deviations of the different variables, which may decrease the sensitivity of 

statistical tests. Secondly, dobutamine and fluid therapy were used in both groups, which may 

have further reduced cardiovascular differences between treatments. Although it has been 

shown that enoximone and dobutamine had additive or perhaps even synergistic effects on 
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cardiovascular function in ponies (Chapter 4.2), administration of enoximone did not reduce 

dobutamine requirement in the present study. Administration of colloids and placement of a 

second jugular catheter were also needed in comparable numbers of horses in both groups. 

Finally, cardiovascular function is often compromised in colic horses (Parry et al. 1983, 

Puotunen-Reinert 1986, French et al. 2002) and may be expected to be less responsive to 

inotropes, especially in case of hypovolaemia (due to decreased venous return and thus a low 

preload) and/or endotoxaemia (Takeuchi et al. 1999, Tavernier et al. 2001). In experimental 

models, endotoxaemia rapidly impaired myocardial intracellular calcium handling and 

contractile protein sensitivity to calcium, a state which was resistant to beta-agonist inotropic 

stimulation (Takeuchi et al. 1999). Vesnarinone, a PDE inhibitor like enoximone, was able to 

normalize lipopolysaccharide-induced myocardial dysfunction and partially restore abnormal 

calcium cycling, but these effects were more likely a result of the drug‟s immunomodulatory 

effects than of myocardial PDE inhibition (Takeuchi et al. 2000). Nevertheless, even in 

patients with severe prolonged catecholamine and volume refractory endotoxin shock, 

enoximone could restore myocardial contractility in man (Ringe et al. 2003) and prevented 

mucosal hypoperfusion despite inducing hypotension during an early stage of sepsis (Schmidt 

et al. 2001). Therefore, enoximone might be valuable in endotoxaemic horses, but further 

studies are needed since only a limited number of horses in the present study were suspected 

to be endotoxaemic. 

   A potential limitation of this study is that the anaesthetist was not blinded to treatment. 

However, these horses were operated under emergency circumstances and cardiovascular 

function was often compromized. To optimize patient safety, it was preferred that the 

anaesthetist was aware of which drugs were being administered, such that appropriate action 

could be taken when needed. Additionally, enoximone is commercialised as a bright yellow 

solution, which makes it less practical to use in a blinded study performed under emergency 

circumstances, with limited staff available. By not performing this study blinded, the 

anaesthetist could have influenced cardiovascular function by changing the anaesthetic 

protocol or the depth of anaesthesia, by altering the fluid administration rate and the type of 

fluid used and by administering vasoactive/inotropic drugs. However, a similar anaesthetic 

protocol was used in all cases, the end tidal isoflurane concentration (correlated to depth of 

anaesthesia) was not significantly different between treatments, and was quite constant over 

the study period (maximal change within each group always less than 0,2%). Decisions about 

fluids and/or dobutamine administration rate were based on arterial blood pressure values (an 
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objective criterion), with the aim to keep MAP above a fixed, predetermined value, which 

was the same in both treatment groups (70 mm Hg).  

   In conclusion, a bolus of enoximone induced increases in DO2, CI and HR and a decrease in 

SVR in colic horses, but most of these differences were only transient and not significant over 

a 30 minute period after treatment. Further studies may be useful to investigate the effects of 

enoximone at different doses or as a CRI, in specific classes of colic or other disease. 
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The anaesthetic risk in horses is markedly higher than in most other commonly anaesthetized 

species. The results of different studies, including the confidential enquiry into perioperative 

equine fatalities (CEPEF) (Johnston et al. 2002), suggested that one of the important targets 

when attempting to reduce anaesthesia related mortality in horses, is the optimization of tissue 

oxygen supply.  

   In the introductory chapter to this PhD thesis, existing methods to diagnose and prevent or 

treat inadequate tissue oxygen supply in horses and other species were reviewed. Several 

conclusions were drawn from this literature review. One general finding was that no easily 

applicable, safe, noninvasive, continuous and accurate method for measuring     is available 

although optimizing cardiac output (   ) during anaesthesia is important to augment oxygen 

delivery (DO2) in horses. However, pulse contour analysis appeared to be an attractive 

alternative. Other conclusions drawn from our literature review were that, in order to optimize 

   , inotropes are needed more often in horses compared to other species, and that extensive 

research therefore has been performed regarding β-sympathomimetic drugs. Of these, 

dobutamine appears to be the most effective and safe drug to maintain cardiac output in 

anaesthetized horses. Some other classes of inotropic drugs had received little to no attention 

in equine anaesthesia, although in humans, phosphodiesterase (PDE) III inhibitors  had shown 

characteristics that, if similar in horses, could be of interest.    

   Based on the first conclusion from the literature review, i.e. the lack of an ideal     

measurement technique in horses, the reliability of a novel method of estimating    , namely 

analysis of the arterial pressure waveform, or Pulse Contour analysis (PulseCO
®
), was 

investigated in equids. The experimental part of this PhD research, which investigated the 

cardiovascular effects of different inotropic and/or vasoactive drugs in ponies, enabled us to 

simultaneously evaluate the accuracy and precision of the PulseCO
®
 software by comparing 

this technique with the validated lithium dilution method (LiDCO
®
). In the past, agreement 

between two measurement techniques has often been evaluated inappropriately by the use of 

correlation coefficients. In 1986, Bland & Altman proposed a different statistical approach, 
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the so-called Bland-Altman plot, which has been used extensively to display and describe data 

from studies comparing two different techniques for measuring the same variable. This 

statistical method is based on the bias and limits of agreement. Bias refers to the average 

difference between the new and reference techniques and therefore allows an estimation of the 

accuracy of the new technique as compared to the reference technique, which is considered to 

be the gold standard (Cecconi et al. 2009). The limits of agreement, i.e. the limits within 

which 95% of the observations fall (corresponding to ± 1.96 times the standard deviation 

around the bias), give an estimation of the precision or random error around the bias (Cecconi 

et al. 2009). Ideally, a measurement device is both accurate and precise. If a technique has a 

high bias and narrow limits of agreement, this indicates low accuracy but high precision, so 

repeated measurements will be close together although their mean will not be close to the 

actual value. This often results from a systematic error, which in many cases can be corrected 

for by calibrating the measurement device, or taking the systematic error into account if it is 

known. On the other hand, a technique with wide limits of agreement has low precision, 

which is much more difficult to correct for. One solution is to perform each measurement 

more than once and calculate the mean of these values as a better estimate of the true value, a 

strategy that is often performed with the intermittent thermodilution technique (Colgan & 

Stewart 1977).  

   In chapter 3, Bland-Altman plots were obtained and bias and limits of agreement were 

calculated to evaluate the accuracy and precision of the PulseCO
®
 technique in ponies under 

experimental conditions. In most treatment groups, bias appeared to be acceptable, but limits 

of agreement were very wide. Critchley and Critchley (1999) advised that the limits of 

agreement of a new technique compared to the thermodilution technique should not be wider 

than -30 and +30%. These maximal values were calculated by assuming that the reference 

technique (thermodilution) had a precision of around 20%, while a similar precision was 

desired for the new technique. Cecconi et al. (2009) recently accentuated that the precision of 

the reference technique should be known before limits of agreement can be evaluated, 

because this precision influences the maximally acceptable values for the limits of agreement. 

To the authors‟ knowledge, no data are available regarding the precision of LiDCO
®

 

measurements in ponies or horses. Nevertheless, because LiDCO
®
 and thermodilution 

measurements showed good agreement in anaesthetized horses (Linton et al. 2000), 

maximally acceptable limits of agreement of -30 and +30%, as suggested by Critchley and 

Critchley (1999), seem reasonable. In fact, in the study of Linton et al. (2000), it was even 
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shown that single LiDCO
®
 measurements agreed well with the mean of triplicate 

thermodilution measurements, so the error of LiDCO
®
 measurements may actually be lower 

than 20%. Assuming this is true, the acceptable limits of agreement between LiDCO
®
 and 

PulseCO
®
 would be even lower than ±30%. In the saline treated ponies of the present PhD 

study, where cardiovascular performance was stable, limits of agreement were  -19.7 and + 

29.5%. When the ponies were treated with enoximone, alone or combined with other drugs, 

the limits of agreement were even higher, i.e. clearly above the ±30% limits. This 

demonstrates an unacceptably low precision for PulseCO
®
 measurements under changing 

haemodynamic conditions.  

   It must be noted that the Bland-Altman method was developed to compare two independent 

measurement techniques and is in fact not suitable for repeated measures data, although many 

authors have (mis)used the technique for such analyses (Myles & Cui 2007). In our 

experimental study, the two techniques for cardiac output measurement were not independent, 

since the PulseCO
®

 algorithm was calibrated using the reference technique (LiDCO
®
). This 

equalized both measurements at the start of the study, so the initial bias was actually set at 

zero. It is therefore not surprising that mean bias was quite acceptable in most groups. 

However, limits of agreement in the placebo group were wide despite zero bias in each 

individual pony at the start of the study and the short study duration, and became even larger 

when inotropic and vasoactive drugs were administered. This indicates that the reliability of 

the PulseCO
®
 values in the individual patient will be low, and both over- and underestimation 

of the actual value can occur. Furthermore, the precision of an intermittent, absolute technique 

for     measurement can be augmented by averaging repeated measurements, but this is not an 

option in the individual patient when using a continuous, relative method such as pulse 

contour analysis, which does not measure     but attempts to estimate the change in     from 

the change in the arterial waveform compared to the time of initial calibration. Because of the 

rather low bias, it might be hypothesized that, if a sufficient number of animals are used in an 

experimental study of similar duration, the average value for     would be quite acceptable. 

Yet, because of the low precision, standard deviations would most likely be „artificially‟ high, 

i.e. not caused by differences in the response to treatment between animals, but due to 

measurement errors.  

   Another limitation of the Bland-Altman method is that it does not analyze whether the 

differences found between the two techniques are significant. Therefore, the data were also 
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evaluated using a paired t-test and a mixed model approach. The paired t-test compared 

overall values for     and systemic vascular resistance (SVR) during the placebo treatment 

with saline. As mentioned for the Bland-Altman analysis, PulseCO
®

 and LiDCO
®
 were equal 

at the start of the study. Because the difference between both techniques would therefore be 

expected to be low during the initial phase of the experiment, an overall comparison carried 

the risk of masking significant differences occurring mainly at the end of the study period. 

Nevertheless, a significant difference between both measurement techniques was found 

during the placebo treatment. This difference significantly increased over time and was even 

larger during treatment with enoximone, alone or combined with dobutamine.  

   Based on the results from both statistical approaches, it was concluded that the reliability of 

the PulseCO
®
 software was insufficient in ponies under stable haemodynamic conditions and 

became worse during induced haemodynamic changes, especially when arterial pressure 

changed. Unfortunately, a     monitor would of course mainly be useful when changes in     

or SVR occur. Although the study was performed in ponies, in the authors‟ opinion it seems 

unlikely that better results would be obtained in horses. For this reason, the PulseCO
®

 

software was not used for     measurements during the clinical study in colic horses. 

   The second conclusion that could be drawn from our literature review was that, in order to 

maintain oxygen supply to the tissues (especially the muscles), inotropic drugs are probably 

needed/used more often in anaesthetized horses than in humans or small animals without 

cardiac disease, for several reasons. It has been documented that horses are prone to develop 

inadequate respiratory function and cardiovascular depression during anaesthesia, while 

intracompartmental pressures in the limbs are high because of their high body weight. In 

anaesthetized, recumbent horses, the occurring ventilation-perfusion mismatching often 

results in arterial hypoxaemia (Hall et al. 1968, Nyman & Hedenstierna 1989, Nyman et al. 

1990). Although the sigmoid shape of the oxyhaemoglobin dissociation curve serves as a 

safety factor (Bohr et al. 1904), pronounced hypoxaemia with a reduction in arterial oxygen 

content (CaO2) may still decrease delivery of oxygen (DO2) to the tissues. Many strategies to 

prevent or treat arterial hypoxaemia were reported to be rather ineffective (Young et al. 1999, 

Kalchofner et al. 2009), caused further deterioration of PaO2 (Dodam et al. 1993) or decreased 

    (Hall & Trim 1975, Wilson & Soma 1990, Mizuno et al. 1994, Edner et al. 2005), which 

can negate any beneficial effect of increases in CaO2 on DO2. An alternative possibility to 

restore DO2 when CaO2 is low, is to increase    . One might even hypothesize that, under 
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some circumstances, higher than normal     values may be beneficial. Not only could this 

normalize DO2 despite a limited degree of arterial hypoxaemia, but it may also prove to be 

useful to optimize muscle oxygen delivery in a species where intracompartmental pressure in 

the muscles reaches high values during recumbency. In this respect, to increase vascular 

transmural pressure in dependent muscles of horses, blood pressure needs to be increased to 

levels higher than those usually needed in other species to maintain perfusion of vital tissues 

such as the brain and kidneys. Although this increase in blood pressure may be achieved by 

increasing SVR using vasopressors, perfusion of certain tissues, such as the splanchnic 

organs, muscles and/or skin may be reduced. Vasopressors are therefore best reserved for 

situations where hypotension is mainly attributable to vasodilation. More desirable would be 

an increase in     and although this can be achieved using chronotropic drugs (such as 

antimuscarinics), this strategy is not advisable, for many reasons which were mentioned in 

Chapter 1. It would be a better option to reduce anaesthetic depth using balanced anaesthetic 

techniques, with the aim to minimize cardiovascular depression, but this is less 

straightforward in horses than in many other species. Opioids, which are often used for 

perioperative analgesia in humans and small animals, appear to have less clear analgesic 

effects in horses and produced little to no decrease or in some cases even an increase in the 

minimal alveolar concentration (MAC) of inhalant anaesthetics (Pascoe et al. 1993, Steffey et 

al. 2003, Bennett et al. 2004, Thomasy et al. 2006, Knych et al. 2009). Furthermore, 

locoregional anaesthetic techniques are not always without risk in horses, e.g. epidural 

anaesthesia using local anaesthetic drugs causes paralysis or muscle weakness and ataxia 

(LeBlanc et al. 1988, Olbrich & Mosing 2003), while regional anaesthesia of the limbs at the 

level of or proximal to the fetlock may interfere with normal proprioception (Dreverno et al. 

1999). Both techniques may therefore increase the risk of injury during recovery in horses.  

   Fluid therapy is also important to maintain or improve    . However, because of the high 

body weight of horses, administration of large volumes of intravenous fluids on a „per kg‟ 

basis is difficult to achieve under clinical conditions. In dogs with symptoms of shock due to 

absolute hypovolaemia, the use of „shock doses‟ of crystalloids with rates up to 90 mL/kg in 

10 to 15 minutes has been advised (Day 2000). In a typical 500 kg horse, this infusion would 

be equivalent to a rate of 180-270 L/hour, which is hard to achieve even when using more 

than one catheter and/or pressurized infusion systems. Hypertonic saline offers an attractive 

alternative but only a limited amount can be administered, mainly because cellular 



General discussion 
 

200 

 

dehydration has to be avoided. Colloids are another possibility, but these solutions are quite 

expensive and not completely free of side effects.  

   Since balanced anaesthetic techniques and fluid administration are not always effective, 

inotropes can be regarded as indispensable to optimize     during anaesthesia in horses. These 

drugs often need to be administered even before adequate fluid resuscitation is achieved. This 

situation differs from the one in other species including humans, where inotropes are mostly 

reserved for patients with compromised cardiac contractility, e.g. due to cardiac disease or 

sepsis. Probably, this is partly related to the fact that     during anaesthesia can usually be 

maintained at an acceptable level using balanced anaesthetic techniques and fluid therapy. On 

the other hand, there is less need for a „supra-normal‟     compared to the situation in horses, 

because arterial hypoxaemia occurs less frequently in humans without respiratory disease and 

lower levels of blood pressure are acceptable to maintain tissue perfusion. Additionally, 

inotropic drugs usually increase myocardial work and oxygen consumption (Notterman 

1991), which is preferably avoided in the human population, with a high incidence of 

cardiovascular disease, including arteriosclerosis, chronic hypertension and coronary artery 

disease (Franklin 2006).  

   Because of the clear need for inotropic drugs in horses, the relevant literature was reviewed 

in order to summarize which agents were presently used, what their positive and negative 

effects were, and which drugs may be promising for use in horses. Some inotropic drugs, 

including calcium salts, calcium sensitizers and digitalis glycosides, appeared to be less 

suitable for use during anaesthesia for different reasons, as mentioned in Chapter 1. Extensive 

research has been performed on the effects of β-sympathomimetic drugs in anaesthetized 

horses. These drugs can indeed be quite effective at increasing    , while most of them are 

suitable for use as a constant rate infusion (CRI). Their rapid onset and short duration of 

action enable quick alterations of the obtained effects. Still, negative side effects, which are 

dose-dependent and differ between the individual drugs, may occur and include tachycardia, 

excessive vasoconstriction or vasodilation, increased myocardial oxygen consumption and 

arrhythmias (Notterman 1991). Dobutamine appeared to be the most effective and a relatively 

safe β-sympathomimetic for use in horses. In humans, dobutamine mainly produces positive 

inotropic effects, together with some vasodilation (Morrill 2000). Phosphodiesterase (PDE) 

III inhibitors have similar effects in humans and are associated with few side effects during 

short-term perioperative use (Barnard & Linter 1993). It was therefore hypothesized that these 
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drugs may be useful in anaesthetized horses. Furthermore, their combined use with a β-

sympathomimetic appeared attractive, because this may theoretically result in additive or even 

synergistic effects. Finally, because PDE III inhibitors cause inotropic effects through 

increased intracellular calcium concentrations in the myocardium, it was hypothesized that 

calcium salts may accentuate their inotropic effects. Up to now, milrinone and enoximone are 

probably the most often used PDE III inhibitors in human medicine. The effects of milrinone 

have already been described in horses (Muir 1995), but no reports were available on the use 

of enoximone. Because the drug has a rather long half-life (Morita et al. 1995), it was 

preferred to evaluate the effects of a single bolus in anaesthetized ponies, alone or followed 

by infusions of dobutamine or calcium chloride. 

   As illustrated in Chapter 4.1, an intravenous bolus of 0.5 mg/kg enoximone administered 

over 1-2 minutes, induced significant increases in     and stroke volume (SV) during 100 

minutes and an increase in heart rate (HR) during 40 minutes, while right atrial pressure 

(RAP) decreased during at least 2 hours. These findings were similar to the ones reported in 

human medicine, except that SVR was somewhat lower, but not significantly different from 

saline treatment in our ponies. This situation appears similar to the one described for 

dobutamine, which mainly has inotropic, but also some vasodilating activity in humans 

(Morrill 2000), while most authors reported clear inotropic, but limited or no effects on SVR 

in anaesthetized ponies (Gasthuys et al. 1991) and horses (Swanson et al. 1985, Raisis et al. 

2000). It is unclear why this difference between species actually occurs. In most anaesthetic 

protocols for horses, α2 agonists, including romifidine, are administered for sedation before 

the induction of general anaesthesia. By inducing vasoconstriction, these agents may 

counteract the vasodilatory effects of other drugs. Nonetheless, it seems unlikely that 

romifidine had a clear effect on the response to enoximone in our experimental study, since a 

period of 105 minutes elapsed between the administration of romifidine (for sedation) and 

enoximone (during anaesthesia). Another difference between humans and horses is the dose 

of dobutamine that is usually administered. The vasodilatory effects of dobutamine in humans 

are mostly observed when higher doses are infused (Morrill 2000), while the doses routinely 

used during clinical anaesthesia in horses are quite low. It is possible that the effects of 

enoximone are also dose-dependent. Furthermore, slow injection of PDE III inhibitors largely 

prevents hypotension compared to rapid bolus administration in humans (Barnard & Linter 

1993). In our study, enoximone was administered over 1-2 minutes, which may have 

attenuated the drug‟s vasodilatory effects. As mentioned in the literature review, not only low 
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   , but also hypotension with decreased transmural pressures in the vessels of the muscles 

may be detrimental in horses. In this respect, it is beneficial that enoximone did not induce 

excessive vasodilation. It must also be noted that SVR is a general reflection of changes in 

(mainly) arteriolar tone throughout the body, but changes may differ between individual 

tissues. In humans, enoximone preferentially reduced limb vascular resistance and augmented 

blood flow to the peripheral musculoskeletal system (Leier et al. 1987). It would therefore be 

interesting to evaluate the effects of enoximone on local tissue perfusion, especially of the 

muscles, in horses. 

   Unlike SVR, RAP significantly decreased during at least 2 hours after administration of 

enoximone in the experimental part of this PhD. This may have been related to venous 

vasodilation (Grossman et al. 1998), causing a reduction in mean systemic filling pressure 

(Pmsf) and therefore venous pooling of blood. This could reduce venous return and    , 

especially in hypovolaemic horses where Pmsf is already low. However, since enoximone did 

not seem to affect SVR, which mainly reflects arteriolar tone, pronounced venous 

vasodilation seems rather unlikely. On the other hand, positive inotropic drugs shift the     

curve upwards and to the left, such that the equilibrium point (the intersection of the cardiac 

output and venous return curves) is equally shifted upwards and to the left. The upward shift 

of the equilibrium point indicates increased venous return and    , while the left shift indicates 

a reduction in RAP (Power & Kam 2001). Therefore, the decrease in RAP was probably 

mainly attributable to the inotropic effects of enoximone. 

   Enoximone significantly increased HR, which is not always desirable with respect to 

myocardial oxygen balance and/or efficiency of the heart (work done per unit of energy used), 

especially when pre-existing HR is already high, e.g. due to hypotension induced by 

hypovolaemia, endotoxaemia, etc. When cardiac oxygen supply becomes inadequate, 

myocardial contractility will be lower (Jose & Stitt 1969, Nayler et al. 1971) and arrhythmias 

may occur (Senges et al. 1979, Hjalmarson 1980). However, the maximal increase in HR 

occurred 5 minutes after enoximone administration, with a mean difference to saline of 7 ± 1 

beats/min, which gradually decreased and became nonsignificant 40 minutes after 

administration, while the effects on SV and     lasted for 100 minutes. Consequently, the 

increase in HR appears to be primarily associated with bolus administration and might be less 

pronounced during a CRI of enoximone. Furthermore, no excessive tachycardia was noted 

during the study, and arrhythmias were not observed. 
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   When enoximone was combined with low-dose dobutamine, additional increases in SV, HR 

and     were observed in isoflurane anaesthetized ponies. When comparing to the reports on 

dobutamine administration in horses, it became clear that dobutamine‟s effects on SV and     

were more pronounced than would be expected at the dose given. This observation suggests 

that enoximone and dobutamine may have synergistic effects on SV and     in ponies. 

Fortunately, such synergism was not observed for the effects on HR. During the first 40 

minutes after enoximone administration, when HR was significantly higher than after saline 

administration, dobutamine did not significantly induce further increases in HR. It was only 

after this time, when HR started to decrease again in the enoximone group but remained 

constant in the group receiving enoximone and dobutamine, that the difference in HR between 

both groups became significant. This suggests that an infusion of dobutamine after a bolus of 

enoximone maintains the increase in HR seen after administration of enoximone alone, but 

does not significantly affect its magnitude. At the same time, no arrhythmias were observed. 

   Other beneficial effects of the combination of enoximone and dobutamine, compared to 

enoximone alone, were increases in blood pressure, RAP, packed cell volume (PCV) and 

DO2. As outlined earlier, not only    , but also blood pressure is important in maintaining 

peripheral tissue perfusion, especially in horses with a high bodyweight. The increase in 

blood pressure was caused by an increase in    , since SVR was even slightly lower compared 

to enoximone treatment. Again, it would be interesting to see the effects of a combination of 

enoximone and dobutamine on muscle blood flow in anaesthetized horses. Right atrial 

pressure and PCV were higher during dobutamine administration, which may both be related 

to splenic contraction (Fuchs et al. 1980). Additionally, increased RAP may also have been 

the result of venoconstriction in response to dobutamine administration, due to the α1 effects 

of dobutamine (Fuchs et al. 1980). The increase in PCV caused a significant increase in CaO2. 

This, together with the increase in    , explains the improvement in DO2, which is of course 

highly desirable during cardiovascular support in horses.  

   The results of combining enoximone with calcium chloride were somewhat disappointing, 

but not unexpected given the data mentioned in literature. As explained in Chapter 1, 

inconsistent results have been reported regarding the cardiovascular effects of calcium salts in 

different species, which may be explained by differences in cardiovascular status, pre-existing 

serum calcium levels, etc. Furthermore, calcium salts did not produce any effects when 

combined with other inotropes, such as amrinone (Butterworth et al. 1992) and adrenaline 
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(Royster et al. 1992), and even reduced the effects of dobutamine (Butterworth et al. 1992) 

and milrinone (Goyal & McNeill 1986). 

   Based on the experimental part of this PhD thesis, it was concluded that a single bolus of 

enoximone induced beneficial effects on cardiovascular performance in isoflurane 

anaesthetized healthy ponies, with rather long lasting increases in SV and    , without 

reducing blood pressure, overly increasing HR or producing other undesirable effects. These 

effects were not altered by additional administration of calcium chloride, but could be 

accentuated by infusing low doses of dobutamine after administration of enoximone, with at 

least additive but possibly even synergistic effects on SV and    , while increasing blood 

pressure, CaO2 and DO2. Because of these encouraging results in experimental ponies, it was 

decided to investigate the cardiovascular effects of enoximone in a clinical study. Horses 

undergoing colic surgery were selected as study population, because many of these patients 

require pharmacological cardiovascular support.  

   The results of the clinical study in colic horses indicated that enoximone initially produced 

similar effects to those in experimental ponies, with increases in    , SV, HR and DO2 and a 

decrease in SVR 10 minutes after enoximone administration. However, most of these changes 

were less pronounced and of shorter duration compared to the ones observed under 

experimental (standardized) conditions in anaesthetized ponies. This may be related to several 

factors, including variability of the cardiovascular status of individual patients and other 

factors concurrently affecting cardiovascular performance, including surgical manipulations 

and administration of dobutamine and fluids, which possibly masked some of enoximone‟s 

effects. On the other hand, the effects of enoximone may have been limited by the presence of 

hypovolaemia, endotoxaemia or other factors which reduce the response to inotropes in colic 

horses. In humans, PDE III inhibitors are in fact avoided in patients with inadequate filling 

pressures, pre-existing severe vasodilation (Barnard & Linter 1993) or hypotension (Hall 

1993). Simultaneous administration of vasopressors may even be needed to avoid hypotension 

(Barnard & Linter 1993). 

   Hypovolaemia in colic horses results from reduced intake and intestinal absorption of fluids, 

combined with (sometimes excessive) sweating and increased losses to the interstitium, 

intestinal lumen or intraperitoneal space (transudate or exsudate). In hypovolaemic patients, 

inotropes are expected to be less effective because Pmsf, and therefore preload, is low. 

Consequently, in humans and small animals, fluid resuscitation is usually performed before 
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inotropes are administered. In anaesthetized horses, as indicated earlier, inotropes are often 

already administered during fluid resuscitation. Clinical experience suggests that dobutamine 

remains quite effective at improving cardiovascular function in these cases, despite 

incomplete restoration of the circulating volume. Possibly, enoximone is less effective in 

hypovolaemic animals.  

   Endotoxaemia also occurs frequently in colic horses, usually because the normal gut barrier 

function is lost in strangulated intestines. In those cases, circulating endotoxins induce 

hypotension by causing vasodilation, depressing myocardial contractility and reducing the 

response to ß-agonistic inotropic drugs (Takeuchi et al. 1999). It might therefore be 

hypothesized that the effects of enoximone in the clinical study were reduced because 

endotoxaemia occurred in several horses. However, strangulation of some part of the 

intestines was only found in 19 of 48 horses in our clinical study, and certainly not all of these 

horses were endotoxaemic at the time of surgery. Furthermore, enoximone was able to restore 

myocardial contractility in human patients with severe and prolonged endotoxaemic shock, 

unresponsive to catecholamine and fluid administration (Ringe et al. 2003). The drug also 

prevented mucosal hypoperfusion despite the induction of hypotension during an early stage 

of sepsis (Schmidt et al. 2001). Based on these results, enoximone might even prove to be 

valuable in endotoxaemic horses with a low response to sympathomimetic drugs, although 

further studies are needed to confirm this hypothesis. 

   Based on the results of this PhD thesis, it can be concluded that enoximone is an effective 

inotrope in healthy equids, with few undesirable effects. These results are encouraging for 

future research. Since HR increased only initially after bolus administration of enoximone, it 

may be interesting to investigate whether this increase in HR can be avoided by administering 

the drug as a CRI. To establish suitable loading doses and infusion rates for such a CRI, 

pharmacokinetic and pharmacodynamic studies in anaesthetized horses are required. Also, 

enoximone‟s effects on tissue perfusion in horses remain unknown. Studies looking at the 

effects of enoximone on intramuscular blood flow, splanchnic perfusion, etc. in horses are 

therefore needed. When administered after enoximone, several of dobutamine‟s 

cardiovascular effects appeared to be more pronounced compared to previous reports, but a 

specifically designed study would be needed before synergism between both drugs can be 

confirmed with certainty. In view of the positive effects of enoximone in humans with 

endotoxaemia and/or sepsis, further studies under similar clinical conditions are also justified 

in horses. Other possible uses of enoximone would be to counteract the negative inotropic 
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effects of other drugs administered in the perioperative period, mainly anaesthetics, and in the 

treatment of cardiac failure in horses or ponies. 
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In anaesthetized horses, the combined effects of recumbency, a high body weight, respiratory 

disturbances and cardiovascular depression often cause decreases in arterial oxygen content, 

blood pressure and cardiac output (   ). As a result, tissue oxygenation often becomes 

inadequate, which is one of the major factors contributing to the high death rate associated 

with anaesthesia in horses. Pulmonary ventilation-perfusion mismatching, which results in 

arterial hypoxaemia, is difficult to treat and most strategies using artificial ventilation have the 

propensity to compromise cardiovascular function. However, oxygen delivery to the tissues 

(DO2) can also be improved by optimizing tissue perfusion. Routine monitoring of the 

cardiovascular system during equine anaesthesia includes subjective clinical assessment, 

electrocardiography and measurement of heart rate (HR) and blood pressure. Although these 

techniques provide the anaesthetist with valuable information, measuring     would allow an 

even better estimation of DO2. Most previously described techniques for     measurements in 

horses only provide intermittent values, are difficult to use routinely and/or were found to 

have low accuracy. However, pulse contour analysis (PulseCO
®
) appeared promising for use 

in horses, since it is a continuous, noninvasive and easily applicable method that was found to 

be quite accurate over prolonged periods of time in humans. The first aim of this PhD thesis 

was therefore to evaluate the reliability of the pulse contour analysis algorithm implemented 

in the LiDCO-Plus
®
 monitor.  

   Once cardiovascular depression has been diagnosed, an appropriate treatment should be 

initiated. Reduction of anaesthetic depth and fluid therapy are often insufficient in 

anaesthetized horses and the use of cardiovascular stimulant drugs, such as antimuscarinics, 

inotropic drugs and vasopressors, is often needed. Antimuscarinic drugs increase HR and, for 

many reasons, are not suitable to augment     unless under specific circumstances. 

Vasopressors, such as vasopressin analogues, calcium salts and α-sympathomimetics, are only 

useful when hypotension is caused by vasodilation, e.g. induced by drugs or endotoxins, while 

myocardial contractility and     are normal or even increased and vascular transmural pressure 

needs to be restored to maintain normal tissue perfusion. Inotropic drugs include digitalis 

glycosides, β-sympathomimetics, calcium salts, calcium sensitizers and phosphodiesterase 
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(PDE) III inhibitors. Most of these drugs increase the availability of calcium to the contractile 

apparatus of the cardiac muscle. Extensive research has been performed on the effects of β-

sympathomimetics in horses. Many of these agents are suitable to be used as a constant rate 

infusion (CRI) during anaesthesia and effectively increase cardiac contractility, but some 

negative side effects can occur, including tachycardia, arrhythmias and in some cases 

undesirable vasoconstriction or vasodilation. Digitalis glycosides seem to be less useful for 

routine perioperative cardiovascular support in anaesthetized horses, because of unfavourable 

pharmacokinetic properties, toxicity and possibly lower efficacy in equine patients without 

cardiac disease. The effectiveness of calcium salts for cardiovascular support in horses varied 

between different studies and probably depends on different factors such as pre-existing 

serum calcium levels and degree of cardiovascular depression. Calcium sensitizers are quite 

expensive and long acting and are probably better used only in patients with cardiac disease. 

While PDE III inhibitors, i.e. inodilators, are potent inotropes with few important side effects 

during short-term use in humans, very little information is available on the use of these drugs 

in horses. In human medicine, milrinone and enoximone are nowadays the most widely used 

inodilatory PDE III inhibitors. Because the effects of milrinone, but not those of enoximone, 

had previously been described in horses, the second major aim of this PhD thesis was to 

evaluate the cardiovascular effects and possible side effects of enoximone in ponies under 

experimental conditions, alone or combined with dobutamine or calcium chloride. If 

beneficial, the drug‟s effectiveness during colic surgery in horses would be additionally 

evaluated. 

   In an experimental randomized cross-over study, 6 ponies were anaesthetized 4 times with a 

minimal interval of 3 weeks between treatments. Their age ranged between 4 and 6.5 years 

and body weight between 212 and 368 kg (mean bodyweight 286 ± 53 kg). The ponies were 

sedated with romifidine [80 µg/kg intravenously (IV)] and anaesthesia was induced with 

midazolam (0.06 mg/kg IV) and ketamine (2.2 mg/kg IV) and maintained with isoflurane in 

oxygen (FE´Iso 1.7%). Normocapnia (PaCO2 4.66-6.00 kPa) was maintained using artificial 

ventilation. Ninety minutes after induction (=T0), the ponies received 1 of 4 treatments: slow 

IV administration of enoximone 0.5 mg/kg (E), an equivalent volume of saline (S), 

enoximone 0.5 mg/kg IV followed by a dobutamine CRI at 0.5 µg/kg/min during the 

remaining period of anaesthesia (ED) or an infusion of calcium chloride 0.5 mg/kg/min from 

T5 until T15 (EC). On all occasions, cardiopulmonary function was monitored during 120 

minutes after the end of enoximone administration. Heart rate, blood pressure and right atrial 
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pressure (RAP) were measured before treatment, every 5 minutes between T0 (treatment) and 

T30 and then every 10 minutes until T120. Before T0, the pulse contour analysis monitor was 

calibrated three times using the lithium dilution technique. Thereafter, no further 

recalibrations were performed. Cardiac output measurements (lithium dilution (   LiDCO) and 

pulse contour analysis (   PulseCO) techniques) and blood gas analysis (arterial and central 

venous samples) were performed before treatment and at T5, T10, T20, T40, T60, T80, T100 

and T120. Stroke volume (SV), systemic vascular resistance (SVRLiDCO and SVRPulseCO), 

venous admixture (       ) and DO2 were calculated. Additionally, for each pair of     

measurements after T0, the absolute and relative differences between both techniques were 

calculated. 

   For all statistical analyses, a 5 % significance level was used. The differences between 

   LiDCO and    PulseCO in the saline group were analyzed using a paired t-test. Mixed models 

were used to evaluate whether these differences changed over time and whether they were 

influenced by the different treatments or by changes in HR, blood pressure, RAP, packed cell 

volume (PCV) and SVRLiDCO. Additionally, bias and precision were documented using Bland-

Altman plots and mean bias and limits of agreement between both techniques were calculated 

for each treatment group. The cardiopulmonary effects of enoximone were compared to those 

of the other treatments using a mixed model with treatment, time and their interaction as fixed 

categorical effects and pony as random effect, comparing the treatments both globally and at 

specific timepoints after treatment. 

   During treatment S, the limits of agreement between both     measurement techniques were 

wide and    PulseCO was 4.9 ± 12.3 % lower than     LiDCO (P<0.001), while SVRPulseCO was 6.9 

± 14.4 % higher than SVRLiDCO (P<0.01). These differences increased over time and were 

significantly larger during treatments E and ED. At the same time, the limits of agreement 

were wider during treatments E, ED and EC compared to treatment S. Furthermore, the 

differences between both techniques were significantly affected by changes in blood pressure. 

It was concluded from these results that the reliability of the pulse contour analysis algorithm 

was low in anaesthetized ponies, despite recent calibration and even under stable 

haemodynamic conditions, and became worse when haemodynamics changed. 

   Compared to saline treatment, enoximone induced significant increases in     and SV during 

100 minutes and an increase in HR during 40 minutes. Right atrial pressure decreased during 
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at least 2 hours. Despite increases in        , DO2 to the tissues was improved. Additional 

administration of dobutamine as a constant rate infusion caused further increases in     and 

SV, which were larger than previously reported with dobutamine infusions in horses and 

ponies, suggesting that enoximone might augment the inotropic potency of dobutamine. At 

the same time, the increase in HR seen after enoximone administration was maintained during 

the entire dobutamine infusion period, although the magnitude of this increase was not 

altered. Other effects of dobutamine administration were an increase in blood pressure, RAP, 

PCV and DO2. In contrast to the findings with a dobutamine infusion, administration of 

calcium chloride did not have any detectable influence on the cardiovascular effects of 

enoximone in anaesthetized ponies. No clinically important adverse effects were noted during 

any of the treatments in this experimental study. Based on these results, it was concluded that 

a single bolus of enoximone is able to improve cardiac performance during almost 2 hours in 

isoflurane anaesthetized ponies, appears to be quite safe and can be combined with low doses 

of dobutamine when blood pressure needs to be increased or when more pronounced increases 

in     are desired. 

   Based on these beneficial results under experimental conditions, a prospective, randomized 

clinical trial was set up to investigate the cardiovascular effects of enoximone in anaesthetized 

colic horses undergoing emergency laparotomy. After sedation (xylazine 0.7 mg/kg) and 

induction (midazolam 0.06 mg/kg, ketamine 2.2 mg/kg), anaesthesia was maintained with 

isoflurane in oxygen and a lidocaine constant rate infusion (1.5 mg/kg, 2 mg/kg/h). All 48 

horses were ventilated to maintain PaCO2 below 8.00 kPa. Dobutamine and/or colloids were 

administered when hypotension occurred. Ten minutes after skin incision, an intravenous 

bolus of enoximone (0.5 mg/kg) or an equivalent volume of saline was administered (= T0). 

Respiratory and arterial blood gases, HR, blood pressure and cardiac index (CI) were 

monitored. Systemic vascular resistance (SVR), stroke index (SI) and oxygen delivery index 

(DO2I) were calculated. For each variable, changes between baseline and T10 within each 

treatment group and/or colic type (small intestines, large intestines or mixed) were analyzed 

and compared between treatments in a fixed effects model. Differences between treatments 

and colic types until T30 were investigated using a mixed model. For all analyses, the 

significance level was set at 5 %.  

   Ten minutes after enoximone administration, CI (P=0.0010), HR (P=0.0033) and DO2I 

(P=0.0007) were higher and SVR lower (P=0.0043) than at baseline. However, during the 
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first 30 minutes after enoximone treatment, only DO2I (P=0.0224) and HR (P=0.0003) were 

higher than after saline administration. Furthermore, all differences were less pronounced and 

of shorter duration than in the experimental study in ponies. This may have been caused by 

variability of the cardiovascular status of individual colic horses, other factors affecting 

cardiovascular function (thus masking the effects of enoximone) or the presence of factors 

which possibly reduced the efficacy of enoximone, such as hypovolaemia or endotoxaemia.   

   One of the general conclusions that can be drawn from these studies is that the pulse contour 

analysis algorithm is of limited usefulness to estimate cardiac output in anaesthetized ponies. 

Secondly, enoximone is able to improve cardiac performance and appeared to be quite safe in 

anaesthetized ponies and colic horses. The drug can also be safely combined with low doses 

of a dobutamine infusion. This combination causes a more pronounced increase in cardiac 

function and results in a higher arterial pressure compared to enoximone administration alone. 

However, the cardiovascular effects of enoximone were less pronounced and of shorter 

duration in colic horses. Further studies evaluating the cardiovascular effects and influence on 

muscle perfusion of different doses of enoximone, administered as a bolus or as a constant 

rate infusion, the drug‟s pharmacokinetics and its efficacy under different clinical conditions, 

are warranted. 
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Tijdens de anesthesie van paarden veroorzaken de gecombineerde effecten van decubitus, een 

hoog lichaamsgewicht, ademhalingsproblemen en cardiovasculaire depressie vaak een 

duidelijke daling in het arterieel zuurstofgehalte, de bloeddruk en het hartdebiet (   ). Dit kan 

leiden tot onvoldoende zuurstofvoorziening van de weefsels, wat één van de belangrijkste 

factoren is die bijdragen tot de hoge sterftepercentages tijdens of kort na de anesthesie van 

paarden. Een slecht evenwicht tussen ventilatie en perfusie van de longen is moeilijk te 

corrigeren en de meeste beademingstechnieken die men hiervoor gebruikt onderdrukken in 

meer of mindere mate de functie van het cardiovasculair systeem. De zuurstofvoorziening van 

de weefsels kan echter ook verbeterd worden door de weefseldoorbloeding te optimaliseren. 

Voor routine monitoring van het cardiovasculair systeem tijdens de anesthesie wordt bij 

paarden doorgaans gebruik gemaakt van subjectieve klinische beoordeling, 

electrocardiografie en het meten van de hartfrequentie (HR) en de bloeddruk. Alhoewel deze 

technieken waardevolle informatie opleveren, zou het meten van het hartdebiet een nog betere 

inschatting van de zuurstofvoorziening van de weefsels mogelijk maken. De meeste 

technieken die beschreven zijn om     te bepalen bij paarden laten alleen intermitterende 

metingen toe, zijn moeilijk routinematig te gebruiken en/of zijn weinig betrouwbaar. Het 

nieuwe algorithme voor het analyseren van de arteriële bloeddrukgolven van de LiDCO-Plus
®

 

monitor leek echter veelbelovend voor gebruik bij paarden, aangezien het een continue, non-

invasieve en eenvoudig te gebruiken methode is, die vrij accuraat bleek te zijn over lange 

periodes in de humane geneeskunde. De eerste doelstelling van deze doctoraatsthesis was dan 

ook de betrouwbaarheid na te gaan van het algorithme waarmee de LiDCO-Plus
®
 monitor 

veranderingen in     schat op basis van de arteriële bloeddrukgolf.  

   Eens cardiovasculaire depressie vastgesteld is, moet een gepaste behandeling ingesteld 

worden. Het verminderen van de diepte van de anesthesie en toedienen van vloeistoffen 

volstaan vaak niet bij paarden, zodat farmaca met een stimulerend effect op het 

cardiovasculair systeem, zoals antimuscarinica, inotropica en vasopressoren vaak nodig zijn. 

Antimuscarinica verhogen de hartfrequentie en zijn om vele redenen niet geschikt om het 
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hartdebiet te verhogen, tenzij onder zeer specifieke omstandigheden. Vasopressoren, zoals 

vasopressine analogen, calciumzouten en α-sympathicomimetica, zijn enkel nuttig wanneer 

hypotensie veroorzaakt wordt door vasodilatatie, bv. uitgelokt door farmaca of endotoxines, 

terwijl de myocardiale contractiliteit en     normaal of zelfs verhoogd zijn en de transmurale 

druk in de bloedvaten verhoogd moet worden om de perfusie van de weefsels in stand te 

houden. Bij de inotropica horen de digitalis glycosides, β-sympathomimetica, calciumzouten, 

calcium „sensitizers‟ en phosphodiesterase (PDE) III inhibitors. De meeste van deze 

producten veroorzaken een inotroop effect door de beschikbaarheid van calcium voor het 

contractiele apparaat van de hartspier te verhogen. Uitgebreid onderzoek werd reeds 

uitgevoerd aangaande de effecten van β-sympathomimetica bij paarden. Vele leden van deze 

groep zijn geschikt voor gebruik als continu infuus tijdens de anesthesie en zijn vrij effectief 

om de contractiliteit van het hart te verhogen, maar kunnen ook neveneffecten veroorzaken, 

zoals tachycardie, aritmieën en in sommige gevallen overmatige vasoconstrictie of 

vasodilatatie. Digitalis glycosides lijken minder nuttig voor routine cardiovasculaire 

ondersteuning van paarden tijdens de anesthesie, omwille van ongunstige farmacokinetische 

eigenschappen, toxiciteit en een mogelijks lagere efficaciteit bij paarden zonder 

hartproblemen. Het effect van calciumzouten voor cardiovasculaire ondersteuning bij paarden 

varieerde tussen verschillende studies en hangt wellicht af van verschillende factoren zoals de 

calciumconcentratie in het serum en de graad van cardiovasculaire depressie. Calcium 

sensitizers zijn vrij duur, werken lang en worden waarschijnlijk beter gereserveerd voor 

patiënten met hartfalen. Phosphodiesterase III inhibitors of zogenoemde inodilatoren zijn 

potente inotropica met relatief weinig belangrijke neveneffecten wanneer ze gebruikt worden 

voor korte periodes bij mensen. Toch is er zeer weinig informatie voorhanden over het 

gebruik van deze farmaca bij het paard. In de humane geneeskunde zijn milrinone en 

enoximone momenteel de meest gebruikte inodilatorische PDE III inhibitors. Omdat de 

effecten van milrinone, maar niet deze van enoximone, reeds beschreven waren bij paarden, 

was de tweede algemene doelstelling van dit doctoraatswerk de cardiovasculaire effecten en 

eventuele neveneffecten van enoximone te onderzoeken bij pony‟s, onder experimentele 

omstandigheden, alleen of gecombineerd met dobutamine of calcium chloride. Indien de 

resultaten gunstig waren zou de efficaciteit van enoximone voor het verhogen van het 

hartdebiet tijdens koliekchirurgie bij paarden bestudeerd worden. 

   In een experimentele, gerandomiseerde cross-over studie, werden 6 pony‟s 4 keer onder 

anesthesie gebracht, met een interval van minimum 3 weken tussen elke behandeling. De 
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dieren waren tussen 4 en 6,5 jaar oud en hun lichaamsgewicht varieerde tussen 212 en 368 kg 

(gemiddeld 286 ± 53 kg). Na sedatie met romifidine [80 µg/kg intraveneus (IV)] en inductie 

met midazolam (0.06 mg/kg
 
IV) en ketamine (2.2 mg/kg

 
IV), werd de anesthesie onderhouden 

met isofluraan in zuurstof (FE´Iso 1.7%). Aan de hand van kunstmatige beademing werd er 

gezorgd voor normocapnie (PaCO2 4.66-6.00 kPa). Negentig minuten na de inductie (= T0) 

werd 1 van de 4 behandelingen toegediend: trage IV toediening van enoximone 0.5 mg/kg 

(E), een equivalent volume fysiologische zoutoplossing (S), enoximone 0.5 mg/kg IV gevolgd 

door een dobutamine infuus aan 0.5 µg/kg/min gedurende het verder verloop van de 

anesthesie (ED) of een infuus met calcium chloride aan 0.5 mg/kg/min van T5 tot T15 (EC). 

De cardiopulmonaire functie werd telkens opgevolgd gedurende 120 minuten na het einde van 

de toediening van enoximone. De HR, bloeddruk en rechter atriale druk (RAP) werden 

gemeten voor de behandeling, om de 5 minuten tussen T0 (behandeling) en T30 en daarna om 

de 10 minuten tot T120. Vóór T0 werd de „Pulse contour analysis‟ (PulseCO) software drie 

maal gecalibreerd met behulp van de lithium-dilutietechniek (LiDCO). Daarna werden geen 

verdere calibraties meer uitgevoerd over het verloop van de studie. De metingen van het 

hartdebiet (lithium dilutie (   LiDCO) en pulse contour analysis (   PulseCO) technieken) en 

bloedgas-analyses (arteriële en centraal veneuze stalen) werden uitgevoerd vóór de 

behandeling en op T5, T10, T20, T40, T60, T80, T100 and T120. Het slagvolume (SV), de 

systemisch vasculaire weerstand (SVRLiDCO en SVRPulseCO), het percentage veneuze 

bijmenging (       ) en de zuurstofvoorziening (DO2) werden berekend. Bijkomend werden 

voor elk paar     metingen na T0 de absolute en relatieve verschillen tussen beide technieken 

bepaald. 

   Voor alle statistische analyses werd een significantieniveau van 5 % aangehouden. De 

verschillen tussen    LiDCO en    PulseCO tijdens de placebo behandeling werden geanalyseerd 

met een gepaarde t-test. Mixed model variantie-analyse werd gebruikt om te evalueren of 

deze verschillen veranderden over de tijd en of ze beïnvloed werden door de verschillende 

behandelingen of door de HR, bloeddruk, RAP, hematocriet (PCV) of SVRLiDCO. Bijkomend 

werden de accuraatheid en precisie gedocumenteerd op basis van Bland-Altman plots en 

berekeningen van de gemiddelde bias en zogenaamde „grenzen van overeenkomst‟ (limits of 

agreement) tussen de beide technieken tijdens de verschillende behandelingen. De 

cardiopulmonaire effecten van enoximone werden vergeleken met deze van de andere 

behandelingsprotocols op basis van een mixed model met behandeling, tijd en hun interactie 
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als vaste categorische effecten en pony als random effect, waarbij de verschillen zowel 

globaal als op specifieke tijdspunten geanalyseerd werden. 

   Tijdens behandeling S werden wijde limits of agreement gevonden tussen de    LiDCO en 

   PulseCO waardes. Bovendien was    PulseCO 4.9 ± 12.3 % lager dan     LiDCO (P<0.001), terwijl 

SVRPulseCO 6.9 ± 14.4 % hoger was dan SVRLiDCO (P<0.01). Deze verschillen werden 

geleidelijk groter tijdens het verloop van de studie en waren significant hoger tijdens 

behandelingen E en ED. Daarnaast waren de limits of agreement wijder tijdens behandelingen 

E, ED en EC dan tijdens behandeling S. Er werd eveneens vastgesteld dat veranderingen in de 

bloeddruk de verschillen tussen de twee meettechnieken beïnvloedden. Uit deze resultaten 

werd afgeleid dat het PulseCO algorithme bij pony‟s weinig betrouwbaar is, ondanks recente 

calibratie en zelfs onder haemodynamisch stabiele omstandigheden. Wanneer er medicatie 

toegediend werd met een invloed op het cardiovasculair systeem verminderde de 

betrouwbaarheid verder.  

   Vergeleken met de placebo behandeling veroorzaakte enoximone een significante stijging 

van     en SV gedurende 100 minuten en een stijging van HR gedurende 40 minuten. De RAP 

daalde gedurende minstens 2 uur. Ondanks een stijging van de         was de DO2 hoger. 

Bijkomende toediening van dobutamine als continu infuus zorgde voor een verdere stijging 

van     en SV, waarbij deze stijging meer uitgesproken was dan voorheen gerapporteerd met 

het gebruik van dobutamine aan vergelijkbare of zelfs hogere dosissen bij pony‟s en paarden. 

Het is daarom mogelijk dat enoximone de inotrope eigenschappen van dobutamine versterkt. 

Terzelfdertijd bleef de HR gedurende de volledige periode waarin dobutamine toegediend 

hoger dan tijdens behandeling S, alhoewel deze stijging kwantitatief niet groter was dan 

tijdens behandeling E. Andere effecten van het toedienen van dobutamine waren een stijging 

van de bloeddruk, RAP, PCV en DO2. Daarentegen had toediening van calcium chloride geen 

enkele invloed op de effecten van enoximone bij pony‟s. Er werden trouwens geen klinisch 

belangrijke neveneffecten vastgesteld na toediening van enoximone in de experimentele 

studie. Uit deze resultaten werd afgeleid dat een enkele bolus enoximone in staat is het 

slagvolume en hartdebiet gedurende bijna 2 uur te verhogen bij pony‟s tijdens algemene 

anesthesie met isofluraan, vrij veilig lijkt te zijn en ook gecombineerd kan worden met een 

lage dosis dobutamine wanneer de arteriële bloeddruk moet verhoogd worden of wanneer een 

meer uitgesproken stijging van het hartdebiet nodig is.  
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   Op basis van de gunstige resultaten onder experimentele omstandigheden werd een 

prospectieve, gerandomiseerde klinische studie uitgevoerd om de cardiovasculaire effecten 

van enoximone te bestuderen tijdens koliekchirurgie bij paarden. Na sedatie (xylazine 0.7 

mg/kg) en inductie (midazolam 0.06 mg/kg, ketamine 2.2 mg/kg) werd de anesthesie 

onderhouden met isofluraan in zuurstof en een continu lidocaïne-infuus (1.5 mg/kg, 2 

mg/kg/h). Alle 48 paarden werden kunstmatig beademd om de PaCO2 lager dan 8.00 kPa te 

houden. Dobutamine en/of colloïden werden toegediend in geval van hypotensie. Tien 

minuten na incisie van de huid werd een intraveneuze bolus enoximone (0.5 mg/kg) of 

eenzelfde volume fysiologische zoutoplossing toegediend (= T0). Respiratoire en arteriële 

bloed-gassen, HR, bloeddruk en het hartdebiet per kg lichaamsgewicht (cardiac index, CI) 

werden opgevolgd. Verder werden ook de systemisch vasculaire weerstand (SVR), 

slagvolume index (SI) en zuurstofvoorzieningsindex (DO2I) berekend. Voor elke variabele 

werd het verschil bekeken tussen de waarden op T10 en deze net voor de toediening van 

enoximone, om vervolgens deze verschillen te vergelijken tussen de 2 behandelingen en 

tussen de verschillende koliektypes (dunne darm, dikke darm of gemengd), aan de hand van 

variantie-analyse („vast effect‟ model). De waardes tot T30 van de beide behandelingen en de 

drie koliektypes werden eveneens met elkaar vergeleken aan de hand van variantie-analyse 

(gemengd model). Voor alle analyses werd een significantieniveau van 5 % aangehouden.  

   Tien minuten na de toediening van enoximone waren de CI (P=0.0010), HR (P=0.0033) en 

DO2I (P=0.0007) hoger en SVR lager (P=0.0043) dan op T0. Daarentegen waren alleen DO2I 

(P=0.0224) en HR (P=0.0003) tijdens de eerste 30 minuten na behandeling met enoximone 

hoger dan na de placebobehandeling. Bovendien waren alle verschillen minder uitgesproken 

en van kortere duur dan in de experimentele studie bij pony‟s. Dit kan te wijten zijn aan de 

variabiliteit van de cardiovasculaire status van individuele koliekpaarden, andere factoren die 

een effect hadden op het cardiovasculair systeem (en zo de effecten van enoximone 

maskeerden) of factoren die mogelijks de efficaciteit van enoximone verminderden, zoals 

hypovolemie of endotoxemie. 

   Eén van de algemene conclusies van deze studies is dat het PulseCO algorithme van de 

LiDCO-Plus
®
 monitor weinig betrouwbaar is om veranderingen in het hartdebiet te schatten 

bij pony‟s tijdens de anesthesie. Daarnaast werd vastgesteld dat enoximone de hartfunctie 

stimuleert en vrij veilig lijkt te zijn bij pony‟s en koliekpaarden, ook wanneer gecombineerd 

met lage doses van een dobutamine-infuus. Deze combinatie leidt tot een sterkere stijging van 
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het slagvolume en het hartdebiet en een hogere arteriële bloeddruk vergeleken met toediening 

van enoximone alleen. Anderzijds waren de cardiovasculaire effecten van enoximone minder 

uitgesproken en van kortere duur bij koliekpaarden. Verdere studies die de cardiovasculaire 

effecten en de invloed op de spierperfusie van verschillende doses enoximone nagaan, 

toegediend als een bolus of als continu infuus, evenals studies die de farmacokinetiek van 

enoximone bij paarden en de efficaciteit van deze molecule onder verschillende 

omstandigheden onderzoeken, zijn aangewezen. 
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cliché over de altijd slechte verstandhouding tussen anesthesisten en chirurgen teniet te doen. 

Guido, Caroline, Valerie, Cindy en Nadine, ook aan jullie bedankt voor de hulp bij het 

uitvoeren van de experimenten en het verzamelen en proper maken van alle katheters, 

guidewires, sleeves, dilatoren, introducers en al het andere materiaal dat ik nodig had voor de 

proeven, evenals voor het aangenamer maken van de vele uren die ik bij de slapende pony‟s 

doorbracht. Wie ik niet mag vergeten is Fernand, van het labo op de vakgroep inwendige 

ziekten, die voor mij heel wat bloedstalen analyseerde en zelfs zo vriendelijk was ongevraagd 

de stalen persoonlijk te komen halen en de resultaten terug te brengen. Prof. Desmet verdient 

eveneens een plaats in dit epistel, door mij indertijd te begeleiden bij het schrijven van mijn 

scriptie heeft hij me geleerd hoe een grondige literatuurstudie uit te voeren en op een correcte 

manier weer te geven. Ook alle andere leden van onze vakgroep en van de inwendige ziekten 

en de verloskunde wil ik bedanken voor hun bijdrage aan dit doctoraat en/of omdat ze het 

aangenaam maken om elke dag opnieuw op het werk te verschijnen. Aan de secretaresses, de 
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interns, de „mankmeesters‟, de mensen van de hospitalisatie, de hoefsmeden, de stalknechten, 

Cindy, Remi en Annemie: dankjewel. 

   Niet alleen mijn collega‟s, maar ook de mensen uit mijn persoonlijke omgeving zou ik 

willen bedanken bij het beëindigen van dit doctoraat. Een speciale dankjewel gaat uit naar 

mijn ouders, die me altijd door dik en dun gesteund hebben in alles wat ik ondernam, me in 

mezelf deden geloven en steeds een voorbeeld waren (en nog altijd zijn) van hoe ik zelf wilde 

worden als persoon. Ook mijn zussen Tamara en Jette en mijn schoonfamilie wil ik bedanken 

om altijd voor me klaar te staan en steeds in mij te geloven. Tot slot wil ik de twee personen 

die alles voor mij betekenen nog eens speciaal bedanken: Elke en Seth, ik weet dat het niet 

altijd eenvoudig was als ik ‟s avonds of in het weekend weer eens moest studeren voor mijn 

examen of tijd moest besteden aan mijn doctoraat en daardoor geen tijd had voor jullie. 

Bedankt om begrip te tonen en mij al deze kansen te geven. Maar eigenlijk nog veel meer: 

gewoon bedankt dat jullie er zijn en het leven pas echt de moeite waard maken…  

    

     

 

 

 

 

 


