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This is the English translation of “Meccanica Analytica” which was pub-
lished in Italian in 2002 (Bollati Boringhieri editore, Torino).

It is quite an achievement to write a book of more than 700 pages, even if
it comes out of lecture notes and is primarily an account of the way you have
been teaching a subject at various levels. The book by Fasano and Marmi is
sufficiently original in its perception and composition and rich in contents to
deserve a place on the shelf of every mechanics teacher, despite the abundance
of books on analytical mechanics which are available already. Whether it can
be used as a syllabus for students is a different matter. It certainly covers too
much material for one course. An additional complication in that respect is a
rather unfortunate (at least in my opinion) ambiguity in the way the authors
approach the very basics of the theory. I mean, they do want to talk about the
fundamental laws of mechanics, for example, but assume at the same time that
there has been a first course on mechanics preceding the one they offer. As a
result, one will wonder occasionally why we get a clear definition of concept A,
while concept B is taken for granted as something everybody knows. Anyhow,
the writing style of the book makes it fluent and pleasant to read.

Let us go through a survey of the contents first, and I will do my best to
restrict myself to little remarks here and there, leaving the discussion of more
fundamental issues for later.

One of the original elements of the book is its refreshing, quite extensive
account of differential geometry of curves and surfaces in the first chapter. The
rather unexpected step to offer then already a basic idea of differentiable (Rie-
mannian) manifolds is digestible and serves the introduction of ‘Lagrangian
coordinates’ (more commonly called ‘generalized coordinates’) for systems of
particles with holonomic constraints. It is in that context that we are warned
for the first time that the fundamental notions of the mechanics of a single point
are assumed to be known. I do not quite see a reason for this as Chapter 2 is
about the general laws and dynamics of a point particle and could, with a little
extra effort, just as well be presented as starting from scratch, even though an
elementary first course in mechanics is indeed a useful prerequisite. For ex-
ample, why not include in this book a proof of the ‘well known property’ that
curlF = 0 is the condition for having F = ∇U? Incidentally, all chapters end
with interesting additional bibliographical notes and additional solved problems.
One of those in chapter 2 involves phase space analysis and thus seems to antici-
pate the next chapter, which is about the qualitative analysis of one-dimensional
motion. It is a bit strange that central force problems then only come in chap-
ter 5, while in chapter 4 we immediately jump to systems of particles. That
starts by the equations for the total linear and angular momentum of the sys-
tem, which are given the typical Italian name of cardinal equations. In deriving
those equations, the authors make the observation that “internal forces are in
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equilibrium”; I suppose that this means that the forces add up to zero, but the
authors fail to observe that this is not enough to conclude that internal forces
do not appear in the angular momentum equation. For holonomic systems with
‘smooth constraints’ (often called ‘ideal constraints’ in the literature), we imme-
diately pass to Lagrange’s equations, which is good! I less appreciate that L is
written as T +U for gradient forces and that U is called the potential energy of
the system. Noether’s theorem is presented in a restricted form. On the positive
side certainly is that attention is paid again to qualitative aspects in the study
of dynamical systems, by introducing Lyapunov functions and presenting some
instability results. Again, the additional solved problems are very interesting
but exhibit the ambiguity of this unidentified course we are supposed to have
undergone already: there is a problem which involves moments of inertia and
the concept of rolling without slipping, but the theory about rigid bodies yet has
to come! As already indicated, in chapter 5 we go back to one particle with a
case which certainly deserves a separate chapter, namely central force problems.
We get an excellent account of properties one can prove in all generality and
of course the integration of Kepler’s problem. But there is more: Bertrand’s
theorem is proved; a series solution of Kepler’s equation is discussed, plus its
relation to a formula derived by Lagrange; also a few interesting general features
of the n-body problem are presented. The one thing I miss in this chapter is
the derivation of the Laplace-Runge-Lenz vector and particularly the way this
extra conserved vector allows to find the orbits without needing to integrate the
second-order equation which is usually set up for this purpose. Also, the effect
that the centre of mass reduction in the 2-body problem has on Kepler’s third
law, would have been worth an extra line.

Chapters 6 and 7 are about the kinematics and dynamics of rigid bodies. I
must admit that I am less enthusiastic about a number of issues in this part.
It starts by defining rigid bodies as a set of points with rigid constraints. To-
wards the end of chapter 6 we are put at ease by the statement that the results
can be easily extended to continua by replacing sums by integrals everywhere,
but I disagree with such a point of view. The fundamental formula for the in-
stantaneous angular velocity in rigid motions (here called Poisson’s formula?)
can be done better. When it comes to introducing the important concept of
inertia tensor, we first learn about the computation of a matrix and then a
rather awkward reasoning is set up to argue that there is something intrinsic
behind it which justifies the term ‘tensor of inertia’. Further on, the ‘cardinal
equations’ referred to above in the context of systems of particles, are claimed
to hold automatically also for bodies with mass distribution. Even stronger: it
is almost mentioned in passing that this is equivalent to Lagrange’s equations
as well. And indeed, to study the motion of a spinning top a little further, the
authors simply start by writing down the Lagrangian L = T − V without any
further justification. I am afraid I don’t buy this! Leaving such questions aside,
we do get a good, complete discussion of Poisson motion (while the treatment
of the spinning top is much less complete). As before, there are a number of
interesting additional solved problems.

Chapters 8 to 10 develop the basics of the Hamiltonian formalism. There is
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a good discussion of the Legendre transformation in chapter 8, and also some
attention for qualitative features again via the statement and proof of Poincaré’s
recurrence theorem (which has a link with ergodic theory in chapter 13). Chap-
ter 9 explains variational principles; it includes a discussion of Maupertuis’
‘principle of stationary action’ and the Jacobi metric. Chapter 10 has the bulk
of classical Hamiltonian mechanics on IR2n. What distinguishes the book from
others here is that the authors first present a thorough discussion of linear
Hamiltonian systems, with the introduction of symplectic matrices and sym-
plectic vector spaces, for example. In fact another distinguishing feature, to
some extent, is a proof of the symplectic rectification theorem further on. In
between, we get a good account of canonical transformations, integral invari-
ants, the canonicity of the flow of a Hamiltonian system, generating functions
and Poisson brackets. The authors show an interest in canonical perturbation
theory also and of course in the relationship between symmetries and first in-
tegrals. The chapter ends with a brief excursion to Hamiltonian systems on
general symplectic manifolds.

The very appreciable story of chapter 10 goes crescendo, in my opinion, in
the next couple of chapters. I mean, chapter 11 is for me a masterly exposé
of Hamilton-Jacobi theory with a perfect mix of classical and modern aspects.
First, there is the classical discussion of separation of variables, with exam-
ples in spherical, parabolic and elliptic coordinates; an interesting discussion
of action-angle variables for one degree of freedom as a warm up; a proof of
the classical Liouville theorem about completely integrable systems. This is fol-
lowed by an extensive account of the modern version, i.e. Arnol’d’s theorem on
global aspects of complete integrability and related issues (part of the credit for
this section is given to unpublished lecture notes of Giorgilli). The additional
bibliographical notes, by the way, contain many more hints to the rich Italian
history in this field and to the important contributions of Russian mathemati-
cians. Also the section on action-angle variables for several degrees of freedom
is excellent, and Kepler’s problem comes back with interesting features from
celestial mechanics. In chapter 12, a brief discussion is presented of a number
of aspects of canonical perturbation theory for nearly-integrable Hamiltonian
systems, that is Hamiltonians which are completely integrable to zeroth order
in some small parameter ε. Through interesting examples, we see a gradual
progress to more complicated modern achievements in this field (which still owe
credit, however, to the pioneering work of Poincaré). The “simple” problem is
to design algorithmic procedures to eliminate dependence on the angle variables
in the perturbed system, order by order. The hard questions are about conver-
gence of the methods and it is shown that, in a way, the odds are very much
against it by proving Poincaré’s result on non-existence of an analytic first inte-
gral (different from the Hamiltonian) under some conditions of genericness and
non-degeneracy. In addition, dropping the last requirement and using ‘Birkhoff
series’ to construct a formal solution, the resulting series will generally diverge.
But some related more positive statements can be made when the frequencies
of the system satisfy a certain diophantine condition. Proceeding in this way,
the authors prepare the stage for the famous KAM-theorem about preservation
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of “most” of the invariant tori of the unperturbed Hamiltonian. Including a full
scale proof of this remarkable achievement would indeed go beyond the scope of
the book, but the reader will perhaps hope at this point to find a sketchy idea
of the different steps of a proof (in the style of the preceding sections, where the
authors also skipped some of the mathematical details).

Chapter 13 on aspects of ergodic theory starts with a good introduction to
the basic concepts, definitions and results in the theory of measurable dynamical
systems (with reference to the book by Mañe (1987)). It is certainly interesting
to get an idea of things like Lyapunov’s characteristic exponents, which mea-
sure the exponential rate of divergence of orbits which are initially close, but
this is a bit disconnected from the rest in a book on ‘Analytical Mechanics’.
The last section, for example, which gives useful info about the important is-
sue of the stability (or chaotic nature?) of the solar system, could have been
told also at the end of the preceding chapter. Chapters 14 and 15 on statis-
tical mechanics lead us still further away. Chapter 14 essentially models the
study of diluted gases and tells us about things like the distribution function
(on a 6-dimensional space), the Boltzmann equation and Boltzmann’s so-called
H-theorem, based on, for example, the assumption that the particles are elastic
spheres. Chapter 15 is about the continuation of Boltzmann’s ideas in the work
of Gibbs. It discusses topics like the ergodic hypothesis, the microcanonical set
and its relation to e.g. the Maxwell-Boltzmann distribution, the ‘grand canon-
ical set’ and thermodynamical limit, with a brief link to the theory of phase
transitions. Obviously, some knowledge of thermodynamics is assumed here, so
it is my feeling that chapters 13 to 15 would better be part of a separate book
on statistical mechanics and thermodynamics. A lot of credit is given in this
part to work of Gallavotti.

The final chapter 16 gives a brief sketch of the Lagrangian formalism in field
theory, with reference, in particular, to the equations of continuum mechan-
ics. Of course, this is again a different subject, which could in fact have been
incorporated as appendix to chapter 9, for example.

In conclusion, I can only repeat what I said at the beginning: this is a very
interesting book for mechanics teachers, who will have to select what material
is best adapted to the aims and scopes of the course(s) they are in charge of.
As for critical remarks on the way the fundamentals of classical mechanics are
presented, I am afraid that, despite my good intentions, I have already given
most of them away in discussing the kinematics and dynamics of rigid bodies.
Allow me to formulate one more element of criticism in this respect, by going
back to the very first fundamental issue, namely the formulation of ‘Newton’s
laws’, a slippery point in probably every book! I think that the four axioms
presented at the start of chapter 2 (which incorporate the existence of inertial
frames and mass ratio, and anticipate so to speak on the principle of action and
reaction) are quite acceptable. But these axioms say nothing about ‘force’. In
fact, the authors go on to say: “If we now define force by . . . ma = F . . . ”.
And two lines further they simply state: “When F is specified as a function of
position, velocity and time, the above relation is the well-known fundamental
equation of the dynamics of a point particle”. In my opinion, these two phrases
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are incompatible: how can we specify such an F if we have just defined it to be
ma? I will not elaborate on this point further, however, as I have done that on
a previous occasion.

Willy Sarlet
Ghent University
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