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ABSTRACT. We focus on credal nets, which are graphical models that generalise Bayesian
nets to imprecise probability. We replace the notion of strong independence commonly
used in credal nets with the weaker notion of epistemic irrelevance, which is arguably more
suited for a behavioural theory of probability. Focusing on directed trees, we show how to
combine the given local uncertainty models in the nodes of the graph into a global model,
and we use this to construct and justify an exact message-passing algorithm that computes
updated beliefs for a variable in the tree. The algorithm, which is linear in the number of
nodes, is formulated entirely in terms of coherent lower previsions, and is shown to satisfy a
number of rationality requirements. We supply examples of the algorithm’s operation, and
report an application to on-line character recognition that illustrates the advantages of our
approach for prediction. We comment on the perspectives, opened by the availability, for
the first time, of a truly efficient algorithm based on epistemic irrelevance.

1. INTRODUCTION

The last twenty years have witnessed a rapid growth of graphical models in the fields
of artificial intelligence and statistics. These models combine graphs and probability to
address complex multivariate problems in a variety of domains, such as medicine, finance,
risk analysis, defence, and environment, to name just a few.

Much has been done also on the front of imprecise probability. In particular, credal nets
[4] have been and still are the subject of intense research. A credal net creates a global model
of a domain by combining local uncertainty models using some notion of independence,
and then uses this to do inference. The local models represent uncertainty by closed convex
sets of probabilities, also called credal sets.

The notion of independence used with credal nets in the vast majority of cases is that of
strong independence (with some exceptions in [8]). Loosely speaking, two variables X,Y
are strongly independent if the credal set for (X,Y) can be regarded as originating from a
number of precise models in each of which X and Y are stochastically independent. Strong
independence is closely related to the sensitivity analysis interpretation of credal sets, which
regards an imprecise model as arising out of partial ignorance of a precise one.

In the particular case of credal nets, strong independence leads to a mathematical equival-
ence: a credal net model is equivalent to a model consisting of a set of Bayesian nets, each
with the same graph but with different values for the parameters. The sensitivity analysis
interpretation is then that there is some (kind of ideal) Bayesian net model of the problem
under consideration, and the graph of such a net is known. But, for some reason, the net’s
parameters are not known precisely, and that is why one considers the set of all the Bayesian
nets that are consistent with the partial specification of the parameters. Common causes for
the existence of partial knowledge are the cost of, and time constraints on, eliciting paramet-
ers, and disagreement amongst a group of experts consulted for that purpose. Non-ignorable
missing data can be another reason, in case the parameters are inferred from a data set [29].

The sensitivity analysis interpretation of imprecise-probability models, and hence strong
independence, is not always applicable. A notable case arises when one wishes to model an
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expert’s beliefs: it is then not always tenable that there should be some ideal Bayesian net
that models these beliefs, and that it is only because of our limited resources that we cannot
define it precisely. Rather, it seems more reasonable to concede that expert knowledge may
be inherently imprecise to some extent.! This simple observation makes the sensitivity
analysis interpretation fail, and hence it makes strong independence an inadequate model,
in general, for such a situation.

An alternative and attractive approach to expressing irrelevance that is not committed
to the sensitivity analysis interpretation is offered by epistemic irrelevance [24]: we say
that X is epistemically irrelevant to Y if observing X does not affect our beliefs about
Y. In other words, by making an epistemic irrelevance assessment, a subject states that
her belief model about Y does (or will) not change after receiving information about X.
When the belief model is a precise probability, both epistemic irrelevance and strong
independence reduce to the usual (stochastic) independence.3 But when the model is a
set of probabilities, this is no longer the case, because in contradistinction with strong
independence, epistemic irrelevance is a property of this set that cannot be explained using
properties of the precise probabilities in the set. Epistemic irrelevance is defined directly in
terms of a subject’s belief model (the set of probabilities). For this reason, it is very well
suited for a behavioural theory of imprecise probability. Contrary to strong independence, it
is not a symmetrical notion: generally speaking, the epistemic irrelevance of X to Y does
not entail the epistemic irrelevance of Y to X. It is also weaker than strong independence, in
the sense that strong independence implies epistemic irrelevance: sets of probabilities that
correspond to assessments of epistemic irrelevance usually include those related to strong
independence assessments. It therefore does not lead to overconfident inferences when the
sensitivity analysis interpretation is not justified.

At this point, the question we address in this paper should be clear: can we define credal
nets based on epistemic irrelevance, and moreover create an exact algorithm to perform
efficient inferences with them? We give a fully positive answer to this question in the special
case that (i) the graph under consideration is a directed tree, and (ii) the related variables
assume finitely many values. The intuitions that showed us the way towards this result
originated in previous work done by some of us on imprecise probability trees [9] and
imprecise Markov chains [10].

How do we address this problem?

In Section 2, we discuss some preliminary graph-theoretic notions, and define the local
uncertainty models that will be used at each node of a tree. These models are formalised
through the language of coherent lower previsions [24]. We discuss how such local models
will give rise to a global uncertainty model, which plays the same role as the joint mass
function built by the chain rule in a Bayesian net. Based on the global model, we state
the Markov condition that defines the imprecise-probability interpretation of our credal
trees. As announced before, this Markov condition involves epistemic irrelevance rather
than strong independence.

In Section 3, we take a brief detour to discuss in general terms how to combine marginal
models into joint ones using irrelevance assessments, in a way that is as conservative as
possible. We do so because the notion of so-called epistemic independence, which arises
out of a symmetrisation of epistemic irrelevance, has so far been defined in the literature
only for the case of two variables. We define and discuss the independent natural extension
of a number of marginals. This is the most conservative joint model that arises out of the
marginals and epistemic independence alone. Moreover, we show that the independent

IFor a detailed argumentation and exposition of this point of view, we refer to [24, Chapter 5].

20bvi0usly, there will be special cases where strong independence is justified in order to model an expert’s
knowledge. Moreover, strong independence could provide a good approximation to more accurate models, even
when it is not entirely appropriate. This is something that seems to deserve further investigation.

31f we ignore issues related to events with probability zero.
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natural extension has a very important strong factorisation property, which has a crucial
part in our algorithm for updating credal trees under epistemic irrelevance.

In Section 4, we turn to the problem of constructing the most conservative global model
based only on the local models in the tree and our Markov condition. We show that this task
can be achieved by a recursive construction that proceeds from the leaves to the root of the
tree using two operations: the independent natural extension discussed in Section 3, and the
marginal extension, defined and studied in [24, 17]. We also show that all uncertainty models
we consider, the local ones as well as the global ones that we create, satisfy a consistency
criterion that generalises (and is based on the same ideas as) the usual consistency criterion
in Bayesian nets: they are (separately and jointly) coherent [24, 15, 16, 27] (see in particular
[18, Section 8.1]). This is an important rationality requirement.

We briefly comment on some of the graphical separation criteria induced by epistemic
irrelevance in Section 5. We then go on to develop and justify an algorithm for making
inferences on credal trees under epistemic irrelevance in Section 6. The algorithm is used to
update the tree: it computes posterior beliefs about a farget variable in the tree conditional
on the observation of other variables, which are called instantiated, meaning that their value
is determined. It can in particular be used for treating the model as an expert system.

Our algorithm is based on message passing, as are the traditional algorithms that have
been developed for precise graphical models. It has some remarkable properties: (i) it works
in time linear in the number of nodes in the tree; (ii) it natively computes posterior lower
and upper previsions (or expectations) rather than probabilities; (iii) it is the first algorithm
developed for credal nets that exclusively uses the formalism of coherent lower previsions;
and (iv) it is shown that, under very mild conditions, using the tree for updating beliefs
cannot lead to inferences that are inconsistent with the local models we have started from,
nor with one another.

We give a step-by-step example of the way inferences can be done using our algorithm
in Section 7. We also comment there on the intriguing relationship between the failure of
certain classical separation properties in our framework, and dilation [14, 22].

The last part of the paper focuses on numerical simulations. In Section 8 we empirically
measure the amount of imprecision introduced by using epistemic irrelevance rather than
strong independence in a credal tree, when propagating inferences backwards (towards the
root) from instantiated nodes to the target node. Indeed, it can be shown [9] that there is no
difference between inferences that go forward from instantiated nodes to the target node
under strong independence and epistemic irrelevance. In Section 9 we present an application
of our algorithm to on-line character recognition. We learn the probabilities from data and
compare the predictions of our approach with those of its precise probability counterpart.
The results are encouraging: they show that the tree can be used for real applications, and
that the imprecision it originates is justified.

In order to keep this paper reasonably short, we have to assume the reader has a good
working knowledge of the basics of Peter Walley’s [24] theory of coherent lower previsions.
This is needed in particular for the most important proofs, collected in the Appendix. For a
fairly detailed discussion of the coherence notions and results needed in the context of this
paper, we refer to recent work by Enrique Miranda [15, 16].

2. CREDAL TREES UNDER EPISTEMIC IRRELEVANCE

2.1. Basic notions and notation. We consider a rooted and directed discrete tree with
finite width and depth. We call T the set of its nodes s, and we denote the root, or initial,
node by [J. For any node s, we denote its mother node by m(s). Of course, (] has no mother
node, and we use the convention m([J) = 0. Also, for each node s, we denote the set of its
children by C(s), and the set of its siblings by S(s). Clearly, S(O0) = 0, and if s # O then
S(s) =C(m(s))\ {s}. If C(s) = 0, then we call s a leaf, or terminal node. We denote by
T¢ = {s € T: C(s) # 0} the set of all non-terminal nodes.
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For nodes s and ¢, we write s C ¢ if s precedes t, i.e., if there is a directed segment in the
tree from s to z. The relation C is a special partial order on the set 7. A(s) :={tr € T: t C s}
denotes the chain of ancestors of s, and D(s) := {tr € T: s C t} its set of descendants. Here
s C t means that s C ¢ and s # . We also use the notation s := A(s) U {s} for the chain
(segment) connecting [J and s, and s := D(s) U {s} for the sub-tree with root s. Similarly,
we let 1S .= U{Ts: s € S} and |.S := U{}s: s € S} for any subset S C T For any node s, its
set of non-parent non-descendants is given by 5:= T\ ({m(s)} U ls).

With each node s of the tree, there is associated a variable X; assuming values in a
non-empty finite set Z;. We denote by £ (Z;) the set of all real-valued maps (also called
gambles) on 2. We extend this notation to more complicated situations as follows. If S is
any subset of T, then we denote by Xg the tuple of variables whose components are the Xj
for all s € S. This new joint variable assumes values in the finite set 2 := X525, and the
corresponding set of gambles is denoted by £ (Z5s). # Generic elements of 2 are denoted
by x; or z. Similarly for xg and zg in Z5. Also, if we mention a tuple zg, then for any ¢ € S,
the corresponding element in the tuple will be denoted by z;. We assume all variables in the
tree to be logically independent, meaning that the variable Xg may assume all values in 2,
forall0CSCT.

We will frequently use the simplifying device of identifying a gamble f5 on Zg with its
cylindrical extension to Zy, where S CU C T. This is the gamble fyy on 2y defined by
Sfu(xy) = fs(xs) forall xy € Zy. To give an example, if #° C £ (Z27), this trick allows us
to consider J# N_Z(Zs) as the set of those gambles in .#” that depend only on the variable
Xs. As another example, this device allows us to identify the gambles I, and H{XS}XQ//'T\S,

and therefore also the events {xs} and {xs} X 2Z7\s. More generally, for any event A C Z,
we can identify the gambles I4 and ]IAXQ/”T\ ¢» and therefore also the events A and A x %T\ s-
In the same spirit, a lower prevision on all gambles in £’ (Zs) can be identified with a lower
prevision defined on the set of corresponding gambles on 27, a subset of £ (27 ).

Throughout the paper, we consider (conditional) lower previsions as models for a subject’s
beliefs about the values that certain variables in the tree may assume. We use a systematic
notation for such (conditional) lower previsions. Let I, O C T be disjoint sets of nodes with
O # 0, then we generically® denote by Vo (-1X;) a conditional lower prevision, defined on
the set of gambles .i”(%uo).é For every gamble f on Zj 0 and every x; € 27, Vo (fx1) is
the lower prevision (or lower expectation, or a subject’s supremum buying price) for/of the
gamble f, conditional on the event that X; = x;. We interpret V,( f|X;) as a real-valued map
(gamble) on 27 that assumes the value V,(f|x) in the element x; of 27. The conjugate
conditional upper prevision V o(-|X;) is defined on .2 (Z1u0) by Vo (f|X1) = =V o (—f|X1)
for all gambles f on Z0.

We will always implicitly assume that all conditional models V ,(+|X;) we use are separ-
ately coherent, meaning that:

SCL. Vo (flxr) > ming, e 9, f(x1,20) for all f € Z(Z1u0) and all x; € 27 [accepting
partial gains];

SC2. Vy(fi + falxr) = Vo(filxr) +Vo(falxr) forall fi, fo € £L(Z1u0) and all x; € Z;
[super-additivity];

4 For any subset S of 7, 2 is defined formally as the set of all maps xg of S to Jscs 25, such that xg(s) =
xs € Z; for all s € S. So when S = 0, the empty product .2y is defined as the set of all maps from 0 to @, which is
a singleton. The corresponding variable Xp can then only assume this single value, so there is no uncertainty about
it. £(Zp) can be identified with the set R of real numbers.

5 Besides the letter V, we will also use the letters P, Q and R.

6In keeping with the observation in footnote 4, we also allow I = 0, which means conditioning on the variable
X; = Xp, which can only assume one single value. This means that V,(-|Xp) = V,, effectively becomes an
unconditional lower prevision on .Z(Zoup) = -£(Zo). This a very useful device that allows us to use the same
generic notation for both conditional and unconditional lower previsions.
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SC3. V(A flxr) = AV o(flxr) forall f € Z(Zo), all non-negative real A and all x; € 2
[non-negative homogeneity].

By combining SC1-SC3, it follows that for all f € £ (Zu0), x1 € 21 and zp € Zo:

min f(x7,z0) < Vo(flar) <Volflxr) < max f(xs,z0).
20€Z0 20€Z0

If we let f be the indicator I, of the set {z/} in these inequalities, they reduce to the
following, intuitively obvious, property:’

SC4. KO({Q} X %0|x1) ZVO({ZI} X e/z@f0|x1) = H{x]}(ZI) for all x7,z; € 2.

From SC1, SC2 and SC4 we can also derive that, with obvious notations:

Vo(flxr) =Yooy flxr) = Vo (f (x,-)lxr) for all gambles f on Zjuo and x; € 27, (1)

where f(xz,-) is a partial map defined on Zp. This implies that V ,(-|X;) is completely
determined by its behaviour on (cylindrical extensions of maps in) % (Z0).

Hereafter, we will frequently introduce conditional lower previsions of the type V., (-|Xy)
as if they are defined on .2’ (Z0), simply because that is a very natural thing to do: such a
conditional lower prevision is usually interpreted as representing beliefs about the variable
Xo, conditional on values of the variable X;. But the reader should keep in mind that, by the
separate coherence property (1), V5 (+|X;) can (and should) always be uniquely extended to
the larger domain -2 (Z700).

As soon as we consider a number of such conditional lower previsions V., (+Xj,), k =
1,...,n, they should satisfy more stringent consistency criteria than that each of them should
be separately coherent: they should also be consistent with one another in the sense of
Walley’s (joint) coherence [24, Section 7.1.4(b)]. For more details about this much more
involved type of coherence, we refer also to [15, 16].

Finally, let us introduce one of the most important concepts for this paper, that of epistemic
irrelevance. We describe the case of conditional irrelevance, as the unconditional version of
epistemic irrelevance can easily be recovered as a special case.b

Consider three disjoint subsets C, I, and O of N, where both I and O are non-empty. When
a subject judges Xj to be epistemically irrelevant to Xp conditional on X, he assumes that if
he knows the value of X¢, then learning in addition which value X; assumes in 27 will not
affect his beliefs about Xp. More formally, assume that a subject has a separately coherent
conditional lower prevision V,(-|Xc) on .Z(%Zp). If he assesses X; to be epistemically
irrelevant to Xp conditional on X¢, this implies that he can infer from his model V,(-|X¢) a
conditional model V ,(-|Xcur) on .2 (Z£0) given by

Vo(flxcur) =Y o(flxc) forall f € £(Zo) and all xeur € Zeur-

2.2. Local uncertainty models. We now add a local uncertainty model to each of the
nodes s. If s is not the root node, i.e. has a mother m(s), then this local model is a (separately
coherent) conditional lower prevision Q (-|X,,)) on £ (%;): for each possible value z,,()
of the variable X,,,(;) associated with its mother m(s), we have a coherent lower prevision
O (|zm(s)) for the value of Xj, conditional on X,,(;) = 2,,(s)- In the root, we have an uncondi-
tional local uncertainty model Q- for the value of X. O is a (separately) coherent lower
prevision on .#'(2[;). We use the common generic notation Q (+|X,()) for all these local

models.’

TFor any event A C 270, we denote V ,(I4|x;) also as V (A|x;) and call this real number the (conditional)
lower probability of A. Similarly Vo (A|xr) :== Vo (I |xr) is the (conditional) upper probability of A.

811 suffices, in the discussion below, to let C = 0. As we indicated in footnote 4, this makes sure the variable
Xc has only one possible value, so conditioning on that variable amounts to not conditioning at all.

9We can do this because X,n(0) = Xo has only one possible value, so conditioning on that variable amounts to
not conditioning at all.
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2.3. Global uncertainty models. We intend to show in Section 4 how all these local mod-
els O (+X,(s)) can be combined into global uncertainty models. We generically denote such
global models using the letter P. More specifically, we want to end up with an unconditional
joint lower prevision P := P 0= Pr on Z(%7) for all variables in the tree, as well as
conditional lower previsions P g(-|Xy) on .2 (Z2s) for all non-terminal nodes s and all
non-empty S C C(s).

Ideally, we want these global (conditional) lower previsions (i) to be compatible with
the local assessments g (~|Xm(s>), s € T, (ii) to be coherent with one another, and (iii) to
reflect the conditional irrelevancies (or Markov-type conditions) that we want the graphical
structure of the tree to encode. In addition, we want them (iv) to be as conservative (small)
as possible.

In this list, the only item that needs more explanation concerns the Markov-type condi-
tions that the tree structure encodes. This is what we turn to now.

2.4. The interpretation of the graphical model. In classical Bayesian nets, the graphical
structure is taken to represent the following assessments: for any node s, conditional on its
parent variables, its non-parent non-descendant variables are epistemically irrelevant to it
(and therefore also independent).

In the present context, we assume that the tree structure embodies the following con-
ditional irrelevance assessment, which turns out to be equivalent with the conditional
independence assessment above in the special case of a Bayesian tree.

CIL Consider any node s in the tree, any subset S of its set of children C(s), and the set
S :=,esC of their common non-parent non-descendants. Then conditional on the
mother variable Xy, the non-parent non-descendant variables Xg are assumed to be
epistemically irrelevant to the variables X s associated with the children in S and their
descendants.

This interpretation turns the tree into a credal tree under epistemic irrelevance, and we
also introduce the term imprecise Markov tree (IMT) for it. For the global models we are
considering here, CI has the following consequences. It implies that for all s € T, all
non-empty S C C(s) and all I C S, we can infer from P g(-|X;) a model P 5(-|X(s}1), where

for all zgy 1 € Z5ur, with obvious notations:'°

P s(flzgspor) = Pys(f(+,21)|zs) for all gambles f in £ (2 sur), 2
where f(-,z7) denotes a partial map of f, defined on Z 5.

We discuss some of the separation properties that accompany this interpretation in
Section 5. For now, we focus on two immediate consequences that will help us go from
local to global models in Section 4.

First, consider some node s. Then CI tells us that for any two children ¢, c; € C(s) of s,
the variable X, is epistemically irrelevant to the variable X|,, conditional on X;.

Xs
Xiey 0 Ko
It even tells us that for any two disjoint non-empty sets S; C C(s) and S» C C(s) of children
of s, the variable X g, is epistemically irrelevant to X g,, conditional on X;. We conclude
that, conditional on a node, all its children ¢ (and the variables associated with their sub-trees
Jc) are epistemically independent [24, Chapter 9], in the specific sense to be discussed in
the next section.
Next, consider some non-terminal node s different from [J, and its mother variable X,,().

We infer from CI that this mother variable X,,,,) is epistemically irrelevant to the variable
X|c(s) conditional on X;:

10For leaves s, the corresponding irrelevance condition is trivial, as the set C(s) of children of s is empty.
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Xm(s) Xm(s)

— X —

X, or equivalently,

Xiep o X, Xic(s)

3. INDEPENDENT NATURAL EXTENSION

Let us make a small digression on epistemic independence, which will help us in our
discussion further on. The material in this section is based on work that some of us have
published elsewhere [11], and we refer to that paper for more details and proofs for the
results mentioned in this section.

3.1. Independent products. Suppose we have a number of (separately) coherent marginal
lower previsions P, on .Z (.2, ) representing beliefs about the values that each of a finite
number of (logically independent) variables X, assume in the respective non-empty finite
sets Z,, n € N, where N is some non-empty finite set.

We want to construct a joint lower prevision Py on .Z (%), where Zy = X pen £y, that
coincides with the marginals P, on their respective domains £ (Z;,), and such that this Py
reflects the following structural assessments: for any disjoint proper subsets O and I of N,
the variables X; are epistemically irrelevant to the variables Xp. In other words, learning
the value of any number of these variables would not affect beliefs about the remaining
variables. We then call the variables X,,, n € N, epistemically independent.

Generally speaking, such irrelevance assessments are useful because they allow us to turn
unconditional into conditional lower previsions. In particular, for any disjoint proper subsets
O and I of N, we can use the epistemic irrelevance assessment of X; to Xo to infer from the
joint lower prevision Py a conditional lower prevision P, (-|X;) on £ (Zour) given by:

Po(hl|zr) == Py(h(-,zr)) for all gambles h on Zpy; and all z; € 2.

So we can use the symmetrised assessment of epistemic independence of the variables X,,,
n € N to infer from Py, the following family of conditional lower previsions:

I (Py) :={Po(-|X;): O and I disjoint proper subsets of N}.

This idea leads to the definition of an independent product, which generalises the existing
notion for (precise) probability models.

Definition 1. A (separately) coherent lower prevision Py on £ (%y) that coincides with
the marginal lower previsions P,, on their domains £ (%), n € N and that is coherent with
the family of conditional lower previsions % (Py) is called an independent product!! of
these marginals P,

It turns out that there always is a point-wise smallest independent product:

Proposition 1. Any collection of (separately) coherent lower previsions P, on £ (%),
n € N, has a point-wise smallest independent product. We call it their independent natural
extension and denote it by ®,enP,. Moreover, ®,enP,, is a strongly factorising coherent
lower prevision on £ (Zn).

Strong factorisation is strongly linked with independent products, and will play a crucial
part in our development of an algorithm for updating an imprecise Markov tree in Section 6.
It is defined as follows:

Uy [11], we distinguish between many-to-many and many-to-one independent products. It is not necessary to
make this distinction here, but whenever we use the term ‘independent product’ in the present paper, we implicitly
refer to the more stringent many-to-many version introduced there.
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Definition 2. We call a (separately) coherent lower prevision Py on £ (Zy) strongly
factorising if for all disjoint proper subsets O and I of N, all g € £(Zo) and all non-

negative f € L (21), Py(fg) = Py(fPy(g))-

As another important example, the so-called strong product x,enP,, [4] of marginal lower
previsions P, is strongly factorising.'?

As a consequence of the separate coherence of the joint lower prevision Py, the right-hand
side of the equality in this definition can be rewritten as:

_ JPn(f)Py(g) ifPy(g) >0
Enl/En(e) = {PZ(f)PZ(g) it Py(g) < 0.

which explains where the term ‘factorising’ comes from. In particular, for any (separately)
coherent strongly factorising joint lower prevision Py, we see that for any partition Ny, ...,
N,, of N:

m m
Xk 1Ak H Ak andPN Xk lAk :H (3)

where Ay C 23 fork=1,...,m

The independent natural extension has very interesting and non-trivial marginalisation
and associativity properties. Consider any non-empty subset R of N, then the independent
natural extension ®,cgP, of the marginals P,, r € R coincides with the restriction of ®,enP,
to the set of gambles .Z(ZR):

(RrerP,) () = (RuenP,) (g) for all gambles g on Zx. 4)
Moreover, for any partition Ny and N, of N, we have that
®n€N Bn = (®n1€N1Bn1) b2y (®n2€N2£n2) ’ (5)

SO ®nenNP, is the independent natural extension of its £y, -marginal ®,, EN,B,,I and its
Zn,-marginal Qnyen, P, -

3.2. Regular extension. As a next step, suppose we want to condition a separately coherent
and strongly factorising joint Py on observations of the type X; = z7, where I is some proper
subset of N. In other words, we want to find conditional lower previsions P,(-|X;) on
Z(Z1u0) that are (jointly) coherent with the joint lower prevision Py. To this end, we
calculate the so-called regular extension as follows. Consider z; in 27. When Py ({z;}) > 0,

R(hlzr) = max{yt € R: Py (I h—p]) > 0},

where O is any non-empty subset of N'\ 7 and  is any gamble on 27,0. When Py ({z;}) =0,
R(-|x7) is vacuous, meaning that R(h|z;) = miny ¢ 2, h(z7,x0) for all gambles & on Zj 0.

Generally speaking, coherence only determines Py, (+|z;) uniquely if Py ({z;}) > 0, and
in that case regular extension yields this uniquely coherent conditional lower prevision:
Po(+|z1) = R(:|z7). When Py({z;}) = 0, regular extension is still coherent, and it even still
characterises the coherent P, (+|z;), because these all lie between the vacuous lower prevision
and R(|z;). For more details about this regular extension, we refer to [24, Appendix J] and
[16, Section 4].

If the joint Py is strongly factorising, we get:

Py (T [h—p]) = Py (Lgy Py (h(xr, ) — 1)

_ {PN({XI}>[PN(h(x17‘)) —u] if Py(h(xr,-) > 1
Py () [By(hlxr, ) —p] - if Py(h(xr,-)) < 1,
so we conclude that, quite interestingly,
R(h|x;) = Py(h(x7,-)) as soon as Py({x;}) > 0. (6)

L27his type of independent product comes to the fore in a study of credal nets under strong independence.
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In other words, the conditional lower previsions found by regular extension of a strongly
factorising joint satisfy all epistemic irrelevance conditions present in an assessment of
epistemic independence. We shall have occasion to use this idea several times in the course
of this paper, especially in the proofs.

3.3. Conditionally independent products. To end this section, we generalise the notion
of an independent product to that of a conditionally independent product. In this case we
have a number of ‘marginal’ conditional lower previsions P,(:|Y) on ¥ (%) representing
beliefs (conditional on a variable Y in a finite set %) about the values that each of a finite
number of (logically independent) variables X, assume in the respective non-empty finite
sets Z,,n € N.

We want to construct a conditional lower prevision Py (:|Y) on £ (Zy), where 2y =
X neN Zn, that coincides with the marginal conditional lower previsions P, (+|Y) on their
respective domains .Z(.2,), and such that this Py(:|Y) reflects the following structural
assessments: for any disjoint proper subsets O and [ of N, the variables X; are epistemically
irrelevant to the variables Xy, conditional on Y. In other words, if the value of Y was known,
then learning the value of any number of these variables would not affect beliefs about
the remaining variables. We then call the variables X,,, n € N epistemically independent,
conditional on'Y .

Generally speaking, such conditional irrelevance assessments are useful because they
allow us to turn lower previsions conditional on Y alone into other, more involved conditional
lower previsions. In particular, for any disjoint proper subsets O and I of N, we can use the
epistemic irrelevance assessment of X; to Xp conditional on Y to infer from the joint lower
prevision Py(+|Y) a conditional lower prevision P, (:|X;,Y) on £ (Zour) [or equivalently
on Z(Zour x #')] given by:

Po(h|zs,y) == Py (h(-,z;)|y) for all gambles h on Zp s and all z; € Z.

So we can use the symmetrised assessment of epistemic independence of the variables X,,,
n € N conditional on Y to infer from the Py (-|Y) the following family of conditional lower
previsions:

F(Py(-[Y)) ={Po(:|X1,Y): O and I disjoint proper subsets of N}.
This idea leads to the definition of a conditionally independent product.

Definition 3. A (separately) coherent conditional lower prevision Py(-|Y) on £ (Zn) that
coincides with the ‘marginal’ conditional lower previsions P, (-|Y) on their domains £ (%),
n € N and that is coherent with the family of conditional lower previsions % (Py(-|Y)) is
called a conditionally independent product of these marginals P, (-|Y).

It turns out that there always is a point-wise smallest conditionally independent product:

Proposition 2. Any collection of (separately) coherent conditional lower previsions P, (-|Y)
on L(%,), n €N, has a point-wise smallest conditionally independent product. We call it
their conditionally independent natural extension and denote it by @uenP,(+|Y).

The notation we use for the conditionally independent natural extension is appropriately
suggestive: for each y in #, ®,enP,(+|y) is indeed the independent natural extension of
the marginal lower previsions P, (-|y). This implies that each ®,enP,(-]y) is a strongly
factorising coherent lower prevision on .2 (Zy).

We are now ready to go back to our discussion of imprecise Markov trees.

4. CONSTRUCTING THE MOST CONSERVATIVE JOINT

Let us show how to construct specific global models for the variables in the tree, and
argue that these are the most conservative coherent models that extend the local models and
express all conditional irrelevancies (2), encoded in the imprecise Markov tree. In Section 6,
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we will use these global models to construct and justify an algorithm for updating the
imprecise Markov tree.

The crucial step lies in the recognition that any tree can be constructed recursively from
the leaves up to the root, by using basic building blocks of the following type:

m(s)
|
) G > Q,(Xongs)
AN
Xy Xiey oo Kpg o » Pre (1X5)

The global models are then also constructed recursively, following the same pattern. In what
follows, we first derive the recursion equations for these global models in a heuristic manner.
The real justification for using the global models thus derived is then given in Theorem 5.

Consider a node s and suppose that, in each of its children ¢ € C(s), we already have a
global conditional lower prevision P (+|X;) on £ (Z].) [or equivalently, on £ (2 5 .)]-

Given that, conditional on Xj, the variables X|., ¢ € C(s) are epistemically independent
[see Section 2.4, condition CI], the discussion in Section 3 leads us to combine the ‘mar-
ginals’ P .(-|X;), ¢ € C(s) into their point-wise smallest conditionally independent product
(conditionally independent natural extension) ®.cc(s)P) ¢ (+|Xs), which is a conditional lower
prevision P ¢ (+[Xs) on £ (2 ¢(5)) [or equivalently, on £ (Z,)]:

m(s)
Xs ............................. > %('Xm(ﬁ‘))
XiC(s) """"""" > ®c€C(x)£¢c("XS‘) = BJ,C(A)(‘X‘)

Next, we need to combine the conditional models Q (+|X(5)) and P (5 (+[X;) into a
global conditional model about X . Given that, condltlonal on X;, the variable X, m(s )
epistemically irrelevant to the variable X ¢, [see Section 2.4, condition CI], we expect
P () 1X{m(s).s)) @and Pye) (|X;) to coincide [this is a special instance of Eq. (2)]. The
most conservanve (point-wise smallest) coherent way of combining the conditional lower
previsions P ¢ () (*[X{m(s).s}) and Q (+|X(s)) consists in taking their marginal extension"?
O (P () (X pm(s),s)) 1 Xim(s)) = ©, (P¢C ( |X )| Xon(s)); see [17, 24] for more details. Graph-
1cally

Xjg oo > Q. (P () C1Xo) Xon(s)) = Py (-Xongs))

Summarising, and also accounting for the case s = [J, we can construct a global condi-
tional lower prevision P, (-|X,,(,)) on £ (2 ;) by backwards recursion:

P (1Xs) = ®cec(s)Pye(1Xs) @)
P (X)) = Q(Pyc(s) (X Xon(s) = @ (@cecis) e (+1Xe) [Xn(s) ) ®)
for all s € T. If we start with the ‘boundary conditions’

Blt(-\Xm(,)) = Qf(-|Xm(,)) for all leaves ¢, )

13Marginal extension is, in the special case of precise probability models, also known as the law of total
probability, or the law or iterated expectations.
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then the recursion relations (7) and (8) eventually lead to the global joint model P =
P5(+|X;n())» and to the global conditional models P ¢y (+|X;) for all non-terminal nodes s.
For any subset S C C(s), the global conditional model P s(-|X;) can then be defined simply
as the restriction of the model P ¢y (*|Xs) on £ (2 ¢()) to the set £ (25):

Bis(g|Xs) =P () (g]Xs) for all gambles g on 2. (10)
It follows from the discussion in Section 3 that, alternatively [see Eq. (4)],

B¢S(|Xf) = ®C€S£¢c("X¥)~ 1n

For easy reference, we will in what follows refer to this collection of global models as the
Samily of global models 7 (P), so

T (P) ={P}U{Ps(-|Xy): s € 7% and non-empty S C C(s)}.

We end this section by discussing a number of interesting properties for the family of
global models .7 (P) we can derive in this way. Let us call any real functional ® on .#(.2)
strictly positive if @(I,y) > 0 for all x € 2

Proposition 3. If all the local models Qy(-|X,s)), s € T are strictly positive, then so are
all the global models in 7 (P).

Proposition 4. Consider any non-empty subset E of T and any xg € Zg. If P({xg}) >0
then also Py.({xgnc}|x.) > 0 forall e € E and all ¢ € C(e)."*

Before we formulate the most important result in this section (and arguably, in this paper),
we provide some motivation. Suppose we have some family of global models

TV) ={VIU{V s(|Xs): s € T and non-empty S C C(s)}

associated with the tree. How do we express that such a family is compatible with the
assessments encoded in the tree?
First of all, we require that our global models should extend the local models:

T1. Foreachs € T, Q (-|X,s)) is the restriction of V| (+[X,(y)) to Z(Z5).

The second requirement is that our models should satisfy the rationality requirement of
coherence:

T2. The (conditional) lower previsions in .7 (V) are jointly coherent.

The third requirement requires more explanation: the global models should reflect all
epistemic irrelevancies encoded in the graphical structure of the tree. Naively, we would
want condition (2) to be satisfied. The problem is that only the right-hand side in Eq. (2),
involving the model V' ¢(-|X;) is directly available to us. To get to the left-hand side involving
the model V. ¢(+|X{,107), one naive approach would be to ‘condition the joint model V. =V
on the variable X(,);". But we have seen in Section 3.1 that given a joint model, coherence in
general only determines the conditional models uniquely, provided that the lower probability
of the conditioning event is non-zero. This is a fairly strong condition, and in what follows we
would generally prefer to work with the much weaker condition that the upper probability of
the conditioning event is non-zero.'> Since in that case the left-hand side of Eq. (2) need not
be uniquely determined from the joint V by coherence, this approach becomes unfeasible.

Nevertheless, as soon as we realise that all we can reasonably require from our models is
that they should be coherent, the right approach readily suggests itself:'® we should require

140bserve that this holds trivially also if E N ¢ = 0, because then Zgn . = 2 is a singleton [see footnote 4]
whose upper probability should be 1 by separate coherence.

I5As the results in [11] suggest, it might be possible to go even further, and prove a counterpart to Theorem 5
with no positivity restrictions on the local models. We leave this as an avenue for future research, however.

16 his is also the approach implicit in Definition 1, as well as the one used in [11]. It coincides with the usual,
naive approach as soon as all the relevant conditional models are uniquely determined from the joint by coherence.



12 GERT DE COOMAN, FILIP HERMANS, ALESSANDRO ANTONUCCI, AND MARCO ZAFFALON

that if we use the available models V ¢(-|X;) to define the models V ¢(-|Xsu;) through the
epistemic irrelevance condition (2), then the result should still be coherent:

T3. If we define the conditional lower previsions V ¢(+[Xsu7), s € T9,SCC(s)andRC S
through the epistemic irrelevance requirements

V s(flzgspur) =V s(f(+,2r)|zs) for all gambles f in £ (Z sur),
then all these models together should be (jointly) coherent with all the available models
in the family 7 (V).
And there is a final requirement, which guarantees that all inferences we make on the basis

of our global models are as conservative as possible, and are therefore based on no other
considerations than what is encoded in the tree:

T4. The models in the family .7 (V) are dominated (point-wise) by the corresponding
models in all other families satisfying requirements T1-T3.

It turns out that the family of models 7 (P) we have been constructing above satisfy all
these requirements.

Theorem 5. If all local models Qy(-|X,(5)) on £ (Z5), s € T are strictly positive, then the
family of global models 7 (P), obtained through Egs. (7)—(10), constitutes the point-wise
smallest family of (conditional) lower previsions that satisfy T1-T3. It is therefore the
unique family to also satisfy T4. Finally, consider any non-empty set of nodes E C T and

the corresponding conditional lower prevision derived by applying regular extension:"’

R(f|xg) = max{p € R: P\p (L [f — 1]) > 0} forall f € £L(Z7) and all xp € Zk.

Then the conditional lower prevision R(-|Xg) is (jointly) coherent with the global models in
the family 7 (P).

The last statement of this theorem guarantees that if we use regular extension to update the
tree given evidence Xg = xg, i.e., derive conditional models R(-|xg) from the joint model
P = P|r, such inferences will always be coherent. This is of particular relevance for the
discussion in Section 6, where we derive an efficient algorithm for updating the tree using
regular extension. It implies in particular that our algorithm produces coherent inferences.

5. SOME SEPARATION PROPERTIES

Without going into too much detail, we would like to point out some of the more striking
differences between the separation properties in imprecise Markov trees under epistemic
irrelevance, and the more usual ones that are valid for Bayesian nets [20], which, by the
way, are also inherited from Bayesian nets by credal nets under strong independence [4].

It is clear from the interpretation of the graphical model described in Section 2.4 that we
have the following simple separation results:

X, — Xi, —— X, X ——X;, — X;

where in both cases, X;, separates X; from X;,: when the value of X;, is known, additional
information about the value of X;, does not affect beliefs about the value of X;. In this
figure, between i; and ip, and between i, and ¢, there may be other nodes, but the arrows
along the path segment through these nodes should all point in the indicated directions.
The underlying idea is that 7 is a (descendant of some) child ¢ of i, and conditional on the
mother i, of ¢, the non-parent non-descendant i; of c is epistemically irrelevant to ¢ and all
of its descendants.

On the other hand, and in contradistinction with what we are used to in Bayesian nets,
we will not generally have separation in the following configuration:

171 we look at the proof of this result in the Appendix, it is not hard to see that similar statements can be made
about the (joint) coherence of the regular extensions R(-|Xg, ) for any finite collection Ex, k = 1,...,n of sets of
nodes.
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X,'] — Xi2 — Xf

where X;, does not necessarily separate X; from X;,. We will come across a simple counter-
example in Section 7. Where does this difference with the case of Bayesian nets originate?
It is clear from the reasoning above that X;, separates X;, from X;: conditional on X;,, X; is
epistemically irrelevant to X;, . For precise probability models, irrelevance generally implies
symmetrical independence, and therefore this will generally imply that conditional on X;,,
X;, is epistemically irrelevant to X; as well. But for imprecise probability models no such
symmetry is guaranteed [3], and we therefore cannot infer that, generally speaking, X;, will
separate X;, from X;. As a general rule, we can only infer separation if the arrows point
from the ‘separating’ variable X;, towards the ‘target’ variable X;.

6. A FAST ALGORITHM FOR UPDATING IN AN IMPRECISE MARKOV TREE

We now consider the case where we are interested in making inferences about the value
of the variable X; in some target node t, when we know the values xg of the variables Xz in
aset E C T\ {r} of evidence nodes; see for instance Fig 1.

6.1. The formulation of the problem. If we assume that the values of the remaining
variables are missing at random, then we can do this by conditioning the joint P obtained
above on the available evidence ‘Xr = xg’; see for instance [12, 29].

We will address this problem by updating the lower prevision P to the lower prevision
R, (+|xg) on ZL(Z;) using regular extension [24, Appendix J]:

R, (glxg) = max{u € R: P(I, [g —u]) >0} (12)

for all gambles g on 2;, assuming that P({xg}) > 0. Theorem 5 guarantees that such infer-
ences are coherent. Sufficient conditions on the local models for this positivity assumption
to hold are given in Proposition 3.

Consider the map

Pg: R—=R: = P,y [g — 1)

We can infer from the separate coherence of P that |pg(11) — pe(t2)| < |1 — t2| P({x£})
for all uy, up € R, which implies that p, is (Lipschitz) continuous. Separate coherence of
P also guarantees that p, is concave and non-increasing. Hence {u € R: p,(u) >0} =
(—oo, R, (g]x£)], which shows that the supremum that we should have a priori used in (12)
is indeed a maximum. R, (g|xg) is the right-most zero of p,, and it is, again by separate
coherence of P, guaranteed to lie between the smallest value ming and the largest value
max g of g. If moreover P({xg}) > 0, then separate coherence of P implies that R,(g|xg)
is the unique zero of p,. If on the other hand P({xg}) = 0, then (—eo,R,(g|xg)] is the set
of all zeros of p,. It appears that any algorithm for calculating R, (g|xg) will benefit from
being able to calculate the values of pg, or even more simply check their signs, efficiently.

6.2. Calculating the values of p, recursively. We now recall from Section 4 that the
joint P can be constructed recursively from leaves to root. The idea we now use is that
calculating pg (1) = P(I,1[g — 1]) becomes easier if we graft the structure of the tree onto
the argument gt := I, 1[g — 1] as follows. Define

H{xs} ifseE
gt =<g—n ifs=t
1 ifse T\ (EU{r}),
then g§ € Z(%;) and g* = [Icr gt - Also define, for any s € T, the gamble ¢¢' on 2, by

(b\ﬂ = Hueis 85- Then
¢h =g" and 9# > 0ifsZ 1,
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and

=gt [ ¢f forallseT, (13)
ceC(s)

where we use the convention that any product over an empty set of indices equals one.
Eq. (13) is the argument counterpart of Eq. (8). Also, if s Z ¢ then g and ¢/ do not depend
on (U, nor on g. Indeed, in that case

oF =T, ) (14)

First, let us consider the nodes s [ t. We define the messages m, and T, recursively by

( HJ‘X )andﬂS::Qs<g§‘anXm<s)>. (15)
ceC(s)

ceC(s

We summarise such a pair by the notation: T, Qy(g‘y1 [eec(s) Bl Xm(s)) = (7, s). Then
there are two possibilities:

Qs({xSHXm(s)) T.(x) ifse€E

€C(s)

< H%‘X ) ifs¢E.

ceC(s

L:n

The messages 7, and s are gambles on 2, ), and can therefore be seen as tuples of real
numbers, with as many components 7 (xm(s)) as there are elements x,,(5) in Z,,,(5). They are
all non-negative. As their notation suggests, they do not depend on the choice of g or u, but
only (at most) on which nodes are instantiated, i.e., belong to E, and on which value xg the
variable Xg for these instantiated nodes assumes.

It then follows from Eqs. (8) and (13) and the strong factorisation property'® that [see
the Appendix for a proof]

Bis(¢s”|xm(s)) =7, and FJ,S((PJN |Xm(s)) = Trs. (16)

Next, we turn to nodes s C t. Define the messages 7' by

where the gambles y!' on Z; are given by the recursion relations:
i = max{g —u,0} [ [z, +min{g —p,0} [ 7, (18)
ceC(1) ceC(t)

and for each (J # s C ¢, so m(s) exists,

Vi = |max{m}, 0} [ ]z, +min{x} O}Hm (19)
ceS(s) ceS(s

u

The messages 7' are again tuples of real numbers, with one component 7} (Xpm(s)) for each

of the possible values x,,(,) of Xm(5>.19 They do depend on the choice of g or u, as well as
on which nodes are instantiated and on which value xg the variable Xz for these instantiated
nodes assumes.

lSThis, together with the course of reasoning leading to Eq. (20), shows that the results of updating the tree
(and the algorithm we are deriving) in this way will be exactly the same for any way of forming a product of the
local models for the children of s, provided only that this product is strongly factorising. For instance, replacing
the conditionally independent natural extension with the strong product in Eq. (7) will lead to exactly the same
inferences. Of course, this should not be taken to mean that our algorithm also works for updating credal trees
under strong independence.

194 5 is the root node, then m(s) =0 and ' is a single real number, which by Eq. (20) is equal to py(it). See
also footnote 4.
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It then follows from Egs. (8) and (13) and the strong factorisation property of the local
independent products that [see the Appendix for a proof]

P (¢4 [X,(5)) = mi' and of course p, (1) = . (20)

We conclude that we can find the value of p, (1) by a backwards recursion method consisting
in passing messages up to the root of the tree, and in transforming them in each node using
the local uncertainty models; see Eqs. (15) and (17)—(19).

There is a further simplification, because we are not necessarily interested in the actual
value of p, (), but rather in its sign. It arises whenever there are instantiated nodes above
the target node: E NA(r) # 0. Let in that case e, be the greatest element of the chain ENA(?),
i.e., the instantiated node closest to and preceding the target node ¢, and let s; be its successor
in the chain 17; see for instance Fig. 1. If we let

Ag(u) = maX{ﬂ§f (%, ),0} ch(xet) + min{?‘[s‘f (xe,),0} Hﬁco‘er%
ceS(sy) ceS(sy)

then it follows from Eq. (19) [with s = 5, and m(s) = ¢,] that W}, = Ly, 1 Ag(1). If we now

continue to use Egs. (18) and (19) until we reach the root of the tree, we eventually find
that®

() — { BN A(R) i A(a0) 20 on

P({xe})Ag(1) i Ag(p) <O0.

Since we assumed from the outset that P(I,, ;) > 0, we gather from Eq. (12) that R, (g|xg) =

max{u € R: A,() > 0}. Moreover, by combining Eqs. (14) and (16) with Proposition 4,

we find that . (x,,) = P|.({xgnc }|x,) > 0 for all ¢ € S(s;), and therefore Ao(u) > 0 <
7k (xe,) > 0. Hence R, (g|xg) = max{u € R: 7k (x,,) > 0}.

We conclude that in order to update the tree in the situation described above, we can

perform all calculations on the sub-tree |.s;, where the new root s; has local model Qst (“]xe,)-

This is also borne out by the discussion of the separation properties in Section 5.

Q : observed node
‘ : queried or target node ¢
Q : unobserved node

FIGURE 1. Example imprecise Markov tree. The target node is r = 10,
e; = 2 is the ‘greatest’ observed ancestor of # and s; = 3 is the child of ¢,
that precedes t. The bolder arrows represent the trunk 7 = {3,4,10} of
the tree.

6.3. An algorithm. We now convert these observations into a workable algorithm.

20Actually, we easily derive that Po(1) =amax{Ag(1t),0} +bmin{A,(1),0}, where a and b are real constants
that do not depend on g and u. Letting g := p = 1 then allows us to identify the constants a and b.
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Using regular extension and message passing, we are able to compute R,(g|xg): we
(i) choose any p € [ming,maxg]l; (ii) calculate the value of A,(u) by sending messages
from the terminal nodes towards the root; and (iii) repeat this in some clever way to find
the maximal p that will make this A,(u) zero. But we have seen above that this naive
approach can be sped up by exploiting (a) the separation properties of the tree, and (b) the
independence of u (and g) for some of the messages, namely those associated with nodes
that do not precede the target node 7.

For a start, as we are only interested in the sign of p, (i) [or equivalently, that of A, (u)],
which we have seen is determined by the sign of 7% (x,, ), we only have to take into consid-
eration nodes that strictly follow e;.

The next thing a smarter implementation of the algorithm can do, is determine the
trunk T of the tree: those nodes that precede the queried node ¢ and strictly follow the
greatest observed node e; preceding . We can define the trunk more formally as follows:
T :=1tN|C(e,). For the tree in Fig. 1 for instance, where the darker Xj is the queried
variable and the lighter nodes {2,6,7,8,9,11, 14, 15} are instantiated, the trunk is given by
T = {3,4,10}, and indicated by bolder arrows.

I, =757y,

; s = 04 (TeTy1Xa)

77 = 0, ({x71}1X5) s Ty

\_/ 7y = Qg ({xs}1X7)

FIGURE 2. Calculation of I1,, which is a summary of the u-independent
messages in the trunk node 4.

We have a special interest in the nodes that constitute the trunk, because only they
will send messages to their mother nodes that actually depend on L. As a consequence,
all other nodes (all descendants of the trunk that are not in the trunk themselves) send
messages that have to be calculated only once. This implies that we can summarise all
the p-independent messages by propagating all of them until they reach the trunk. The
u-independent messages 7, that arrive in a trunk node s can be represented more succinctly
by their point-wise products II, := [Leec(s)\7 T because Egs. (18) and (19) only depend
on them through on these products.

This means that for every trunk node s € T, we have to find the lower (upper) messages of
every child c of s that is not in the trunk itself. Both 7. and 7, can be calculated recursively
using Eq. (16), where the recursion starts at the leaves and moves up to (but stops right
before) the trunk. In the leaves, the local lower and upper previsions of the indicator of the
evidence are sent upwards if the leaf is instantiated; if not the constant 1 is sent up, which is
equivalent to deleting the node from the tree. We could envisage removing barren nodes (all
of whose descendants are uninstantiated, such as X, X3, Xi¢ in the example tree above)
from the tree beforehand, but we believe the computational overhead created by the search
for them will void the gain.

The only recursion that is still left to do, is the calculation of the u-dependent messages
mi' along the trunk. As demonstrated in Fig. 3, we can calculate 7}, (e, ) using the following
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r\ﬂff (x,) = Q, (max{m;,0}L,, +min{zx},0}TT, [xc,)

v
X

t

) :QA(max{ir,“,O}&+min{ﬂ:,”,0}ﬁ4\XY[)

n
Yy
X4

nl“ = Qt (max{g - uvo}ﬂt + mm{g —Uu, O}ﬁt ‘X4)

° %‘l

FIGURE 3. Calculation of 7 (x,,), whose sign is the same as that of
LIy [g — ).

pg(1) 4 P = Pe()b—ps(B)c/py(c)—py (b);
(a.pe()) AR
while m — p > tol and p,(r) # 0.0
; a=b;b:=t,
CH s = pe(@)b—pe(b)a/py(a)—py (b);
P 1 " else
d=c;c=t
§= pg(c)dipg(d)c/pg@)*ljg(d);
(c;pg(c)) p 1= Py(-psB)fpe)-pelh):

(d,pg(d)) m = min{m,s}; t := p+m/2;

FIGURE 4. The root of a concave and non-increasing function p, whose
values pg(a) > pg(b) > 0> py(c) > pg(d) are known, will always be
in the interval [p,m| with m := min{q, r}. Here p,q and r are the inter-
sections with the horizontal axis of the straight lines through (b, p,(?))
and (¢, pg(c)). (¢, pg(c)) and (d, pg(d)), and (a, pg(a)) and (b, pg (b)), re-
spectively. The next function evaluation of p, will be in ¢ which bisects
the error interval [p,m]. If p,(¢) > 0, then a becomes b and b becomes
t, otherwise d becomes ¢ and ¢ becomes ¢ and a new interval [p,m] and
matching 7 can be calculated. We stop iterating as soon as the error interval
[p,m] is smaller than a given tolerance rol, or p,(r) is exactly zero.

recursion formula:

ok = Qs(max{g - ,U,O}Q‘ +min{g - .uv()}ﬁs IXm(s)) s=1,
P | @, (max{z, 03I + min{m;, 0}TT;|X, ) seT\{t}and C(s)NT = {c;}.

These formulas are reformulations of Egs. (17)—(19), where the influence of the IT has been
made explicit.

Since we now know how to calculate 7 (e;), we can tackle the final problem: find the
maximal y for which 7175’,l (e;) = 0. In principle, a secant root-finding method could be used,
but using the concavity and non-increasing character of nf: (e;) as a function of u, we can
speed up the calculation of the maximal root drastically as shown in Fig. 4.

Let us briefly discuss the complexity of our algorithm. Consider for a start that for a
fixed u each node makes a single local computation and then propagates the result to its
mother node: this implies that, with u fixed, the algorithm is linear in the number of nodes.
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Iterating on u then amounts to multiplying such a linear complexity with the number of
iterations. This number depends on the function g, as the iterations are made to compute the
root of a function that is known to belong to the real interval [min g, max g|. If we assume
that the bisection algorithm is employed to find the root—for the sake of simplicity—and
let r := max g — min g be the range of the function, then the number of iterations is bounded
by log, ;7; + 1, where tol is some fixed tolerance. In other words, the number of iterations
is linear in the number b of bits needed to represent r in base 2. This means that the
overall complexity of the algorithm is O(b - |T|), taking into account that the computational
complexity of our root-finding algorithm must be lower than for the bisection (and actually
also for the secant) algorithm. Since b will be a small number?! in most cases (e.g. when
the focus is on probabilities), we simply refer to the complexity of our algorithm as linear
in the number of nodes.

7. A SIMPLE EXAMPLE INVOLVING DILATION

We present a very simple example that allows us to (i) follow the inference method
discussed above in a step-by-step fashion; (ii) see that there are separation properties for
credal nets under strong independence that fail for credal trees under epistemic irrelevance;
and (iii) see that in that case we will typically observe dilation.

Consider the following imprecise Markov chain:

Xl —_— X2 —_— X3
2 x x3

To make things as simple as possible, we suppose that 27 = {a,b} and that Q, is alinear

(or precise, or expectation-like) model Q; with mass function g. We also assume that

Q,(+|X1) is a linear model Q>(-|X;) with conditional mass function g(-|X1). We make

no such restrictions on the local model Q3( |X2). We also use the following simplifying

notational device: if we have three real numbers k, K and 7y, we let

k(y) = xmax{y,0} + xmin{y,0}.
We observe X, = x, and X3 = x3, and want to make inferences about the target variable
Xy: for any g € £(21), we want to know R (g|x(23}). Letting r := R ({a}|x{23;) and

7:= Ri({a}|xp3y), we infer from the separate coherence of R (:|x, 3) that it suffices to
calculate r and 7, because

Ri(glxp23y) = 8(b) +1(g(a) — g(b)).
We let gM = []I{a} — .U]]I{xz}]l{)@ }» and apply the approach of the previous section. We see that

the trunk 7 = {1}, and the instantiated leaf node 3 sends up the messages Ty = Q3 ({x3}|X2)
to the instantiated node 2, which transforms them into the messages

7, = 0, ({0} X175 (x2) = g(x2|X1)g,

where we let g(x2|X;) = 0, ({x2}|X1) and g := T3 (x2). These messages are sent up to
the (target) root node ¢ = 1, which transforms them into the message 71:1” =0 (WI” ) with
v =q(xX )q(Liay — 1) If we also use that 0 < p <1, this leads to

Pi(g") =)' = q(a)q(xa]a)g[l — u] + q(b)q(x2|b)g[—u],

so we find after applying regular extension that

 gla)glolag
~ q@qtala)g +a®)g(nlb)g

r=R,({a}|xp3}))

21§ could be argued that b should be bounded given the finiteness of a computer’s way to represent numbers.
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_ q(a)q(x2la)g

q(a)q(x2|a)g +q(b)q(x2|b)q
When g =g, which happens for instance if the local model for Xj is precise, then we see
that, with obvious notations,

7 =Ri({a}x(23))

S g(a)q(x2|a) — pla) 22)

q(a)q(x2|a) +q(b)q(x2|b)
and therefore X, indeed separates X3 from X;. But in general, letting o := g(a)q(x»|a) and
B := q(b)q(x2|b), we get

Otﬁ q_g andp(a|x2)—£: aﬁ q_g

a+B ag+Bg a+p ag+pBq

As soon as g > ¢, Xp no longer separates X3 from Xj, and we witness dilation [14, 22]
because of the additional observation of X3!

r—plajx) =

8. NUMERICAL COMPARISON WITH STRONG INDEPENDENCE

Strong independence implies epistemic irrelevance, and hence inferred (lower-upper)
probability intervals for imprecise Markov trees with epistemic irrelevance will include those
obtained assuming strong independence. This suggests that our algorithm could also be used
also as a tool to make conservative (also called outer) approximations of the computations
made in a credal tree under strong independence. This could be an important application of
our algorithm since at the moment it is unclear whether or not updating probabilities in a
tree is a polynomial task under strong independence. If it were not, addressing the problem
would definitely benefit from the availability of fast approximations.

With this idea in mind, we make a preliminary empirical exploration of the quality of the
approximation. As noted in Section 5, the two models have different separation properties:
this is particularly important when evidence is back-propagated from leaves to root. For this
reason, we compare posterior probability intervals for the root variable of a chain where
only the leaf node is instantiated.

Fig. 5 reports the results of this comparison for chains with binary nodes, randomly
generated local models, and variable length (from 5 up to 100 nodes). The algorithm in
Section 6 has been used to compute the posterior probability intervals in the chains under
epistemic irrelevance, while the 2U algorithm [13] was used for updating in the chains
under strong independence. The inferred probability intervals for the former turn out to be
clearly wider, and the mean difference between the two intervals is about 0.3 irrespective of
the length of the chain, at least for chains with more than ten nodes.

For non-binary nodes there are no efficient algorithms known for updating chains with
strong independence. We used the procedure in [6] to update chains with less than seven
ternary nodes and credal sets with three randomly generated extreme points in the strong
independence case. A similar difference between the posterior intervals was observed also in
these cases. For longer chains, updating for the chain under strong independence is too slow
and no comparison can be made. In summary, there is a non-negligible difference between
inferences based on the two notions of ‘independence’. This means that the epistemic
approximations to the strong case could be quite crude in practise. However, their being
outer (that is, safe) approximations together with their light complexity could still make of
them very useful tools, whenever the strong independence approach is deemed necessary or
appropriate.

9. AN APPLICATION

The tree topology of the graphs considered in this paper is expressive enough to model
useful and interesting problems. These problems can then be solved efficiently by means
of the algorithm described in the previous sections. We make this point clearer with an
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FIGURE 5. Numerical evaluation of the difference between the sizes of
the posterior intervals for inferences on credal chains over binary variables
with epistemic irrelevance and strong independence. The plot reports the
mean difference (in ordinate) as a function of the number of nodes in the
chains (in abscissa). Means are estimated over 200 Monte Carlo runs.

example application about character recognition. This is also an opportunity to illustrate
the differences between the traditional, precise-probability, approach to the problem and
the imprecise-probability one. Most notably, these differences arise because the imprecise-
probability methods come with the inherent ability to suspend judgement when the in-
formation available is deemed insufficient to reliably recognise a character, whereas the
precise-probability ones do not.

9.1. Imprecise hidden Markov models. Hidden Markov models (HMMs) [21] are popu-
lar tools for modelling a sequence of hidden variables that generate a related sequence of
observable variables. These are respectively referred to as the generative and observable se-
quences. HMMs have applications in many areas of signal processing, and more specifically
in speech and text recognition.

Both the generative and the observable sequence are described by sets of variables
over the same domain .2, denoted respectively by X;,, ..., X;, and X, , ..., X,,,. The
independence assumptions between these variables, which characterise HMMs, are those
corresponding to the tree structure below. Informally, this topology states that every element
of the generative sequence depends only on its predecessor, while each observation depends
only on the corresponding element of the generative sequence.

generative sequence: X, X, e X,
observable sequence: X, Xo, . X,

A local uncertainty model should be defined for each variable. In the case of precise
probabilistic assessments, this corresponds to linear (precise, or expectation-like) versions
of the local models O , O (-[X) and Q, (-1Xy,), k=1,...,n, where the conditional
models are assumed to be stationary, i.e., independent of k. These model, respectively,
beliefs about the first state in the generative sequence, the transitions between adjacent
states, and the observation process.

Bayesian techniques for learning from multinomial data are usually employed for identi-
fying these models. But, especially if only few data are available, other methods leading
to imprecise assessments, such as the imprecise Dirichlet model (IDM, [25]), might offer
a more realistic model of the local uncertainty. For example, for the unconditional local
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model 9 o applying the IDM leads to the following simple identification:

S1

X1 A + ;Cl]
0, (il = ym Gulbnh) = 23)
xe& xeZ

where ny! counts the units in the sample for which X;, = x;, and s is a (positive real) hyper-
parameter that expresses the degree of caution in the inferences. For the conditional local
models, we can proceed similarly. This leads to the identification of an imprecise HMM, a
special credal tree under epistemic irrelevance, like the ones introduced in Section 2.

Generally speaking, the algorithm described in Section 6 can be used for computing infer-
ences with such imprecise HMMs. Below, we address the more specific problem of on-line
recognition, which consists in the identification of the most likely value of X;, , given the evid-
ence for the whole observational sequence X, = X,,, ..., Xy, = X,,. For precise local models,
this problem requires the computation of the state %, := argmax, ¢ 4 P({Xs, }/Xo,, ... Xo,)
that is most probable after the observation. For imprecise local models different criteria
can be adopted; see [23] for an overview. We consider maximality: we order the states by
X, > zg, if and only if B(H{xm} =Ty |Xo,5- - ,%0,) >0, and we look for the undominated
or maximal states under this order. This may produce indeterminate predictions: the set of
undominated states may have more than one element.

9.2. On-line character recognition. As a very first application of the imprecise HMM,
we have considered a character recognition plroblem.22 A written text was regarded as a
generative sequence, while the observable sequence was obtained by artificially corrupting
the text. This is a model for a not perfectly reliable observation process, such as the output
of an OCR device. The local models were identified using the IDM, as in (23), by counting
the occurrences of single characters and the ‘transitions’ from one character to another in
the generative sequence, and by matchings between the elements of the two sequences.
By modelling text as a generative sequence, we obviously ignore any dependence there
might be between a character and its n-th predecessor, for any n > 2. A better, albeit still
not completely realistic, model would resort to using n-grams (i.e., clusters of n characters
with n > 2) instead of monograms. Such models might lead to higher accuracy, but they
need larger data sets for their quantification, because of the exponentially larger number of
possible transitions for which probabilities have to be estimated. The figure below depicts
how on-line recognition through HMM might apply to this setup.

v I
v I T (0]
The performance of the precise model can be characterised by its accuracy (the percentage

of correct predictions) alone. The imprecise HMM requires more indicators. We follow [2]
in using the following:

Original text:

T A

OCR output:

determinacy: percentage of determinate predictions,

set-accuracy: percentage of indeterminate predictions containing the right state,

single accuracy: percentage of correct predictions computed considering only de-
terminate predictions, and

indeterminate output size: average number of states returned when the prediction
is indeterminate over number of possible states.

22Eor a more involved application, related to aircraft trajectory model tracking, see [1].
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Precise HMM

Accuracy 93.96%  (7275/7743)
Accuracy (if imprecise indeterminate) 64.97% (243/374)
Imprecise HMM

Determinacy 95.17%  (7369/7743)
Set-accuracy 93.58% (350/374)
Single accuracy 95.43%  (7032/7369)
Indeterminate output size 2.97 out of 21 classes  (1112/374)

TABLE 1. Precise vs. imprecise HMMs. Test results obtained by twofold
cross-validation on the first two chants of Dante’s Divina Commedia and
n = 2. Quantification is achieved by IDM with s = 2 and Perks’ prior
modified as suggested in [28, Section 5.2]. The single-character output by
the precise model is then guaranteed to be included in the set of characters
the imprecise HMM identifies.

The recognition using our algorithm is fast: it never takes more than one second for each
character. Table 1 reports descriptive values for a large set (7743) of simulations, and a
comparison with precise model performance. Imprecise HMMs guarantee quite accurate
predictions. In contrast with the precise model, there are ‘indeterminate’ instances for which
they do not output a single state. Yet, this happens rarely, and even then we witness a
remarkable reduction in the number of undominated states (from the 21 letters of the Italian
alphabet to less than 3). Interestingly, the instances for which the imprecise probability
model returns more than one state appear to be ‘difficult’ for the precise probability model:
the accuracy of the precise models displays a strong decrease if we focus only on these
instances, while the imprecise models here display basically the same performance as for
other instances, by returning about three characters instead of a single one.

10. CONCLUSIONS

We have defined imprecise-probability (or credal) trees using Walley’s notion of epistemic
irrelevance. Credal trees generalise tree-shaped Bayesian nets in two ways: by allowing the
parameters of the tree to be imprecisely specified, and moreover by replacing the notion
of stochastic independence with that of epistemic irrelevance. Our focusing on epistemic
irrelevance is the most original aspect of this work, as this notion has received limited
attention so far in the context of credal nets.

We have focused in particular on developing an efficient exact algorithm for updating
beliefs on the tree. Like the algorithms developed for precise graphical models, our algorithm
works in a distributed fashion by passing messages along the tree. It computes lower and
upper conditional previsions (expectations) with a complexity that is linear in the number of
nodes in the tree. This is remarkable because until now it was unclear whether an algorithm
with the features described above was at all feasible: in fact, epistemic irrelevance is most
easily formulated using coherent lower previsions, which have never before been used
as such in practical applications of credal nets. Moreover, it is at this point not clear that
epistemic irrelevance is as ‘well-behaved’ as strong independence is with respect to the
graphoid axioms for propagation of probability in graphical models [5, 191.23 Our results
therefore appear very encouraging, and seem to have the potential to open up new avenues
of research in credal nets.

23Unlike credal nets based on strong independence, a credal net based on epistemic irrelevance cannot generally
be seen as equivalent with a set of Bayesian nets with the same graphical structure: if it were, then all separation
properties of Bayesian nets would simply be inherited, and we have seen in Section 7 that such is not the case.
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On a more theoretical side, we have also shown that our credal trees satisfy the important
rationality requirement of coherence. This has been established under the assumption that
the upper probability of any possible observation in the tree is positive, which is a very
mild requirement. The same assumption also allowed us to show that all inferences made
by updating the tree will be coherent with each other as well as with the local uncertainty
models in the nodes of the tree.

On the applied side, we have presented an application of the credal tree model to the
problem of character recognition, where the parameters of the model are inferred from data.
The empirical results are positive, especially because they show that our credal trees are
able to make more reliable predictions than their precise-probability counterparts.

Where to go from here? There are many possible avenues for future research.

It would be very useful to be able to extend the algorithm at least to so-called polytrees,
which are substantially more expressive graphs than trees are. This could be a difficult task
to achieve. In fact, updating credal nets based on strong independence is an NP-hard task
when the graph is more general than a tree [7]. Similar problems might affect the algorithms
for credal nets based on irrelevance.

For applications, it would be very important to develop statistical methods specialised
for credal nets under irrelevance that avoid introducing excessive imprecision in the process
of inferring probabilities from data. This could be achieved, for instance, by using a single
global IDM over the variables of the tree rather than many local ones, as we did in our
experiments.

Another research direction could be concerned with trying to strengthen the conclusions
that epistemic trees lead to. There might be cases where our Markov condition based on
epistemic irrelevance is too weak as a structural assessment. We have discussed situations
where this type of Markov condition systematically leads to a dilation of uncertainty when
updating beliefs with observations, and indicated that this dilation is related to the (lack
of) certain separation properties induced by epistemic irrelevance on a graph. Dilation
might not be desirable in some applications, and we could be called upon to strengthen the
model in order to rule out such behaviour. One way to address the issue of dilation—but
not necessarily the easiest—could consist in adding additional irrelevance statements to
the model, other than those derived from the Markov condition. An easier avenue could
be based on designing assumptions that together with the Markov condition lead to some
stronger separation properties, while not necessarily requiring them to match the common
ones used in Bayesian nets.

ACKNOWLEDGEMENTS

Research by De Cooman and Hermans was supported by Flemish BOF project 01107505
and SBO project 060043 of the IWT-Vlaanderen. Research by Antonucci and Zaffalon
has been partially supported by the Swiss NSF grants n. 200020-116674/1 and n. 200020-
121785/1. This paper has benefited from discussions with Serafin Moral, Fabio G. Cozman
and Cassio P. de Campos, and from the generous comments provided by two anonymous
referees.

REFERENCES

[1] Alessandro Antonucci, Alessio Benavoli, Marco Zaffalon, Gert de Cooman, and Filip Hermans. Multiple
model tracking by imprecise Markov trees. In Proceedings of the 12th International Conference on Informa-
tion Fusion (Seattle, WA, USA, July 69, 2009), pages 1767-1774, 2009.

[2] Giorgio Corani and Marco Zaffalon. Learning reliable classifiers from small or incomplete data sets: the
naive credal classifier 2. Journal of Machine Learning Research, 9:581-621, 2008.

[3] Inés Couso, Serafin Moral, and Peter Walley. A survey of concepts of independence for imprecise probabilities.
Risk Decision and Policy, 5:165-181, 2000.

[4] Fabio G. Cozman. Credal networks. Artificial Intelligence, 120:199-233, 2000.

[5] Fabio G. Cozman and Peter Walley. Graphoid properties of epistemic irrelevance and independence. Annals
of Mathematics and Artificial Intelligence, 45(1-2):173-195, 2005.



24 GERT DE COOMAN, FILIP HERMANS, ALESSANDRO ANTONUCCI, AND MARCO ZAFFALON

[6] Cassio P. de Campos and Fabio G. Cozman. Inference in credal networks using multilinear programming. In
Proceedings of the Second Starting Al Researcher Symposium, pages 50-61, Valencia, 2004. IOS Press.

[7] Cassio P. de Campos and Fabio G. Cozman. The inferential complexity of Bayesian and credal networks. In
Proceedings of the International Joint Conference on Artificial Intelligence, pages 1313—1318, Edinburgh,
2005.

[8] Cassio P. de Campos and Fabio G. Cozman. Computing lower and upper expectations under epistemic
independence. International Journal of Approximate Reasoning, 44(3):244-260, 2007.

[9] Gert de Cooman and Filip Hermans. Imprecise probability trees: Bridging two theories of imprecise probabil-
ity. Artificial Intelligence, 172(11):1400-1427, 2008.

[10] Gert de Cooman, Filip Hermans, and Erik Quaeghebeur. Imprecise Markov chains and their limit behaviour.
Probability in the Engineering and Informational Sciences, 23(4):597-635, 2009.

[11] Gert de Cooman, Enrique Miranda, and Marco Zaffalon. Independent natural extension. 2010. In preparation.

[12] Gert de Cooman and Marco Zaffalon. Updating beliefs with incomplete observations. Artificial Intelligence,
159(1-2):75-125, 2004.

[13] Enrico Fagiuoli and Marco Zaffalon. 2U: an exact interval propagation algorithm for polytrees with binary
variables. Artificial Intelligence, 106:77-107, 1998.

[14] Timothy Herron, Teddy Seidenfeld, and Larry Wasserman. Divisive conditioning: further results on dilation.
Philosophy of Science, 64:411-444, 1997.

[15] Enrique Miranda. A survey of the theory of coherent lower previsions. International Journal of Approximate
Reasoning, 48(2):628-658, 2008.

[16] Enrique Miranda. Updating coherent lower previsions on finite spaces. Fuzzy Sets and Systems, 160(9):1286—
1307, 2009.

[17] Enrique Miranda and Gert de Cooman. Marginal extension in the theory of coherent lower previsions.
International Journal of Approximate Reasoning, 46(1):188-225, 2007.

[18] Enrique Miranda and Marco Zaffalon. Coherence graphs. Artificial Intelligence, 173:104—144, 2009.

[19] Serafin Moral. Epistemic irrelevance on sets of desirable gambles. Annals of Mathematics and Artificial
Intelligence, 45:197-214, 2005.

[20] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan
Kaufmann, San Mateo, CA, 1988.

[21] Lawrence R. Rabiner. A tutorial on HMM and selected applications in speech recognition. Proceedings of
the IEEE, 77(2):257-286, 1989.

[22] Teddy Seidenfeld and Larry Wasserman. Dilation for sets of probabilities. The Annals of Statistics, 21:1139—
54, 1993.

[23] Matthias C. M. Troffaes. Decision making under uncertainty using imprecise probabilities. International
Journal of Approximate Reasoning, 45(1):17-29, 2007.

[24] Peter Walley. Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London, 1991.

[25] Peter Walley. Inferences from multinomial data: learning about a bag of marbles. Journal of the Royal
Statistical Society, Series B, 58:3-57, 1996. With discussion.

[26] Peter M. Williams. Notes on conditional previsions. Technical report, School of Mathematical and Physical
Science, University of Sussex, UK, 1975. Revised journal version: [27].

[27] Peter M. Williams. Notes on conditional previsions. International Journal of Approximate Reasoning,
44:366-383, 2007. Revised journal version of [26].

[28] Marco Zaffalon. Statistical inference of the naive credal classifier. In Gert de Cooman, Terrence. L. Fine, and
Teddy Seidenfeld, editors, ISIPTA "01 — Proceedings of the Second International Symposium on Imprecise
Probabilities and Their Applications, pages 384-393. Shaker Publishing, Maastricht, 2000.

[29] Marco Zaffalon and Enrique Miranda. Conservative inference rule for uncertain reasoning under incomplete-
ness. Journal of Artificial Intelligence Research, 34:757-821, 2009.

APPENDIX A. PROOFS OF IMPORTANT RESULTS

In this Appendix, we justify formulas (16) and (20), and give proofs for Propositions 3
and 4, and Theorem 5.

Proof of Egs. (16) and (20). Let us define the gambles

a)-su = Bis(‘Ps“'Xm(s)) € g(%‘m(v))v sCt
and, with obvious notations,

Es = E¢Y(¢#|Xm(s)) € g(ggm(s))a siZr.

Let the chain 1t be given by {#,...,t,}, where 1y :== 0, ¢, :=t and #, := m(t4) for k =
1,...,r—1.If we apply the recursion equation (8) in s = #; and take into account the separate
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coherence and the strong factorisation of the conditionally independent natural extension
Py (X, ), we see that

@l = of = py(1) = P(84) = 0, (W), (24)

where [provided that f; # ¢ and therefore r > 1]

‘Vzﬁl = B¢C(zl)(¢rﬁl |X,1) Plc (t1) (8:1H¢¢ Xn) —8t1P¢c (1) ( H‘Pc th)
L‘EC tl

ceC(ty)

= g#£$c(’l> (Pitz(‘Ptg IXll H(Pc th) = gﬁBiC(ll) (wgn(i)c ‘Xfl)

ceC(n)\{n} ceC(t)\{n}

= {maX{ ,Z,O}Pw(tl)( [Te#

ceC(t;)\{n}

X, ) + min{ﬁ)'tl;,()}ﬁic(tl) ( H oL X >:| gﬁ
ceC(n)\{n}

- {max{wf;,O} [[@.+min{a@},0}]] wCJ gl (25)

ceC(t)\{n} ceC(t)\{n
Similarly, we find that
@, = Py, (041X,) = Q, (Wh1X,,), (26)
where [provided that #, # ¢ and therefore r > 2] in a completely similar way as above
W =P () (04 1X1,) = [max{w,‘;,O} [1@. +min{a@},0} HwCJ g @D
ceC(n)\{13} ceC()\{13

We can go on in this way until we come to ¢, = 1:

@, =P, (601X, ) =0, (WX, ), (28)

where, using the separate coherence and the strong factorisation of the conditionally inde-
pendent natural extension P ¢ (-X,),

vl =yl = P, (oF1X,,) = P <gf: [Te# er> =P, <[g —ul[[o# Xtr)
ceC(tr) ceC(ty)

—max(s .0} 2icq ( [T08 1, ) +minte —0,0)Pcq ITot x,)
ceC(ty)

ceC(ty)
= max{g — 1,0} [ [@, +min{g —p,0} [[@.. (29)
ceC(t) ceC(t)
Clearly, if we can prove that @, = 7, for all s £ 7, it will follow from the considerations

above that also ZD\ = 71: for all ) E t, and then the proof is complete. This is what we now
set out to do. Consider any s [Z ¢. Then applying the recursion equation (8) and taking into
account the separate coherence and the strong factorisation of the conditionally independent
natural extension P ¢y (- |X;), we see that, provided s is not a terminal node, and with
obvious notations,

T, =P (0! [Xon(s)) = O, (V¥ [Xon(s)) (30)
V=P (981X5) = Py < H‘Pc

) =& Pic(s) < H(Pc )
ceC(s ceC(s
=g, HPic 3 HG)' 31

ceC(s CEC (s)

where

If on the other hand s is a terminal node, then we can use Eq. (9) to find that

Es = EL&( s“le(s)) = Qs( s“le(s)) = Qs(gg ‘Xm(s)) =T, (32)
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where the last equality follows from Eq. (15). Now combine Eqs. (30)—(32) and use recursion
to complete the proof. O

Proof of Proposition 3. Fix any xr in 27. We need to prove that P({xr}) > 0 and that
P s({xys}|zs) > 0 for all s € T, non-empty S C C(s) and z; € Z;. Our argumentation is
similar to a special case of the one in Section 6.2. We use the notation established there, but
with in particular g := g+ 1, ¢t ;== and E := T. This implies that gM = Liarys g = IR
and ¢ = Liy,,}- In accordance with Eq. (15), we define the messages Ty € ZL(Zn(s)) and
As € Z(Z;) recursively by:

A= H e and Ty = Qs(ﬂ{xs}IS|Xm(s)) = IS(XS)Qs({xs}|Xm(s))7 seT (33)
ceC(s)

with, as before by convention A, := 1 in all leaves s. The last equality follows from the
separate coherence of the local models Q, (- |X,n(s)) and the fact that all messages s and Ay
are non-negative. It is clear from the recursion equations (7) and (8) [see also Eq. (16), the
proof is completely similar to that of Eqs. (16) and (20) given above] that P s ({x|s}X,(5)) =
7, for all s € T, and that P ¢, ({x)c(5) }Xs) = A, for all s € T°. Similarly, it follows from
Eq. (11), conjugacy and the strong factorisation property of the conditionally independent
natural extension that Pg({x|s}|X;) = [I.es 7 for all s € T9 and all non-empty S C C(s).
So we have to prove that all values (all components) of all messages 7, s € T are (strictly)
positive. This follows at once from the recursion equation (33) and the assumed strict
positivity of the local models Q,(- 1 Xon(s))- O

Proof of Proposition 4. Our argumentation is similar to a special case of the one in Sec-
tion 6.2. We also use notation similar to that established there, with in particular g := u + 1
and ¢ := [J. In accordance with Eq. (15), we define the messages 7, € X(t%n(x)) and

Ay € ZL(Z;) recursively by:

Ay = H T, seT (34)
ceC(s)

and

(35)

s

- IS()E)QS({XSHX,”(S)) ifseE
Qs (As|Xon(s)) ifseT\E.

with, as before by convention A, := 1 in all leaves s. All these messages are non-negative by
construction. It is clear from the recursion equations (7) and (8) [see also Eq. (16), the proof
is completely similar to that of Eqs. (16) and (20) given above] that P ({xgns} [ Xon(s)) = Ts
for all s € T. Now it follows from the recursion equations (34) and (35) and the assumption
P({xg}) = 7o > 0 that A.(x,) > O for all e € E. Again applying Eq. (34), we find that
indeed 7. (x,) > 0 for all ¢ € C(e). O

Our proof of Theorem 5 relies heavily on a very convenient coherence result proved
by Enrique Miranda [16, Theorem 6], which we relate here to make the paper more self-
contained. We use the notations established in the context of Section 3.

Theorem 6. Let P be a (separately) coherent lower prevision on £ (Zn), and consider
m disjoint pairs of subsets Oy and I of N, k = 1,...,m. Assume that P({x; }) > 0 for all
xy, € Zi, k=1,...,m and use regular extension to define the conditional lower previsions
R(:|X},) on L(Zo,), for k=1,...,m. Then the (conditional) lower previsions P, R(-|X},),
..., R(:|Xy,) are (jointly) coherent.

Proof of Theorem 5. We begin by showing that the family of models .7 (P) satisfies require-
ments T1-T3.
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To prove T1, consider any s € T, and any f € .Z(Z5), then it follows from separate
coherence that P () (f1Xs) = f, and therefore we infer from the recursion equation (8) that
indeed Bis (f‘Xm(s)) = QS(B¢C(S) (f|XA)|Xm(s)) = QS (f‘Xm(S)) B

Next, we turn to the proof of T2 and T3. Consider any s € 79,8 C C(s)and R C S. Let
x(ur € Xk and f € L (2 suis3ur)- We calculate the following regular extension of
the joint:

R(flxgsyur) = max{p € R P(L,, o f — 1)) > 0}, (36)
Consider that
H{X{s}uR} [f B ,LL] = H{xx}H{XR} [g - .u]’

where g = f(-,x5,xr) € £ (Zs). Let t be the unique child of #; := [J such that s € |1,
[assuming of course that s # #; = (J]. By using separate coherence, recursion equations (7),
(8) and (10), and the strong factorisation property [see Proposition 1] of the conditionally
independent natural extension, in a way similar to the argumentation in Section 6.2, we see
that

PMtrggomilf = 1) = 2, (R Lgy 121 (en) T s, 8 — 11X ) 1% )

(Bregn) (P, (T Lyl — 11X X))
=Py, (P, (T g, 18 — 1]1X),

where hy ;=1 (k) > 0. Similarly, let #3 be the unique child of #; such that s € |#3 [assuming
of course that s # £]. Then we see in the same way as above that

BJ,IZ (H{XS}H{xRﬁuz} [g - [.L] |X[1 ) = Bl,tz (h3B$l‘3 (]I{xg}]l{xRﬁl[3 } [g - IJ'] |Xt2) ‘th )’

where h3 =1 {rrv ) > 0. Continuing in this way, we eventually come to the conclusion that

Py o3 [ = 1) = G(P () (Ml [ — 1] 1X5)), (37)

= Lagrict = Lagngueq s 1> and where the real functional G on ZL(Zs) is essen-
tially constructed as follows. Consider the segment #,1; ...t,_f. connecting [ and s, i.e. ¢, :
=St =m(ty), ..., tx =m(tgy1), - .., 11 :=m(t2) = O. Then there are non-negative A on
2y such that for all f € Z(25), G(f) = fi, where f, == f and fi == Py, (hiv1 fir11Xe,),
k=1,...,r—1.[If r=1, or in other words s =#; = [, just let G := P.] In other words,
the functional G results from recursively multiplying with non-negative maps and applying
global conditional lower previsions. As such, G is non-negatively homogeneous and super-
additive [because the successive multiplication and composition preserves these properties].
In addition, it does not depend on g nor u. If we use the separate coherence of P ¢y (-1X;5),
the strong factorisation, associativity and marginalisation properties of the conditionally
independent natural extension P () (+|X;) [see Proposition 1, Eqs. (4) and (5), and the recur-
sion equations (7) and (10)], and the separate coherence of the conditional lower prevision

P s(-|xs), we get:
P (Ml y (8 — 1IXs) = Ly Pes) (Bl — 1 |xs)

1, {Pic(s>(h|xs)[P¢s(8|xs)—u} IR,

where £ :

Pycis) (Rlxs)[Pys(glxs) —u] - if Pyg(glxs) < p.
Combining Egs. (37) and (38), and invoking the non-negative homogeneity of the real
functional G, this leads to:

Gy )Pycis) (hlxs) [Bys(glxs) —u] - if Pys(glas) > p

PHx, - =\ = — .
Pyl =4 {G(H{xs})Pic(s)(hxs)[P¢s(g|xs)—#] if P (gl,) < .
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where we let 6(]1{,(3}) = —G(—I). By letting f = 41 [and therefore also g = pu £ 1]
in this expression, we derive in particular that

P({xpyur}) = G(In )P yc(s) (Blxs) and P({xgur}) = G(In 1) Pyc(s) (Blxs),
and therefore also

(T U —u) = P({xgsyur})[Bys(glxs) —u]  if Pys(gls) > p
X - = .
s1oR P({xsyur}) [P s(glxs) — 1] if P g(glxs) < p.
Since we have assumed that all local models Q- |Xm< S)) are strictly positive, we gather from
Proposition 3 that P({x{uz}) > 0, and therefore

Pl 3 [f = 1)) 2 0 Pis(glxs) = u
This allows us to infer from Eq. (36) that

R(flxgsyur) = Pys(f (s x5,xR) |x5) for all f € L(Z suqyur) and x(ur € Z{ur- (39)
If we now combine Eq. (39) with Theorem 6, we see that both T2 and T3 hold.
To complete the proof, we consider T4. Consider any family of models .7 (V) that
satisfies conditions T1-T3. Then we want to show that
Vis(1X:) > P s(-|X;) forall z € 79 and all non-empty S C C(s) (40)
and
V=P (41)
The proof proceeds in a recursive (inductive) fashion. Since the V|, (X)) satisfy T1, we
infer in particular that
V1 X)) = Py ([ Xonry) = @, ([ X)) for all terminal nodes 7.

It is therefore clearly sufficient to prove the following statement for all non-terminal nodes
teTo:
V,s(:|1X;) > P s(:|X;) for all non-empty S C C(t
(Ve € CONW (%) > By () = { Lo P 2 BistD P S
V1 ClXoney) = P (X))
(42)
This is what we now set out to do. Fix any non-terminal node ¢ € T° and any non-empty
S C C(t), and assume that V| .(-|X;) > P|.(:|X;) for all c € C(z).
First of all, define for any disjoint proper subsets I and O of S, the conditional lower
previsions V. ,(:|X{,yu7) through:
Vio(flxgu) =V o(f(x)lx) forall f € L( 2 0uyr) and all X0y € 2oy

Then we infer from T3 [with S = O, s =t and R = I C O] that all these conditional lower
previsions are in particular (jointly) coherent with the conditional lower prevision V. ¢(-|X;).
If we recall Definition 3 [with N = {{c: ¢ € S} and Y = X;], we conclude that V¢, (-X;)
is a conditionally independent product of the ‘marginals’ V| .(-|X;), ¢ € S, which therefore
dominates the smallest such independent product:

Vis(1Xt) > ®cesV  (-1X:)
and therefore, using the assumption, we infer from this inequality that
Zis('p(r) > ®ceSZ¢c('|Xt) > ®c€S£¢c('|Xt) = Bis('|Xt)7 (43)

where we have also used, successively, the monotonicity property of the conditionally
independent natural extension [see [11] for a proof] and the recursion equations (7) and (11).
Next, define the conditional lower prevision V. ¢, (+[X{m(1) 1) 00 & (2 {n(1)}uys) through:

V¢c (f|x{m z}) V¢c )(f( ()7xt,~)|x,)
forall f € g(gf{m(l)}uu) and all x(,, )1} € e%f{m(,)J}. (44)
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Then we infer from T3 [with s =¢, S = C(¢) and R = {m(t)} C C(¢)] that this conditional
lower prevision V() (*|X{m(1),}) is in particular (jointly) coherent with the conditional
lower prevision V|, (+|X,,,(;)) defined on £ (2,10 )- We then see that forall g € Z(27,):
V3 (81X%my) = V1 (Ve (81X m@) ) X))

= ZJ,I (ZJ,C(I) (g\X,) |Xm(t)) - % (Zic(r) (g|XI) ‘Xm(t))

> O, (P (81X) X))

= BL[HXm(t))-
The first equality follows from Eq. (44), the second one holds because the global models
V1, (-[X()) satisfy T1, and the third one follows from recursion equation (8). The first

inequality follows if we apply Walley’s Marginal Extension Theorem?>* [24, Theorem 6.7.2]
in the formulation of [17, Theorem 4]. The second inequality follows from the inequality (43)
and the non-decreasing character of Q, (*|Xon(r)), which follows from separate coherence.
This completes our proof that T4 is also satisfied.

The last part of the proof follows at once from Eqgs. (39) [with R = 0], and Theorem 6. [
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