From Nature <u>versus</u> Nurture, via Nature <u>and</u> Nurture, to Gene x Environment Interaction in Mental Disorders

Wermter AK¹, Laucht M², Schimmelmann B³, Banaschewski T², Sonuga-Barke E.J.S.^{4,5}, Rietschel M⁶, Becker K^{1,2}

¹ Department of Child and Adolescent Psychiatry and Psychotherapy, Philipps-University of Marburg, Hans-Sachs-Str. 6, D-35039 Marburg, Germany

² Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Postbox 12 21 20, D-68072 Mannheim, Germany

³ University Hospital of Child and Adolescent Psychiatry, University of Bern, Effingerstr. 12, 3011

Bern, Switzerland

⁴ Developmental Brain-Behaviour Laboratory, Department of Psychology, University of Southampton, Southampton, S017 1BJ U.K.

⁵ Department of Experimental Clinical and Health Psychology, University of Gent, Henri Dunantlaan

2, B-9000 Gent Belgium

⁶ Division of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Postbox 12 21

20, D-68072 Mannheim, Germany

Column-Title: Gene-Environment Interaction

Correspondence to:

Prof. Dr. Katja Becker, Department of Child and Adolescent Psychiatry and Psychotherapy, Philipps University Marburg, Hans-Sachs-Str. 6, D-35039 Marburg, Germany; telephone: +49-(0)6421-586 6260; fax: +49-(0)6421-586 8975; e-mail: Katja.Becker@med.uni-marburg.de

1 Abstract

2 It is now generally accepted that complex mental disorders are 3 the results of interplay between genetic and environmental 4 factors. This holds out the prospect that by studying GxE 5 interplay we can explain individual variation in vulnerability 6 and resilience to environmental hazards in the development of 7 mental disorders. Furthermore studying GxE findings may give 8 insights in neurobiological mechanisms of psychiatric disorder 9 and so improve individualized treatment and potentially 10 prevention. In this paper we provide an overview of the state of 11 field with regard to GxE in mental disorders. Strategies for GxE 12 research are introduced. GxE findings from selected mental 13 disorders with onset in childhood or adolescence are reviewed 14 (such as depressive disorders, attention-deficit/hyperactivity 15 disorder [ADHD], obesity, schizophrenia and substance use 16 disorders). Early seminal studies provided evidence for GxE in 17 the pathogenesis of depression implicating 5-HTTLPR, and 18 conduct problems implicating MAOA. Since then GxE effects 19 have been seen across a wide range of mental disorders (e.g., 20 ADHD, anxiety, schizophrenia, substance abuse disorder) 21 implicating a wide range of measured genes and measured 22 environments (e.g., pre-, peri- and postnatal influences of both a 23 physical and a social nature). To date few of these GxE effects 24 have been sufficiently replicated. Indeed meta-analyses have 25 raised doubts about the robustness of even the most well studied 26 findings. In future we need larger, sufficiently powered studies 27 that include a detailed and sophisticated characterisation of both 28 phenotype and the environmental risk.

1 Key Words:

- 2 Gene-Environment Interaction, Depressive Disorders, ADHD,
- 3 Obesity, Schizophrenia, Substance Use Disorders
- 4

1 Introduction

2 Recent progress in the development of powerful new techniques 3 for locating and identifying human susceptibility genes and 4 genetic variations contributing to common diseases has created 5 new opportunities to advance our understanding of the etiology 6 of mental disorders. Two approaches, linkage and association 7 analyses, have been applied to identify and study genetic effects 8 across a number of mental disorders. These disorders include 9 attention-deficit/hyperactivity disorder (ADHD), autism 10 spectrum disorders, mood disorders, substance use disorders, 11 schizophrenia, eating disorders, obesity, and anxiety disorders. 12 However, despite initial optimism, few susceptibility genes (i.e. 13 predisposing sequence variations) have been replicated with 14 some consistency. Even for replicated findings the effects are 15 very small: Taking all risk genotypes into account explains only 16 a small fraction of the variation in the expression of a disorder.

17 There are several possible explanations for this. One is that 18 gene-environment interactions (GxE) have so far been largely 19 ignored in the design and analyses of genetic studies. This has 20 hampered the detection of significant genetic effects operating 21 in those exposed to one environment and not another [69]. This 22 notion is supported by the growing body of evidence for the 23 contribution of genetic effects in explaining individual 24 variability in response to all kinds of environmental hazards 25 [68, 82, 83]. Because of this type of work it is nowadays 26 generally accepted that complex mental disorders require an 27 understanding of the interplay between genetic and 28 This environmental factors. GxE hypothesis is 29 neurobiologically plausible and is supported by a growing body 30 of evidence (e.g., there are formal genetic studies in its favour

1 [51]). However, some researchers remain skeptical and call for 2 more robust replication of initial results [70]. Clearly much 3 more work is needed to establish (i) the conditions under which 4 GxE occur; and (ii) the mechanisms that drive the GxE effects. 5 Why do some genetic variants have effects only in the presence 6 of a particular environmental exposure and/or vice versa [64]. 7 The article starts with an overview of the impact as well as the 8 limitations of GxE studies in general, This is followed by more 9 detailed information about GxE research findings in some 10 selected mental disorders with onset in childhood or 11 adolescence.

12

13 The Importance of Gene-Environment Interplay in the14 Etiology of Mental Disorders

15 GxE provides a potential explanation of the individual 16 differences in responses to environmental influences. GxE 17 occurs when the effect of exposure to an environmental 18 pathogen on a person's health is conditional on the genotype 19 [19]. For example, children exposed to an environment stressor 20 known to increase risk for a certain psychiatric disorder (e.g., 21 high family adversity) are at a higher risk for that disorder if 22 they carry particular gene variants which renders them more 23 susceptible to that stressor (see figure 1).

24 --please add figure 1 about here--

Alternatively children carrying a genotype known to increase
susceptibility for a specific mental disorder may only develop
that disorder if they are exposed to specific environmental risk
factors (see figure 2).

29 --please add figure 2 about here---

1 According to these models on the one hand, differences in 2 individual genetic make-up are responsible for the differences 3 between individuals with regard to resilience or vulnerability to 4 the similar environmental pathogens. On the other hand, 5 outcomes among individuals who do not vary in terms of the 6 susceptibility allele may be determined as a function of 7 variability in environmental exposure. In other words, GxE 8 effects index a genetically determined liability to specific 9 environmental influences. One example with one dichotomous 10 genotype (present or absent) of a causative genetic mutation and 11 one dichotomous environmental exposure (exposure versus 12 non-exposure) is phenylketonuria (PKU) [46]. The development 13 of PKU needs both homozygote mutations in the causative gene 14 encoding phenylalanine hydroxylase, and exposure to 15 phenylalanine [53]. An example for a complex genetic disorder 16 is the alcohol flush reaction after alcohol ingestion in 17 individuals with a genetic variant leading to lowered activity of 18 the aldehyde dehydrogenase (ALDH), a variant which is mainly 19 observed in the Asian population [102]. Carriers of this variant 20 also can develop alcohol dependence after exposure to alcohol, 21 but they are at a much lower risk to do so as compared to those 22 who do not carry this variant. GxE processes will necessarily be 23 more complex if several gene variants and types of 24 environmental exposure contribute to susceptibility for a 25 disease [46], as is almost certainly the case for mental disorders. 26 The frequent failures to replicate initial genetic findings of 27 association between genotypes and disease might be, among 28 other factors (such as differences in gender ratio, ethnicity, age 29 or comorbid conditions), caused by ignoring simple differences 30 with respect to exposure to relevant environmental factors. If,

1 for example, association has been found in a sample with 2 frequently exposed subjects but not in those infrequently 3 exposed, and exposure has not ascertained, the source of non-4 replication will remain elusive [69]. GxE studies thus might 5 shed light into the genetically mediated effects underlying both 6 resilience and vulnerability. This might help us to understand 7 and resolve the inconsistency in results found in classical 8 association studies with regard to correlations between 9 disorders and genotypes. GxE findings may also provide helpful 10 insights into the causal processes in pathogen-to-disorder 11 pathways and therefore shed light on the underlying mechanism 12 of "how an environmental factor external to the person gets 13 under the skin" to result in a mental disorder [69]. As these 14 pathways will vary between disorders, genes have the potential 15 to offer valuable clues to these disorder-specific causal 16 mechanisms [69]. Understanding GxE mechanisms may also 17 provide useful hints with regard to prevention of, and 18 intervention for, mental disorders. New findings in GxE may 19 advance the development of individual therapeutic strategies 20 and lead to pharmacogenetic-based therapeutic innovation [91, 21 94]. Moffitt and co-workers [69], along with others, emphasize 22 the importance of GxE and highlight the relevance of strategic 23 gene-environment research.

24

25 Limitations and Pitfalls in Studying GxE

26 Despite the self-evident value of the GxE strategy there are 27 several methodological challenges. There is the possibility of 28 overestimating effects and false positive findings because of 29 multiple testing and/or data dredging. Along with difficulties in 30 statistical power [16, 63, 107], the susceptibility to artifacts in

1 GxE research has to be kept in mind. Statistically significant 2 interactions are sensitive to alterations in the definition and 3 scaling of the variables being examined: artefactual interactions 4 can be produced by altering scaling [68]. Another problem is 5 how to disentangle GxE from gene-environment correlations 6 (rGE), defined as the probability of a subject's exposure to an 7 environmental pathogen resulting in the association of measures 8 of environmental exposure with genetic variation [19, 87]. GxE 9 may be affected by co-occurring rGE, in which, according to 10 Plomin and co-workers, one can differentiate between passive, 11 active, and evocative rGE [76]. Passive rGE occur because the 12 parents pass on their genes and provide their rearing 13 experiences which may be genetically influenced, e.g., parental 14 qualities [89]. Active-evocative rGE arise because their 15 behaviour makes people select their environments and 16 influences other peoples' responses to them [89]. Rutter & 17 Silberg viewed both, GxE and rGE, as different forms of gene-18 environment interplay [88]. Furthermore, one needs to bear in 19 mind the role of epigenetic effects of environmental influences 20 on gene expression or chromosomal structure and from 21 variations in heritability according to environmental 22 circumstances [68, 83, 87]. For more details on methodological 23 challenges and statistical pitfalls see [28, 30, 37, 46-48, 64, 70, 24 80, 81, 85, 108]. In order to address these and other problems 25 Moffit and co-workers [68, 69] defined seven strategic steps for 26 research into measured GxE (see Table 1). More detailed 27 information pertaining to the strategies for careful deliberate 28 GxE hypothesis testing is summarized in [19, 68, 69, 85].

29 30

--please add table 1 about here--

1 GxE Findings for Selected Mental Disorders with Onset in

2 Childhood and Adolescence

3 <u>Initial indications – seminal studies by Caspi and Moffitt:</u> The

4 first molecular genetic evidence for GxE in child and adolescent 5 psychiatric conditions comes from two classic studies by the 6 research group of Caspi and Moffit [18, 21]. These dealt with 7 conduct disorder, depression and emotional problems. The first 8 study included 442 male participants and demonstrated that the 9 effect of childhood maltreatment was moderated by a functional 10 polymorphism in the gene encoding the neurotransmitter-11 metabolizing enzyme monoamine oxidase A (MAOA) [18]. 12 Carriers of the low-activity *MAOA* genotype who were severely 13 maltreated more often developed conduct disorder, antisocial 14 personality and adult violent crime than children with a high-15 activity MAOA genotype [18]. Several researchers carried out 16 studies to replicate this interaction [38, 42, 54, 74, 112]. Despite 17 a number of non-replications a meta-analysis revealed an 18 overall significant effect [54].

19 The second key study by this group examined GxE in the 20 pathogenesis of depression [21]. In this prospective-longitudinal 21 study the functional polymorphism 5-HTTLPR in the promoter 22 region of the serotonin transporter gene (SLC6A4) was found to 23 moderate the influence of stressful experiences occurring over a 24 5-year period before onset of depression [21]. The carriers of 25 one or two copies of the low expressing short allele of the 5-26 HTTLPR exhibited more depressive symptoms, diagnosable 27 depression, and suicidality following stressful life events than 28 individuals homozygous for the long allele [21]. Additionally, 29 Caspi and co-workers [21] detected an interaction between 5-30 HTTLPR and childhood maltreatment over the period between

ages 3 to 11 years. This interaction showed that childhood
 maltreatment predicted adult depression only among individuals
 carrying a short allele of the 5-HTTLPR but not among
 individuals homozygous for the long allele [21].

5

6 <u>Depressive Disorders</u>

7 Following the striking initial findings of Caspi and co-workers 8 [21] studies have replicated the 5-HTTLPR GxE in depression 9 (reviewed in [108]). There have also been a number of failures 10 to replicate [108]. A recent meta-analysis by Munafo and co-11 workers however, concluded that the effects of 5-12 HTTPLR x serious life events (SLE) on risk of depression are 13 compatible with chance findings [70], and a very recent meta-14 analysis by Risch and co-workers including published data from 15 14 studies [22-24, 33, 39, 41, 55, 59, 65, 66, 77, 101, 103, 111] 16 yielded no evidence for an association of the 5-HTTLPR 17 genotype alone or in interaction with stressful life events with 18 an elevated risk of depression [80]. In addition, a gender-19 specific meta-analysis revealed no sex dependent interaction 20 effects [80]. The failure of these meta-analyses to confirm the 21 initial results of Caspi and co-workers [21] may indicate that 22 there actually is no association. Alternatively, sample 23 differences in background genetic and environmental factors 24 could underlie the discrepant findings [80] (see limitations). 25 They could also be explained by the limited comparability of 26 replication studies due to their highly divergent samples, study 27 designs, measures and analyses [80]. Thus, this inconsistency 28 might be caused by methodological differences in the way of 29 evaluating the presence of serious life events (SLE) and in 30 different diagnostic instruments applied in depression

(structured face-to-face interviews, questionnaires or
 telephone/lay interviews, respectively) [29].

3 Further genes have been investigated with regard to GxE and 4 depression. In their case-only design, Drachmann Bukh and co-5 workers detected an interaction between SLE and the genotypes 6 of 5-HTTLPR and BDNF Val66Met on first episode depression 7 [29]. Additionally, they found no 3-way interaction between 8 SLE, 5-HTTLPR and BDNF Val66Met and no evidence for 9 interactions between SLE and polymorphisms in COMT, TPH1, 10 ACE, 5-HTR2A, and 5-HTR2A, respectively, on depression. 11 According to the authors these results add evidence to the 12 opinion that genes influence the liability to depression not only 13 by main effects on risk but also by control of sensitivity to the 14 pathogenic effects of the environment [29]. This is plausible as 15 variation in the 5-HTTLPR polymorphisms may modulate the 16 serotonergic response to stress [108]. Further evidence for this 17 hypothesis also comes from fMRI studies which show that 18 carriers of the short allele of 5-HTTLPR polymorphism 19 demonstrate amygdala hyperactivity (meta-analysis see [70]) 20 leading to increased corticol release [32]. There is also an initial 21 indication that SLE and 5-HTTLPR polymorphism interact to 22 predict endocrine stress reactivity in a non-clinical sample [2]. 23 Adults homozygous for the short allele with a significant 24 history of SLE exhibited markedly elevated cortisol secretions 25 in response to the stressor as compared to all other groups, 26 indicating a significant GxE on endocrine stress reactivity [2]. 27 The authors argue that a potential moderating role of HPA-axis 28 hyper-reactivity is a premorbid risk factor that increases the 29 vulnerability for depression in subjects with low serotonin 30 transporter efficiency and a history of severe life events.

1 In the light of the conflicting GxE results with regard to 2 depression, very carefully designed study approaches for testing 3 of GxE hypothesis are urgently required (see "Limitations and 4 Pitfalls in Studying GxE", see Table 1). Brown and Harris [17] 5 recently outlined inconsistencies with regard to the inclusion of 6 different kinds of environmental factors and the use of a life-7 course perspective, respectively which may explain the failure 8 of replication of the initial study of Caspi et al [21]. Brown and 9 Harris hypothesized that in the context of childhood 10 maltreatment the 5-HTTLPR polymorphism contributes to GxE 11 via a direct link with the perpetuation of an adult onset of 12 depression [17]. This is consistent with the hypothesis of early 13 changes in brain function associated with the polymorphism in 14 the context of childhood maltreatment [17].

15

16 <u>Attention-Deficit/Hyperactivity Disorder (ADHD)</u>

17 Molecular genetic research on ADHD has produced a number 18 of plausible candidate genes (e.g., Dopamine D4 receptor gene 19 (DRD4), Dopamine D5 receptor gene (DRD5), Dopamine 20 transporter (DAT1) gene and Catechol o-methyltransferase gene 21 (COMT). However, effects of gene variants identified through 22 association studies are small [34], and the association findings 23 with some markers are inconsistent across different studies (i.e., 24 DAT1; reviewed in Banaschewski and co-workers, this issue 25 [6]; [26]). This inconsistency may be due to the moderation of 26 genetic effects by environmental factors that differ between 27 samples. Thapar and co-workers emphasized that phenotypic 28 complexity, as well as differences in the continuity and changes 29 in clinical presentation over ADHD will both be influenced by 30 the interplay between pre- and perinatal as well as psychosocial,

1 environmental and genetic risk factors [105]. The impacts of 2 environmental factors, such as intrauterine exposure to different 3 drugs (prenatal smoke exposure: [9, 49, 57, 71]; alcohol 4 consumption during pregnancy: [15, 57]), psychosocial 5 adversity [58], mothers' expressed emotion (EE) [15, 78, 95, 6 96], severe early deprivation [97, 99, 100], or low birth weight 7 [57, 106], have been studied in GxE investigations. Besides 8 highlighting the role of the environment in modulating genetic 9 effects some of these studies provide evidence for a genetic 10 contribution to continuity of the disorder [31, 56, 92] and the 11 development of comorbid anti-social behaviour [57, 104, 106]. 12

13 Prenatal environmental exposures: A prospective study 14 including 161 children suggested that maternal prenatal 15 smoking modifies the impact of the high-risk 10-repeat (10r) 16 DAT1 allele of the 40-bp VNTR (40 base-pair variable number 17 of tandem repeats) polymorphism in the 3'UTR of the DAT1 18 gene [49]. Symptoms of hyperactivity, impulsivity as well as 19 oppositional behaviour were increased among children who 20 were homozygous for the DAT1 10r allele, but only if those 21 children were exposed to prenatal maternal smoking [49]. 22 However, Neuman and co-workers [71] failed to replicate this 23 GxE between prenatal smoking exposure and the DAT1 10-24 repeat allele in children with a diagnosis of ADHD, although 25 the odds for a DSM IV-diagnosis of ADHD was 1.8 times 26 greater in children whose genotype at the DAT1 3'VNTR 27 contained the 9-repeat (9r) allele and whose mother smoked 28 during pregnancy than for twins who had neither of these risk 29 factors [71]. Apart from the possibility that the sample was too 30 small this failure to replicate may be due to defining tobacco

1 use in pregnancy as smoking more than 20 cigarettes a day. In a 2 longitudinal study (Mannheim Study of Children at Risk) 3 including 305 adolescents at age 15 years, Becker and co-4 workers [9] partly confirmed the findings of Kahn and co-5 workers [49], indicating that male homozygous DAT1-10r allele 6 carriers with prenatal smoke exposure had significantly higher 7 symptoms of hyperactivity-impulsivity than males from all 8 other groups [9]. In contrast, Brookes and co-workers failed to 9 confirm the findings of Kahn and co-workers [49] in a clinical 10 sample [15, 57]. However, this group found evidence for an 11 interaction of a DAT1 risk haplotype and maternal use of 12 alcohol during pregnancy [15]. Langley and co-workers [57] 13 failed to replicate this finding perhaps because they did not 14 genotype both markers of the two marker haplotype of DAT1. 15 On the whole, the reported inconsistencies in studies of GxE 16 (e.g. for ADHD) elucidate the urgent needs of replication 17 studies with both accurate and consistent measures of 18 environmental factors and genetic variants, respectively, and in 19 meta-analyses [57].

20

21 *Postnatal psychosocial adversity:* The Mannheim Study of Risk 22 Children also showed that carriers of the DAT1 haplotype 23 comprising the 6-repeat and 10-repeat alleles who grew up in 24 greater psychosocial adversity exhibited significantly more 25 inattention and higher hyperactivity-impulsivity than those with 26 other genotypes/haplotypes or those living in less adverse 27 family conditions [58]. Two recent papers provide more 28 evidence for the potential role of the psycho-social environment 29 in moderating genetic effects in ADHD. Building on previous 30 work highlighting the role of mothers' expressed emotion (EE)

1 as a risk factor for poor outcomes in ADHD [78], the first study 2 [96] examined whether the effects of mothers' EE on ADHD 3 children, in terms of the development of conduct and emotional 4 problems, was moderated by genetic variants in a large sub-5 sample of the IMAGE study [15]. The results suggested that the 6 impact of EE was moderated by the presence of specific DAT1 7 and 5HTTLPR genotypes; children who did not have the DAT1 8 10r/10r or the 5HTTLPR 1/1 genotypes showed an effect of EE 9 on conduct problems. As far as emotional problems were 10 concerned, EE had effects only on those who carried the DAT1 11 9r/9r alleles. The second study [99] was carried out as part of 12 the English and Romanian Adoptees (ERA) longitudinal study 13 [86] of the effects of severe early deprivation on development. 14 Previous studies highlighted a link between institutional 15 deprivation and symptoms of ADHD [97, 100], but only in a 16 sub-sample of cases. The results showed that the risk for 17 symptoms of ADHD associated with early institutional 18 deprivation was moderated by the DAT1 but not the DRD4 19 genotypes, an effect that was first apparent in early, and 20 persisted through mid-adolescence. In both studies it appeared 21 that the genetic make-up altered susceptibility of children to 22 variations in their social environment [10].

23 So far, most GxE studies have employed a candidate gene 24 approach. Studying environmental effects might also be a good 25 strategy for finding potential new genetic markers using purely 26 quantitative strategies such as QTL mapping and genome wide 27 association studies. In the first study of this sort in ADHD, 28 Sonuga-Barke and co-workers [95] conducted a GxE analysis in 29 the context of a genome-wide association scan of the IMAGE 30 study (with 429,981 SNPS available) to identify novel genes

1 whose effects are moderated by high maternal EE. While no
2 GxE effect reached genome-wide significance, a number of
3 nominal significant effects were observed (p<.10⁵) in particular
4 interactions for the genes *SLC1A1* and *NRG3* represent
5 reasonable candidates for further investigation given their
6 previous association with several psychiatric illnesses.

7

8 <u>Obesity</u>

9 Obesity is a multi-factorial trait that results from a complex 10 interplay between genes and environment [62]. The surge in the 11 prevalence of obesity occurred within a short period of time 12 suggesting that environmental and behavioural lifestyle factors 13 play a strong role [1]. GxE is gaining increased emphasis due to 14 the large individual differences in responses to the obesogenic 15 environment - individuals with a genetic predisposition to 16 develop obesity will show the greatest weight gain, whereas 17 individuals with genetic "resistance" to obesity will gain little, 18 if any, weight [1]. Environmental factors influence behaviour or 19 lifestyles that determine energy intake or energy expenditure 20 [13]. The differences in individual responses to prevention and 21 treatment strategies, including negative energy balance due to 22 increased energy expenditure and decreased energy intake, 23 seem also to be influenced by individuals' genetic background 24 [14].

There have already been numerous efforts to incorporate genetic and/or gene-environment information into obesity intervention and prevention [14]. Some genes have been reported to be associated with weight loss following intervention (e.g. lifestyle change, pharmacological/dietary interventions, and exercise) (summary [14]). For instance, one

1 polymorphism (rs9939609) in the fat mass and obesity 2 associated gene (FTO) was found to have an effect on the body 3 mass index (BMI), which was replicated in other large samples 4 [62]. Individuals homozygous for the risk A-allele weigh on 5 average about 3-4 kg more and have a 1.6-fold increased risk of 6 obesity as compared to those who have not inherited a risk 7 allele [62]. Furthermore, there is evidence for a significant FTO 8 genotype x physical activity interaction, where the physically 9 inactive homozygous carriers of the risk A-allele had an 10 increase in BMI as compared to homozygous carriers of the T-11 allele [5]. Additionally, other FTO variants showed a significant 12 association with physical activity [79]. However, regarding 13 these GxE with FTO variants and physical activity the findings 14 in different studies are inconsistent. This could be explained 15 among others by the use of different measurements of physical 16 activity (review [4]).

17 Additionally, animal models provide evidence for interaction of 18 genetic background and the impact of perinatal and early 19 childhood environments on metabolic, physiological and 20 neuroendocrine functions and their influence on the 21 development of obesity [61]. Furthermore, the systematic 22 genome-wide association (GWA) study approach holds 23 impressive prospects for the future, provided that the lifestyle 24 factors dietary intake and physical activity are measured 25 accurately because erroneous self-reporting of these factors is a 26 well-known problem (review [4]).

27

28 Schizophrenia

29 The molecular genetic basis of schizophrenia has been30 extensively studied. The SzGene database ([3];

1 http://www.szgene.org/) provides an up-to-date ranking list of all 2 relevant *candidate gene variants* (to date in about 30 genes) 3 based on meta-analyses of association studies. Although, as with 4 most complex phenotypes, it is very likely that there may be 5 many rare variants which contribute substantially to the disorder, 6 effect sizes of common single variants are usually small, i.e. 7 average summary odds ratio rarely exceed 1.2 [3]. Evidence for 8 association between an environmental exposure and 9 schizophrenia is most solid for paternal age, migration, obstetric 10 complications (fetal hypoxia and proxies for folate deficiency, 11 maternal infection, or stress during pregnancy), urbanicity, and 12 cannabis use, the latter two particularly in case of exposure 13 during development (see [44] and [109] for review). Findings 14 from twin, adoption, and family studies generally suggest that a 15 synergy between genetic and environmental factors determines 16 psychotic symptoms and disorder, particularly for exposure to 17 migration, urbanicity, obstetric complications, cannabis, stress, 18 and developmental trauma [109] providing a broad range of 19 potential environmental factors for GxE studies. Generally, the 20 neurobiological mechanism driving the effects of these 21 environmental exposures is unclear rendering the selection of 22 potentially relevant genetic variants for GxE studies difficult.

23 A few promising hypotheses do exist and some have been tested: 24 A recent study [72] provided initial evidence that variants in four 25 out of 13 tested candidate genes (AKT1, BDNF, DTNBP1 and 26 GRM3), known to be regulated by hypoxia or involved in 27 vascular functioning in the brain, showed nominally significant 28 interaction with at least one serious obstetric complication event 29 (as a proxy of fetal hypoxia) in 116 patient-trios. Another 30 interesting hypothesis related to obstetric complication is the

1 potential GxE interaction between prenatal virus exposure and 2 genes involved in the immune response e.g. genes located in the 3 major histocompatibility complex (MHC) region [67]. A first 4 study examining interaction of season of birth and risk variants 5 in the MHC region, however, did not provide any evidence for 6 GxE [98]. Yet, it is possible that prenatal environmental factors 7 may also alter functioning and structure of relevant genes: e.g., 8 folate, which is deficient prenatally in some individuals with 9 schizophrenia, is necessary for normal DNA-methylation and 10 this complicates the picture substantially. Thus, epigenetic 11 changes during neurodevelopment have to be considered.

12 In the study of Caspi and co-workers [20], the COMT Val158Met 13 *Val* allele moderated the risk of developing schizophreniform 14 disorder at age 26 following cannabis use in adolescence. 15 Further, in a double-blind randomized controlled trial [45] the 16 *COMT Val* allele was associated with an increased sensitivity to 17 the negative cognitive effects of cannabis in patients with 18 psychoses. In another study [110], the COMT Met allele 19 increased the effect of stress on psychotic and affective 20 experiences in daily life in 31 patients with psychosis and 21 cannabis use, but not in non-psychotic cannabis users. There is 22 evidence, derived from animal models (review [44]), suggesting 23 that there are other promising genes (i.e. *neuregulin 1* and the 24 genes regulating the dopaminergic and the GABA system) which 25 potentially moderate the effect of cannabis on the risk of 26 schizophrenia. Furthermore, variation in *Neuregulin 1* was also 27 reported to moderate the effect of high expressed emotion on the 28 level of unusual thoughts in 200 patients with schizophrenia 29 [52].

In conclusion, relatively few GxE interaction studies in
 schizophrenia are published to date. Promising testable
 hypotheses based on epidemiological and experimental
 neurobiological findings are available and need to be examined.

5

6 <u>Substance Use Disorders</u>

7 Substance use disorders (SUD) are common, multi-factorial 8 disorders, which constitute the leading cause of a wide variety 9 of morbidity and mortality conditions. Both genetic and 10 environmental factors have been implicated in their 11 development, with heritability estimates ranging from 50 to 12 60% [40]. Moreover, growing evidence suggests that 13 vulnerability to SUD may result from GxE [108]. Among the 14 brain systems involved in the physiological response to drugs of 15 abuse, much attention has been placed on the hypothalamic-16 pituitary-adrenocortical (HPA) axis. The link between stressful 17 experiences and substance use has long been discussed [93], 18 with the stress-coping model of addiction proposing that 19 substance use serves to regulate stress-related negative affect. A 20 critical role in the regulation of the HPA axis pertains to the 21 corticotropin-releasing hormone (CRH) system, making the 22 genes encoding the CRH receptors (CRHR1, CRHR2) 23 prominent candidates for GxE studies. Blomeyer and co-24 workers [12] provided the first evidence that genetic variation 25 in *CRHR1* moderated the impact of stress on heavy drinking in 26 adolescents. In 15-year-olds, the number of stressful life events 27 during the past three years was found to be significantly related 28 to increasing rates of heavy drinking only among individuals 29 homozygous for the C allele of the haplotype-tagging SNP 30 rs1876831. Recently, Schmid and co-workers [90]

1 demonstrated that the CRHR1 gene and stressful life events 2 interacted to predict both drinking initiation in adolescence and 3 progression of heavy alcohol use into young adulthood. 4 Findings from animal research support a role for GxE in the 5 development of excessive alcohol intake. In studies with 6 nonhuman primates, Barr and co-workers [7] revealed that the 7 effects of early stress on alcohol use in later life were 8 conditional on variation in the serotonin transporter gene, with 9 higher consumption only in carriers of the S allele of 5-10 HTTLPR. Subsequent studies in humans yielded inconsistent 11 results. While Covault and co-workers [27] and Kaufman and 12 co-workers [50] found earlier and heavier alcohol use only 13 among carriers of the S allele following stressful life events, 14 Olsson and co-workers [75] observed a decrease in binge 15 drinking in risk settings with each additional copy of the S 16 allele. Nilsson and co-workers [73] reported that adolescents 17 with poor family relations had an increased risk of alcohol 18 intoxication when carrying the heterozygous LS genotype of 5-19 HTTLPR. Laucht and co-workers [60] demonstrated that, when 20 exposed to high psychosocial adversity, individuals with the LL 21 genotype exhibited more hazardous drinking.

22 There are several potential reasons for these conflicting 23 findings. One major reason relates to the fact that substance use 24 and SUD represent a heterogeneous phenotype, which may be 25 differentiated into several subgroups (e.g. Cloninger's typology 26 of problem drinking [25]). However, previous studies usually 27 neglected issues of substance use typology. An additional factor 28 that could have contributed to inconsistency may be the 29 heterogeneity wide variety of in measures of environmental 30 adversity used in the different studies. While in several studies

(e.g. [27]) environmental adversity was characterized by
 exposure to discrete acute events, others focused on chronic
 difficulties surveyed over a period of years ([73]). However,
 research on individual differences in biological reactivity to
 environmental stress has highlighted the duration of a stressor
 as an important determinant of the stress response.

7

8 **Conclusions and Implications**

9 There is an emerging consensus that inter-individual variability 10 in an individuals response to environmental exposures can be 11 explained by genetic moderation of such effects. This gene-12 environment interplay may explain the individuals' 13 vulnerability and resilience to environmental hazards in the 14 development and expression of mental disorders. In this paper 15 we have reviewed the current state of the field with regard to 16 GxE in a range of disorders with childhood and adolescent 17 onset. We highlight the progress made to date – some candidate 18 GxE processes have been identified for each disorder and in 19 some cases these have been replicated. Nevertheless, these 20 initial GxE findings have to be interpreted with caution. The 21 replication of GxE findings has in general proved to be 22 challenging - as is also the case for replication of association 23 findings in classical candidate genetic studies. Furthermore, the 24 variance explained by both genetic main effects and GxE 25 effects is invariably small. Initial GxE findings have been 26 challenged by studies using more stringent research designs 27 which better ensure that relations with the measured 28 environmental variables are not influenced by other correlated 29 environmental variables or background common genetic 30 influences [36]. Furthermore, most GxE studies have had only

1 small samples which may explain why GxE effects are difficult 2 to detect and replicate [36]. Besides possible GxE in the 3 pathogenesis of mental disorders, genetic and environmental 4 effects on the course of a disorder during development are 5 important to consider. Even where GxE does not contribute to 6 the initial development of the disorder, it may have a modifying 7 effect on the developmental course and outcome [104]. 8 However, up to now in genetic studies not much attention was 9 paid to the developmental course of a disorder. This is 10 especially true for GxExAge. Thus, future studies in mental 11 disorders should put more emphasis on GxE in the course of 12 development (see [99]).

13 Despite all of these caveats and limitations the study of GxE 14 effects - although still in its infancy - offers a number of 15 exciting possibilities across a range of different domains. It will 16 surely stimulate progress in our understanding of the basic 17 neuroscience on childhood onset psychiatric problems. In future 18 genetic research, GxE studies may provide new insights into 19 biological pathways underlying the pathophysiology of mental 20 disorders. It will also play a crucial role in our growing 21 comprehension/investigation of vulnerability [11] and resilience 22 [35, 84]. Longitudinal GxE research will be especially 23 important as it can help us to better understand heterogeneity in 24 mental disorders. This in turn can be exploited in both the 25 development of new therapies and the targeting of existing 26 therapies. If we can overcome the methodological challenges 27 that face GxE research, the new insights in biological pathways 28 derived from the investigation of GxE might provide new ways 29 of individualized prevention and therapeutic strategies.

1 Acknowledgements:

2 We are grateful to Jörg Näther for providing the figures.

- 1 Table 1: Seven strategic steps for research into measured
- 2 gene-environment interaction (Table adapted, [69])

Step 1:	Co	nsulting quantitative behavioural genetic models of the disorder	
Step 2:	Ide	entifying a candidate environmental pathogen for the disorder	
	Considerations for selecting environmental risks for inclusion in GxE research on mental disorders		
	disorder develops more frequently in persons exposed to the environmental pathogen compared to those not exposed		
	\succ	variability in response among people exposed to the same environmental risk	
	۶	plausible effect of the environmental risk on biological systems involved in the disorder	
	۶	evidence that the putative risk is a true environmental pathogen having causal effects	
Step 3:	: Op	timizing measurement of environmental risk	
		nsiderations for improved environmental measurement to support GxE earch	
	\triangleright	proximal measures of environmental pathogens	
	\triangleright	age-specific environmental pathogens	
	\succ	the cumulative nature of environmental influences	
	\triangleright	retrospective measures of environmental pathogens	
Step 4:	Sy	stematic genome-wide approach or identifying candidate susceptible genes	
	Co	nsiderations for choosing among candidate genes as they emerge	
	\triangleright	common polymorphic variants	
	\triangleright	evidence of direct gene-to-disorder association	
	\triangleright	functional significance in relation to reactivity to the environmental pathogen	
Step 5:	Те	sting for an interaction	
	\triangleright	statistical models	
	\triangleright	study sampling designs.	
	\triangleright	ascertaining the validity of a GxE finding	
Step 6:		aluating whether a GxE interaction extends beyond the initially pothesized triad of genes, environmental pathogen, and disorder	
Step 7:		nfirmation in independent samples eta-analyses	
	Va	lidation of findings in GxE studies in experimental studies	
	\triangleright	animal models (for example [8])	
	\triangleright	functional brain imaging studies (for example [43])	
	\triangleright	Pharmacogenetics (for example [91, 94])	
L	3		

3

Г

- 1 **Figure legends**:
- 2
- 3 Figure 1: Environmental factors only lead to a disorder in
- 4 presence of a specific genetic make-up
- 5
- 6 Figure 2: An individual with a susceptible genetic make-up will
- 7 only develop a disorder if there are additional environmental
- 8 pathogens
- 9
- 10
- 11

1 References

2	1.	Agurs-Collins T, Bouchard C (2008) Gene-
3		nutrition and gene-physical activity interactions in
4		the etiology of obesity. Introduction. Obesity
5		(Silver Spring) 16 Suppl 3:S2-4
6	2.	Alexander N, Kuepper Y, Schmitz A, Osinsky R,
7		Kozyra E, Hennig J (2009) Gene-environment
8		interactions predict cortisol responses after acute
9		stress: implications for the etiology of depression.
10		Psychoneuroendocrinology 34:1294-1303
11	3.	Allen NC, Bagade S, McQueen MB, Ioannidis JP,
12	5.	Kavvoura FK, Khoury MJ, Tanzi RE, Bertram L
12		(2008) Systematic meta-analyses and field
13		synopsis of genetic association studies in
15		schizophrenia: the SzGene database. Nat Genet
16		40:827-834
10	4.	Andreasen CH, Andersen G (2009) Gene-
17	4.	
		environment interactions and obesityfurther
19 20		aspects of genomewide association studies. Nutrition 25:998-1003
20	5	
21	5.	Andreasen CH, Stender-Petersen KL, Mogensen
22		MS, Torekov SS, Wegner L, Andersen G, Nielsen
23		AL, Albrechtsen A, Borch-Johnsen K, Rasmussen
24		SS, Clausen JO, Sandbaek A, Lauritzen T, Hansen
25		L, Jorgensen T, Pedersen O, Hansen T (2008) Low
26		physical activity accentuates the effect of the FTO
27		rs9939609 polymorphism on body fat
28		accumulation. Diabetes 57:95-101
29	6.	Banaschewski T, Becker K, Friedel S, Franke B,
30		Coghill D Molecular Genetics in Attention-
31	-	Deficit/Hyperactivity Disorders: An Overview.
32	7.	Barr CS, Newman TK, Lindell S, Shannon C,
33		Champoux M, Lesch KP, Suomi SJ, Goldman D,
34		Higley JD (2004) Interaction between serotonin
35		transporter gene variation and rearing condition in
36		alcohol preference and consumption in female
37		primates. Arch Gen Psychiatry 61:1146-1152
38	8.	Barr CS, Newman TK, Shannon C, Parker C,
39		Dvoskin RL, Becker ML, Schwandt M, Champoux
40		M, Lesch KP, Goldman D, Suomi SJ, Higley JD
41		(2004) Rearing condition and rh5-HTTLPR
42		interact to influence limbic-hypothalamic-
43		pituitary-adrenal axis response to stress in infant
44		macaques. Biol Psychiatry 55:733-738
45	9.	Becker K, El-Faddagh M, Schmidt MH, Esser G,
46		Laucht M (2008) Interaction of dopamine
47		transporter genotype with prenatal smoke exposure
48		on ADHD symptoms. J Pediatr 152:263-269
49	10.	Belsky J, Bakermans-Kranenburg M, van
50		Itzendoorn M (2007) For better and for worse:
51		Differential susceptibility to environmental
52		influences. Current Directions In Psychological
53		Science 16:300-304
54	11.	Belsky J, Jonassaint C, Pluess M, Stanton M,
55		Brummett B, Williams R (2009) Vulnerability
		1

1		genes or plasticity genes? Mol Psychiatry 14:746-
2		754
3	12.	Blomeyer D, Treutlein J, Esser G, Schmidt MH,
4		Schumann G, Laucht M (2008) Interaction
5		between CRHR1 gene and stressful life events
6		predicts adolescent heavy alcohol use. Biol
7		Psychiatry 63:146-151
8	13.	Bouchard C (2008) Gene-environment interactions
9		in the etiology of obesity: defining the
10		fundamentals. Obesity (Silver Spring) 16 Suppl
11		3:S5-S10
12	14.	Bray MS (2008) Implications of gene-behavior
13		interactions: prevention and intervention for
14		obesity. Obesity (Silver Spring) 16 Suppl 3:S72-78
15	15.	Brookes KJ, Mill J, Guindalini C, Curran S, Xu X,
16		Knight J, Chen CK, Huang YS, Sethna V, Taylor
17		E, Chen W, Breen G, Asherson P (2006) A
18		common haplotype of the dopamine transporter
19		gene associated with attention-deficit/hyperactivity
20		disorder and interacting with maternal use of
21		alcohol during pregnancy. Arch Gen Psychiatry
22		63:74-81
23	16.	Brookes ST, Whitley E, Peters TJ, Mulheran PA,
24		Egger M, Davey Smith G (2001) Subgroup
25		analyses in randomised controlled trials:
26		quantifying the risks of false-positives and false-
27		negatives. Health Technol Assess 5:1-56
28	17.	Brown GW, Harris TO (2008) Depression and the
29		serotonin transporter 5-HTTLPR polymorphism: a
30		review and a hypothesis concerning gene-
31	10	environment interaction. J Affect Disord 111:1-12
32	18.	Caspi A, McClay J, Moffitt TE, Mill J, Martin J,
33		Craig IW, Taylor A, Poulton R (2002) Role of
34 25		genotype in the cycle of violence in maltreated
35	10	children. Science 297:851-854
36 27	19.	Caspi A, Moffitt TE (2006) Gene-environment
37		interactions in psychiatry: joining forces with neuroscience. Nat Rev Neurosci 7:583-590
38	20	Caspi A, Moffitt TE, Cannon M, McClay J,
39 40	20.	
40 41		Murray R, Harrington H, Taylor A, Arseneault L, Williams B, Braithwaite A, Poulton R, Craig IW
41		(2005) Moderation of the effect of adolescent-
42 43		onset cannabis use on adult psychosis by a
43 44		functional polymorphism in the catechol-O-
44		methyltransferase gene: longitudinal evidence of a
46		gene X environment interaction. Biol Psychiatry
47		57:1117-1127
48	21.	Caspi A, Sugden K, Moffitt TE, Taylor A, Craig
40 49	<i>4</i> 1.	IW, Harrington H, McClay J, Mill J, Martin J,
4)		Braithwaite A, Poulton R (2003) Influence of life
50 51		stress on depression: moderation by a
52		polymorphism in the 5-HTT gene. Science
52 53		301:386-389
55 54	22.	Cervilla JA, Molina E, Rivera M, Torres-Gonzalez
55		F, Bellon JA, Moreno B, Luna JD, Lorente JA,
55		

1		Mayoral F, King M, Nazareth I, Gutierrez B
2		(2007) The risk for depression conferred by
3		stressful life events is modified by variation at the
4		serotonin transporter 5HTTLPR genotype:
5		evidence from the Spanish PREDICT-Gene cohort.
6		Mol Psychiatry 12:748-755
	22	
7	23.	Chipman P, Jorm AF, Prior M, Sanson A, Smart D,
8		Tan X, Easteal S (2007) No interaction between
9		the serotonin transporter polymorphism (5-
10		HTTLPR) and childhood adversity or recent
11		stressful life events on symptoms of depression:
12		results from two community surveys. Am J Med
13		Genet B Neuropsychiatr Genet 144B:561-565
13 14	24.	
	24.	Chorbov VM, Lobos EA, Todorov AA, Heath AC,
15		Botteron KN, Todd RD (2007) Relationship of 5-
16		HTTLPR genotypes and depression risk in the
17		presence of trauma in a female twin sample. Am J
18		Med Genet B Neuropsychiatr Genet 144B:830-833
19	25.	Cloninger CR, Sigvardsson S, Gilligan SB, von
20		Knorring AL, Reich T, Bohman M (1988) Genetic
20 21		heterogeneity and the classification of alcoholism.
		e .
22		Adv Alcohol Subst Abuse 7:3-16
23	26.	Coghill D, Banaschewski T (2009) The genetics of
24		attention-deficit/hyperactivity disorder. Expert Rev
25		Neurother 9:1547-1565
26	27.	Covault J, Tennen H, Armeli S, Conner TS,
27		Herman AI, Cillessen AH, Kranzler HR (2007)
28		Interactive effects of the serotonin transporter 5-
		-
29		HTTLPR polymorphism and stressful life events
30		on college student drinking and drug use. Biol
31		Psychiatry 61:609-616
32	28.	Dempfle A, Scherag A, Hein R, Beckmann L,
33		Chang-Claude J, Schafer H (2008) Gene-
34		environment interactions for complex traits:
35		definitions, methodological requirements and
36		challenges. Eur J Hum Genet 16:1164-1172
	20	•
37	29.	Drachmann Bukh J, Bock C, Vinberg M, Werge T,
38		Gether U, Vedel Kessing L (2009) Interaction
39		between genetic polymorphisms and stressful life
40		events in first episode depression. J Affect Disord
41		119:107-115
42	30.	Eaves LJ (2006) Genotype x Environment
43		interaction in psychopathology: fact or artifact?
44		Twin Res Hum Genet 9:1-8
	21	
45	31.	El-Faddagh M, Laucht M, Maras A, Vohringer L,
46		Schmidt MH (2004) Association of dopamine D4
47		receptor (DRD4) gene with attention-
48		deficit/hyperactivity disorder (ADHD) in a high-
49		risk community sample: a longitudinal study from
50		birth to 11 years of age. J Neural Transm 111:883-
51		889
	32.	
52	52.	El Hage W, Powell JF, Surguladze SA (2009)
53		Vulnerability to depression: what is the role of
54		stress genes in gene x environment interaction?
55		Psychol Med:1-5

1 2 3 4	33.	Eley TC, Sugden K, Corsico A, Gregory AM, Sham P, McGuffin P, Plomin R, Craig IW (2004) Gene-environment interaction analysis of serotonin system markers with adolescent depression. Mol
5		Psychiatry 9:908-915
6	34.	Faraone SV, Perlis RH, Doyle AE, Smoller JW,
7		Goralnick JJ, Holmgren MA, Sklar P (2005)
8		Molecular genetics of attention-
9		deficit/hyperactivity disorder. Biol Psychiatry
10		57:1313-1323
11	35.	Feder A, Nestler EJ, Charney DS (2009)
12		Psychobiology and molecular genetics of
13		resilience. Nat Rev Neurosci 10:446-457
14	36.	Ficks CA, Waldman ID (2009) Gene-environment
15		interactions in attention-deficit/hyperactivity
16		disorder. Curr Psychiatry Rep 11:387-392
17	37.	Flint J, Munafo MR (2008) Forum: Interactions
18		between gene and environment. Curr Opin
19		Psychiatry 21:315-317
20	38.	Foley DL, Eaves LJ, Wormley B, Silberg JL, Maes
21		HH, Kuhn J, Riley B (2004) Childhood adversity,
22		monoamine oxidase a genotype, and risk for
23	20	conduct disorder. Arch Gen Psychiatry 61:738-744
24	39.	Gillespie NA, Whitfield JB, Williams B, Heath
25		AC, Martin NG (2005) The relationship between
26 27		stressful life events, the serotonin transporter (5-
27 28		HTTLPR) genotype and major depression. Psychol Med 35:101-111
28 29	40.	Goldman D, Oroszi G, Ducci F (2005) The
30	40.	genetics of addictions: uncovering the genes. Nat
31		Rev Genet 6:521-532
32	41.	Grabe HJ, Lange M, Wolff B, Volzke H, Lucht M,
33		Freyberger HJ, John U, Cascorbi I (2005) Mental
34		and physical distress is modulated by a
35		polymorphism in the 5-HT transporter gene
36		interacting with social stressors and chronic
37		disease burden. Mol Psychiatry 10:220-224
38	42.	Haberstick BC, Lessem JM, Hopfer CJ, Smolen A,
39		Ehringer MA, Timberlake D, Hewitt JK (2005)
40		Monoamine oxidase A (MAOA) and antisocial
41		behaviors in the presence of childhood and
42		adolescent maltreatment. Am J Med Genet B
43		Neuropsychiatr Genet 135B:59-64
44	43.	Hariri AR, Mattay VS, Tessitore A, Kolachana B,
45		Fera F, Goldman D, Egan MF, Weinberger DR
46		(2002) Serotonin transporter genetic variation and
47		the response of the human amygdala. Science
48 49	44.	297:400-403 Honguot C. Di Forti M. Morrison P. Kuonner P.
	44.	Henquet C, Di Forti M, Morrison P, Kuepper R,
50 51		Murray RM (2008) Gene-environment interplay between cannabis and psychosis. Schizophr Bull
51 52		34:1111-1121
52 53	45.	Henquet C, Rosa A, Krabbendam L, Papiol S,
55 54	чэ.	Fananas L, Drukker M, Ramaekers JG, van Os J
55		(2006) An experimental study of catechol-o-
20		

1		
1		methyltransferase Val158Met moderation of delta-
2		9-tetrahydrocannabinol-induced effects on
3		psychosis and cognition.
4		Neuropsychopharmacology 31:2748-2757
5	46.	Hunter DJ (2005) Gene-environment interactions
6		in human diseases. Nat Rev Genet 6:287-298
7	47.	Ioannidis JP, Ntzani EE, Trikalinos TA,
8		Contopoulos-Ioannidis DG (2001) Replication
9		validity of genetic association studies. Nat Genet
10		29:306-309
11	48.	Ioannidis JP, Trikalinos TA (2007) An exploratory
12		test for an excess of significant findings. Clin
13		Trials 4:245-253
14	49.	Kahn RS, Khoury J, Nichols WC, Lanphear BP
15		(2003) Role of dopamine transporter genotype and
16		maternal prenatal smoking in childhood
17		hyperactive-impulsive, inattentive, and
18		oppositional behaviors. J Pediatr 143:104-110
19	50.	Kaufman J, Yang BZ, Douglas-Palumberi H,
20	50.	Crouse-Artus M, Lipschitz D, Krystal JH,
20 21		Gelernter J (2007) Genetic and environmental
21		
		predictors of early alcohol use. Biol Psychiatry
23	F 1	61:1228-1234
24	51.	Kendler KS, Karkowski LM, Prescott CA (1999)
25		Causal relationship between stressful life events
26		and the onset of major depression. Am J Psychiatry
27		156:837-841
28	52.	Keri S, Kiss I, Seres I, Kelemen O (2009) A
29		polymorphism of the neuregulin 1 gene
30		(SNP8NRG243177/rs6994992) affects reactivity to
31		expressed emotion in schizophrenia. Am J Med
32		Genet B Neuropsychiatr Genet 150B:418-420
33	53.	Khoury MJ, Adams MJ, Jr., Flanders WD (1988)
34		An epidemiologic approach to ecogenetics. Am J
35		Hum Genet 42:89-95
36	54.	Kim-Cohen J, Caspi A, Taylor A, Williams B,
37		Newcombe R, Craig IW, Moffitt TE (2006)
38		MAOA, maltreatment, and gene-environment
39		interaction predicting children's mental health: new
40		evidence and a meta-analysis. Mol Psychiatry
41		11:903-913
42	55.	Kim JM, Stewart R, Kim SW, Yang SJ, Shin IS,
43		Kim YH, Yoon JS (2007) Interactions between life
44		stressors and susceptibility genes (5-HTTLPR and
45		BDNF) on depression in Korean elders. Biol
46		Psychiatry 62:423-428
47	56.	Langley K, Fowler TA, Grady DL, Moyzis RK,
48	50.	Holmans PA, van den Bree MB, Owen MJ,
40 49		O'Donovan MC, Thapar A (2009) Molecular
49 50		
		genetic contribution to the developmental course of
51 52		attention-deficit hyperactivity disorder. Eur Child
52	57	Adolesc Psychiatry 18:26-32
53	57.	Langley K, Turic D, Rice F, Holmans P, van den
54		Bree MB, Craddock N, Kent L, Owen MJ,
55		O'Donovan MC, Thapar A (2008) Testing for gene

1		x environment interaction effects in attention
2		deficit hyperactivity disorder and associated
3		antisocial behavior. Am J Med Genet B
4		Neuropsychiatr Genet 147B:49-53
5	58.	Laucht M, Skowronek MH, Becker K, Schmidt
6	56.	
		MH, Esser G, Schulze TG, Rietschel M (2007)
7		Interacting effects of the dopamine transporter
8		gene and psychosocial adversity on attention-
9		deficit/hyperactivity disorder symptoms among 15-
10		year-olds from a high-risk community sample.
11		Arch Gen Psychiatry 64:585-590
12	59.	Laucht M, Treutlein J, Blomeyer D, Buchmann
13		AF, Schmid B, Becker K, Zimmermann US,
14		Schmidt MH, Esser G, Rietschel M, Banaschewski
14		
		T (2009) Interaction between the 5-HTTLPR
16		serotonin transporter polymorphism and
17		environmental adversity for mood and anxiety
18		psychopathology: evidence from a high-risk
19		community sample of young adults. Int J
20		Neuropsychopharmacol:1-11
21	60.	Laucht M, Treutlein J, Schmid B, Blomeyer D,
22		Becker K, Buchmann AF, Schmidt MH, Esser G,
23		Jennen-Steinmetz C, Rietschel M, Zimmermann
23 24		US, Banaschewski T (2009) Impact of
25		psychosocial adversity on alcohol intake in young
26		adults: moderation by the LL genotype of the
27		serotonin transporter polymorphism. Biol
28		Psychiatry 66:102-109
29	61.	Levin BE (2009) Synergy of nature and nurture in
30		the development of childhood obesity. Int J Obes
31		(Lond) 33 Suppl 1:S53-56
32	62.	Loos RJ, Bouchard C (2008) FTO: the first gene
33		contributing to common forms of human obesity.
34		Obes Rev 9:246-250
35	63.	Luan JA, Wong MY, Day NE, Wareham NJ
	03.	
36		(2001) Sample size determination for studies of
37		gene-environment interaction. Int J Epidemiol
38		30:1035-1040
39	64.	Manolio TA, Bailey-Wilson JE, Collins FS (2006)
40		Genes, environment and the value of prospective
41		cohort studies. Nat Rev Genet 7:812-820
42	65.	Middeldorp CM, Cath DC, Beem AL, Willemsen
43		G, Boomsma DI (2008) Life events, anxious
44		depression and personality: a prospective and
45		genetic study. Psychol Med 38:1557-1565
	66	
46 47	66.	Middeldorp CM, de Geus EJ, Beem AL,
47		Lakenberg N, Hottenga JJ, Slagboom PE,
48		Boomsma DI (2007) Family based association
49		analyses between the serotonin transporter gene
50		polymorphism (5-HTTLPR) and neuroticism,
51		anxiety and depression. Behav Genet 37:294-301
52	67.	Mittal VA, Ellman LM, Cannon TD (2008) Gene-
53		environment interaction and covariation in
54		schizophrenia: the role of obstetric complications.
55		Schizophr Bull 34:1083-1094
55		Someopin Dun 5 1.1005 1077

1 2 3 4 5	68.	Moffitt TE, Caspi A, Rutter M (2006) Measured Gene-Environment Interactions in Psychopathology : Concepts, Research Strategies, and Implications for Research, Intervention, and Public Understanding of Genetics. Perspect
6 7 8 9 10	69.	Psychol Sci 1:5-27 Moffitt TE, Caspi A, Rutter M (2005) Strategy for investigating interactions between measured genes and measured environments. Arch Gen Psychiatry 62:473-481
10 11 12 13	70.	Munafo MR, Durrant C, Lewis G, Flint J (2009) Gene X environment interactions at the serotonin transporter locus. Biol Psychiatry 65:211-219
14 15 16 17 18	71.	Neuman RJ, Lobos E, Reich W, Henderson CA, Sun LW, Todd RD (2007) Prenatal smoking exposure and dopaminergic genotypes interact to cause a severe ADHD subtype. Biol Psychiatry 61:1320-1328
19 20 21 22 23 24	72.	Nicodemus KK, Marenco S, Batten AJ, Vakkalanka R, Egan MF, Straub RE, Weinberger DR (2008) Serious obstetric complications interact with hypoxia-regulated/vascular-expression genes to influence schizophrenia risk. Mol Psychiatry 13:873-877
25 26 27 28 29	73.	Nilsson KW, Sjoberg RL, Damberg M, Alm PO, Ohrvik J, Leppert J, Lindstrom L, Oreland L (2005) Role of the serotonin transporter gene and family function in adolescent alcohol consumption. Alcohol Clin Exp Res 29:564-570
30 31 32 33 34	74.	Nilsson KW, Sjoberg RL, Damberg M, Leppert J, Ohrvik J, Alm PO, Lindstrom L, Oreland L (2006) Role of monoamine oxidase A genotype and psychosocial factors in male adolescent criminal activity. Biol Psychiatry 59:121-127
35 36 37 38 39 40 41	75.	Olsson CA, Byrnes GB, Lotfi-Miri M, Collins V, Williamson R, Patton C, Anney RJ (2005) Association between 5-HTTLPR genotypes and persisting patterns of anxiety and alcohol use: results from a 10-year longitudinal study of adolescent mental health. Mol Psychiatry 10:868- 876
42 43 44 45	76.	Plomin R, DeFries JC, Loehlin JC (1977) Genotype-environment interaction and correlation in the analysis of human behavior. Psychol Bull 84:309-322
46 47 48 49	77.	Power T, Stewart R, Ancelin ML, Jaussent I, Malafosse A, Ritchie K (2008) 5-HTTLPR genotype, stressful life events and late-life depression: No evidence of interaction in a French
50 51 52 53 54	78.	population. Neurobiol Aging Psychogiou L, Daley DM, Thompson MJ, Sonuga- Barke EJ (2008) Do maternal attention- deficit/hyperactivity disorder symptoms exacerbate or ameliorate the negative effect of child attention-

1		deficit/hymenostivity disorder symptoms on
1		deficit/hyperactivity disorder symptoms on
2		parenting? Dev Psychopathol 20:121-137
3	79.	Rampersaud E, Mitchell BD, Pollin TI, Fu M,
4		Shen H, O'Connell JR, Ducharme JL, Hines S,
5		Sack P, Naglieri R, Shuldiner AR, Snitker S (2008)
6		Physical activity and the association of common
7		FTO gene variants with body mass index and
8		obesity. Arch Intern Med 168:1791-1797
9	80.	Risch N, Herrell R, Lehner T, Liang KY, Eaves L,
	80.	
10		Hoh J, Griem A, Kovacs M, Ott J, Merikangas KR
11		(2009) Interaction between the serotonin
12		transporter gene (5-HTTLPR), stressful life events,
13		and risk of depression: a meta-analysis. Jama
14		301:2462-2471
15	81.	Rutter M (2008) Biological implications of gene-
16		environment interaction. J Abnorm Child Psychol
17		36:969-975
18	82.	Rutter M (2003) Commentary: Nature-nurture
	62.	•
19		interplay in emotional disorders. J Child Psychol
20	~ ^	Psychiatry 44:934-944
21	83.	Rutter M (2007) Gene-environment
22		interdependence. Dev Sci 10:12-18
23	84.	Rutter M (2006) Implications of resilience
24		concepts for scientific understanding. Ann N Y
25		Acad Sci 1094:1-12
26	85.	Rutter M (2002) The interplay of nature, nurture,
27		and developmental influences: the challenge ahead
28		for mental health. Arch Gen Psychiatry 59:996-
20 29		1000
30	86.	Rutter M, Beckett C, Castle J, Colvert E, Kreppner
	<u>80</u> .	
31		JM, Metha M, Stevens SE, Sonuga-Barke EJ
32		(2007) Effects of profound early institutional
33		deprivation: An overwiev of findings from a UK
34		longitudinal study of Romanian adoptees. Eur J
35		Dev Psychol 4:332-350
36	87.	Rutter M, Moffitt TE, Caspi A (2006) Gene-
37		environment interplay and psychopathology:
38		multiple varieties but real effects. J Child Psychol
39		Psychiatry 47:226-261
40	88.	Rutter M, Silberg J (2002) Gene-environment
41	001	interplay in relation to emotional and behavioral
42		disturbance. Annu Rev Psychol 53:463-490
43	89.	Rutter M, Silberg J, O'Connor T, Simonoff E
43 44	69.	-
		(1999) Genetics and child psychiatry: I Advances
45		in quantitative and molecular genetics. J Child
46		Psychol Psychiatry 40:3-18
47	90.	Schmid B, Blomeyer D, Treutlein J, Zimmermann
48		US, Buchmann AF, Schmidt MH, Esser G,
49		Rietschel M, Banaschewski T, Schumann G,
50		Laucht M (2009) Interacting effects of CRHR1
51		gene and stressful life events on drinking initiation
52		and progression among 19-year-olds. Int J
53		Neuropsychopharmacol:1-12
54	91.	Serretti A, Mandelli L, Lorenzi C, Pirovano A,
55	×1.	Olgiati P, Colombo C, Smeraldi E (2007)
55		Orgiau I, Colombo C, Sincialui E (2007)

1		Serotonin transporter gene influences the time
2		course of improvement of "core" depressive and
3		somatic anxiety symptoms during treatment with
4		SSRIs for recurrent mood disorders. Psychiatry
5		Res 149:185-193
6	92.	Shaw P, Gornick M, Lerch J, Addington A, Seal J,
7		Greenstein D, Sharp W, Evans A, Giedd JN,
8		Castellanos FX, Rapoport JL (2007)
9		Polymorphisms of the dopamine D4 receptor,
10		clinical outcome, and cortical structure in
11		attention-deficit/hyperactivity disorder. Arch Gen
12		Psychiatry 64:921-931
13	93.	Sinha R (2001) How does stress increase risk of
14		drug abuse and relapse? Psychopharmacology
15		(Berl) 158:343-359
16	94.	Smeraldi E, Zanardi R, Benedetti F, Di Bella D,
17		Perez J, Catalano M (1998) Polymorphism within
18		the promoter of the serotonin transporter gene and
19		antidepressant efficacy of fluvoxamine. Mol
20		Psychiatry 3:508-511
21	95.	Sonuga-Barke EJ, Lasky-Su J, Neale BM, Oades
22		R, Chen W, Franke B, Buitelaar J, Banaschewski
23		T, Ebstein R, Gill M, Anney R, Miranda A, Mulas
24		F, Roeyers H, Rothenberger A, Sergeant J,
25		Steinhausen HC, Thompson M, Asherson P,
26		Faraone SV (2008) Does parental expressed
27		emotion moderate genetic effects in ADHD? An
28		exploration using a genome wide association scan.
29		Am J Med Genet B Neuropsychiatr Genet
30	06	147B:1359-1368
31	96.	Sonuga-Barke EJ, Oades RD, Psychogiou L, Chen
32		W, Franke B, Buitelaar J, Banaschewski T, Ebstein
33		RP, Gil M, Anney R, Miranda A, Roeyers H,
34 25		Rothenberger A, Sergeant J, Steinhausen HC, Thompson M, Asharaon B, Earsong SV (2000)
35 26		Thompson M, Asherson P, Faraone SV (2009)
36 37		Dopamine and serotonin transporter genotypes
37		moderate sensitivity to maternal expressed emotion: the case of conduct and emotional
38 39		problems in attention deficit/hyperactivity
40		disorder. J Child Psychol Psychiatry 50:1052-1063
40 41	97.	Sonuga-Barke EJ, Rubia K (2008)
42)1.	Inattentive/overactive children with histories of
43		profound institutional deprivation compared with
44		standard ADHD cases: a brief report. Child Care
45		Health Dev 34:596-602
46	98.	Stefansson H, Ophoff RA, Steinberg S,
47	201	Andreassen OA, Cichon S, Rujescu D, Werge T,
48		Pietilainen OP, Mors O, Mortensen PB, Sigurdsson
49		E, Gustafsson O, Nyegaard M, Tuulio-Henriksson
50		A, Ingason A, Hansen T, Suvisaari J, Lonnqvist J,
51		Paunio T, Borglum AD, Hartmann A, Fink-Jensen
52		A, Nordentoft M, Hougaard D, Norgaard-Pedersen
53		B, Bottcher Y, Olesen J, Breuer R, Moller HJ,
54		Giegling I, Rasmussen HB, Timm S, Mattheisen
55		M, Bitter I, Rethelyi JM, Magnusdottir BB,

1 2 3 4 5 6 7		Sigmundsson T, Olason P, Masson G, Gulcher JR, Haraldsson M, Fossdal R, Thorgeirsson TE, Thorsteinsdottir U, Ruggeri M, Tosato S, Franke B, Strengman E, Kiemeney LA, Melle I, Djurovic S, Abramova L, Kaleda V, Sanjuan J, de Frutos R, Bramon E, Vassos E, Fraser G, Ettinger U, Picchioni M, Walker N, Toulopoulou T, Need AC,
8 9		Ge D, Yoon JL, Shianna KV, Freimer NB, Cantor RM, Murray R, Kong A, Golimbet V, Carracedo
10		A, Arango C, Costas J, Jonsson EG, Terenius L,
11		Agartz I, Petursson H, Nothen MM, Rietschel M,
12		Matthews PM, Muglia P, Peltonen L, St Clair D,
13		Goldstein DB, Stefansson K, Collier DA (2009)
14		Common variants conferring risk of schizophrenia.
15	00	Nature 460:744-747
16	99.	Stevens SE, Kumsta R, Kreppner JM, Brookes KJ,
17 18		Rutter M, Sonuga-Barke EJ (2009) Dopamine transporter gene polymorphism moderates the
18		effects of severe deprivation on ADHD symptoms:
20		developmental continuities in gene-environment
21		interplay. Am J Med Genet B Neuropsychiatr
22		Genet 150B:753-761
23	100.	Stevens SE, Sonuga-Barke EJ, Kreppner JM,
24		Beckett C, Castle J, Colvert E, Groothues C,
25		Hawkins A, Rutter M (2008)
26		Inattention/overactivity following early severe
27 28		institutional deprivation: presentation and associations in early adolescence. J Abnorm Child
28 29		Psychol 36:385-398
30	101.	Surtees PG, Wainwright NW, Willis-Owen SA,
31		Luben R, Day NE, Flint J (2006) Social adversity,
32		the serotonin transporter (5-HTTLPR)
33		polymorphism and major depressive disorder. Biol
34		Psychiatry 59:224-229
35	102.	Takeshita T, Mao XQ, Morimoto K (1996) The
36 37		contribution of polymorphism in the alcohol
38		dehydrogenase beta subunit to alcohol sensitivity in a Japanese population. Hum Genet 97:409-413
39	103.	Taylor SE, Way BM, Welch WT, Hilmert CJ,
40	105.	Lehman BJ, Eisenberger NI (2006) Early family
41		environment, current adversity, the serotonin
42		transporter promoter polymorphism, and
43		depressive symptomatology. Biol Psychiatry
44		60:671-676
45	104.	Thapar A, Harold G, Rice F, Langley K,
46 47		O'Donovan M (2007) The contribution of gene-
47		environment interaction to psychopathology. Dev Psychopathol 19:989-1004
49	105.	Thapar A, Langley K, Asherson P, Gill M (2007)
50		Gene-environment interplay in attention-deficit
51		hyperactivity disorder and the importance of a
52		developmental perspective. Br J Psychiatry 190:1-
53		3
54	106.	Thapar A, Langley K, Fowler T, Rice F, Turic D,
55		Whittinger N, Aggleton J, Van den Bree M, Owen

1 2 3 4 5 6 7 8 9 10 11 12	107. 108.	M, O'Donovan M (2005) Catechol O- methyltransferase gene variant and birth weight predict early-onset antisocial behavior in children with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry 62:1275-1278 Uher R (2008) Gene-environment interaction: overcoming methodological challenges. Novartis Found Symp 293:13-26; discussion 26-30, 68-70 Uher R, McGuffin P (2008) The moderation by the serotonin transporter gene of environmental adversity in the aetiology of mental illness: review and methodological analysis. Mol Psychiatry
13		13:131-146
14	109.	van Os J, Rutten BP, Poulton R (2008) Gene-
15		environment interactions in schizophrenia: review
16		of epidemiological findings and future directions.
17		Schizophr Bull 34:1066-1082
18	110.	van Winkel R, Henquet C, Rosa A, Papiol S,
19		Fananas L, De Hert M, Peuskens J, van Os J,
20		Myin-Germeys I (2008) Evidence that the
21		COMT(Val158Met) polymorphism moderates
22		sensitivity to stress in psychosis: an experience-
23		sampling study. Am J Med Genet B
24		Neuropsychiatr Genet 147B:10-17
25	111.	Wilhelm K, Mitchell PB, Niven H, Finch A,
26		Wedgwood L, Scimone A, Blair IP, Parker G,
27		Schofield PR (2006) Life events, first depression
28		onset and the serotonin transporter gene. Br J
29		Psychiatry 188:210-215
30	112.	Young SE, Smolen A, Hewitt JK, Haberstick BC,
31		Stallings MC, Corley RP, Crowley TJ (2006)
32		Interaction between MAO-A genotype and
33		maltreatment in the risk for conduct disorder:
34		failure to confirm in adolescent patients. Am J
35		Psychiatry 163:1019-1025
36		
37		
38		