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ABSTRACT 

 

The precise role of the Dorsolateral Prefrontal Cortex (DLPFC) in attentional set activation is still not 

entirely clear. Hence, repetitive Transcranial Magnetic Stimulation (rTMS) can be applied to interfere 

with neural processing to determine whether a specific brain area is required in task performance.  

In this study, the influence of one session of High Frequency (HF)-rTMS of the left DLPFC on a 

reaction task using visual and auditory trials was investigated.  Participants were instructed to pay 

constant attention to the visual stimuli, whereas they were informed that distracting auditory stimuli 

could also appear. Participants had to respond to both stimuli. 

Results indicate that after one session of HF-rTMS of the left DLPFC, performance was improved for 

the primary task, but not for the distracters. Specifically, we found decreased RT for an endogenous 

component of attentional control which embodies the online representations of task relevant 

information. 

To conclude, the current results highlight a specific role of the left DLPFC in actively preparing for a 

specific task in the presence of a distracting task.  
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INTRODUCTION 

Attentional control can be described as ‘goal-driven allocation of attention towards the processing of 

task-appropriate stimuli and responses, and away from distracters’ [1, p792]. Commonly considered as 

a hallmark aspect of attentional control, ‘attentional set’ refers to the maintenance of an online task 

appropriate representation to strategically overcome as much as possible interference of distracters.  

Overall, numerous neuroimaging studies have been performed to highlight the role of the 

Dorsolateral Prefrontal Cortex (DLPFC) in attentional control[2]. Although the left DLPFC has been 

found to be implicated in distracter incongruency (for example incongruent Stroop trials) [3], recent 

studies indicate that this brain area seems to be specifically related to strategically keeping task 

relevant representations online (for example being prepared to name the color of a color noun)[4]. 

This foreknowledge about task relevant information and the associated cognitive adjustments can 

be labeled as an increased attentional set. 

The association between DLPFC and attentional set activation has been established using various 

cognitive tasks designs, but mostly using a trial by trial cue to prepare subjects to deal with possible 

upcoming distracters. The way that participants increase the attentional set depends on the context 

of the cue, but is based on fast working memory recruitment to strategically prepare for task 

relevant representations and possible distracters[5]. However, instead of this cue by cue instruction, 

a general instruction before the start of an experiment can also indicate the primary task and the 

possible appearance of distracters. In this case subjects are prepared to enhance their attentional 

set for executing this primary task, but are aware that they also have to respond to unexpected 

distracters. If the left DLPFC is related to this type of attentional set, increased DLPFC activation 

should be related to an increased potential to execute the primary task. Yet, to the author’s 

knowledge, this has not been investigated in previous research.   

Despite fundamental research so far, neuroimaging research cannot conclude on causality in the 

specificity of DLPFC activation patterns. However, repetitive Transcranial Magnetic Stimulation 

(rTMS), a non-invasive means of stimulating nerve cells in superficial areas of the brain [6], can be 

used to experimentally influence DLPFC activity. During the rTMS procedure, an electrical current 

passes through a coil placed close to the participants head and depolarizes underlying neurons. 

Using aggressive stimulation parameters (more than 10 Hz stimulation), effects of rTMS on 

information processing can last for many hours [7].  

In this study, we have used High Frequency (HF; 10  Hz) rTMS to increase -reversibly and transiently- 

the normal activity of the left DLPFC. The aim of this study was to elucidate the specific role of left 

DLPFC activation in attentional set using a reaction task with a primary and an interfering distracter 

task.  

In this task, we made use of two different input and output modalities during three successive blocks 

with fixed order. Subjects were first ‘pretrained’ on two simple tasks afforded by a set of visual 

(block 1) and auditory (block 2) stimuli respectively. In a third mixed block, both visual and auditory 

trials were presented randomly with different stimulus onset asynchronies and participants had to 

react to both trials. In this last block, however, participants were instructed to pay constant 

attention to the visual stimuli, whereas they were informed by a cue, just before stimulus onset, if a 
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distracting auditory stimulus would appear. For maximum interference, the distracting cue was 

visual and closely related to the visual characteristics of the principal task. 

Participants were thus continuously prepared in advance for the visual stimuli, and this implies 

prospective and active attentional reconfiguration during the entire task, which refers to attentional 

set. For visual trials, we used a four choice reaction time task, distinguishing between a component 

of endogenous information processing (decision time) and a component of psychomotor speed[8]. 

Because the distracting task was a simple RT task implying no decision processes, only total reaction 

times were registered. 

If the left DLPFC is involved in the regulation of an active attentional set to strategically prepare for a 

task, HF-rTMS of the DLPFC would have an effect on the decision time of visual trials. Specifically, we 

hypothesized a decreased reaction time in the component of endogenous information processing, 

but not in the psychomotor speed component for visual trials. In contrast, we anticipated no effects 

on auditory trials because participants are not actively prepared for this stimuli but performance 

relies on the presentation of an external cue. 

METHOD 

Participants 

Because gender differences in attentional processing have been demonstrated, for reasons of group 

homogeneity we included only female volunteers. A total of 20 healthy right-handed female 

volunteers were recruited ranging in age from 21 to 43 (M= 27.7; SD= 2.67). The study was approved 

by the medical institutional ethics committee of the University Hospital Brussels (U.Z. Brussel), which 

is in accordance with the recommendations laid down in the current version of the Declaration of 

Helsinki. 

Before the start of the study, written informed consent was obtained from all the participants. All 

the participants underwent a standard physical and mental examination performed by a trained 

psychiatrist, including the evaluation of current and past history of medical and psychiatric disorders. 

The psychiatric diagnosis was completed by the structured Mini-International Neuropsychiatric 

Interview (based on the DSM-IV-TR criteria)[9], In addition, to exclude epileptic activity every 

participant underwent an EEG, inspected by a neurologist.  Magnetic Resonance Imaging (MRI) was 

performed to screen for abnormal structural brain tissues or tumors. Based on these measurements, 

none of the subjects demonstrated neurological, psychiatric or medical history or current problems. 

This prior medical screening also excluded volunteers with contraindications according to the safety 

guidelines for rTMS [10].Right Handedness was assessed through a well validated Dutch scale of Van 

Strien [11]. 

Procedure 

Subjective mood ratings were recorded on Visual Analogue Scales (VAS) [12] at time points:  baseline 

(pre), immediately after rTMS (post 1), and after task performance (approximately 30 minutes after 

stimulation, post 2). The VAS consisted of subscales for “depression”, “anger”, “fatigue”, “vigor” and 

“tension”. Participants were asked to describe how they felt “at that moment” by indicating on 10-
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centimeter horizontal lines whether they experienced the five abovementioned mood states, from 

“not at all” to “very much”.  

A reaction time task was performed before and after rTMS. This task made use of a device with a 

central pushbutton and eight pushbuttons around positioned in a semicircle. In addition, a pedal was 

attached to the device.   

This paradigm contained three task blocks with fixed order, in which the two fist blocks served to 

train two simple motor tasks. During the first block (28 trials), participants were told that when they 

saw a light turning on in one of the eight push-buttons, they had to remove their finger from the 

central pushbutton and push out the light in the lit button (but only four lights could turn on). In the 

second block (28 trials), participants were instructed to let their foot hover over the pedal and to 

press that pedal with their foot when they heard a buzzer. In the third block (28 visual and 29 

auditory trials), participants were instructed to respond to both visual and auditory trials (with the 

same sequence for every participant).  Although participants mostly alternated between stimuli (45 

out of 57), they did not know in advance whether the stimulus would be a light or a sound. They 

were very explicitly instructed to focus their attention on the visual stimuli but that auditory stimuli 

would interfere during the block. Because we wanted an index for a general task preparation, the 

visual trials were not preceded by a cue. For visual trials, two components of the reaction time were 

recorded [8]. Decision time (DT), a central (cognitive) component, reflects the time required to 

initiate a response and corresponds to the time that elapses between stimulus onset and the release 

of the central pushbutton. For attentional set, this cognitive component is most relevant, because it 

measures top-down strategic task preparation processes in the most straightforward way. 

Movement time (MT), a peripheral executive component, represents the motor activity or the time 

required to complete the response [13]. 

For maximum interference, just before each auditory trial, the central pushbutton (cue) was lit for 

150 msec with visual characteristics closely related to the primary task. As a manipulation check, we 

asked all the participants afterwards if they had noticed the cue that indicated the upcoming 

auditory stimulus. All the participants clearly did.  

Stimulus Onset Asynchrony differed randomly between 3000 msec and 6000 msec.  

Subsequently after task performance, HF-rTMS of the left DLPFC was performed using a MAGSTIM 

high-speed stimulator (supplied by Magstim Company Ltd., Wales, UK) with a figure-8-shaped coil. In 

order to correct individual anatomical differences and to avoid stimulation of other cortical areas 

besides the left DLPFC, all subjects underwent a T1-weighted MRI (3D-TFE, voxel size 1x1x1 mm) of 

the brain using a 1.5T Intera MR scanner (Philips, Best, the Netherlands). We located the left DLPFC 

visually on the 3D surface rendering of the brain based on the subject’s own gyral morphology and 

we marked the centre of the middle frontal gyrus as the target site, which is anatomically localized in 

the centre of the DLPFC (Brodmann area 9/46; Talairach coordinates -50, 34, 34). The corresponding 

coil position was found by determining the perpendicular projection of this point on the scalp. On 

the 3D-reconstruction of the head, we marked 4 reference points - right ear, left ear, vertex and 

nose – which were connected by two reference axes: one from nose to atlas and one between the 

two ears. A fifth reference point, the projection of the DLPFC on the scalp, was defined by the 

crossing of the two axes. For a visualisation of the coil position on a individual’s head, we drew these 

reference axes on a cap by using  the geodetic distance from nose to top, from right ear to top and 
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from top to the coil position, yielding the same stimulation point for the two sessions of each 

individual (for more information, we refer to the paper of Peleman et al. [14]). 

We used following stimulation parameters: 110% of motor threshold (stimulation intensity), 10 HZ 

(stimulation frequency),  40 trains of 3.9 seconds’ duration, separated by an intertrain interval of 

26.1 seconds, resulting in 1560 pulses per session. The total stimulation time was approximately 20 

minutes. 

This study was conducted according to a double-blind within-subjects design by counterbalanced 

crossover sham (placebo) and active rTMS. Real and sham stimulation were performed at the same 

place on the skull, but for sham stimulation the figure-8-shaped coil was held at an angle of 90° only 

resting on the scalp with one edge according to the sham guidelines [15]. During stimulation, all the 

subjects wore earplugs and were blindfolded to ensure blindness of the stimulation procedure. 

There was a delay of 1 week between the two stimulation sessions. Debriefing after the experiment 

revealed that all the subjects believed they had received real rTMS on all occasions. This experiment 

was part of a larger project investigating also other neuro-cognitive markers. 

Statistical Analyses 

Changes of mood were analyzed using 2X3 within-subjects ANOVAs with stimulation (rTMS-Sham) 

and time (pre - post 1 - post 2) as within-factor and mood scores, evaluated with the VAS scores as 

dependent variables. 

For changes in reaction times, a priori hypotheses were based on existing literature. We tested our 

specific ad hoc hypothesis using separate paired t-tests.  Because the reaction to visual trials is a 

completely different process as compared to the reaction to auditory trials, we performed separate 

t-tests for each component. The dependent variable was the median reaction time (RT), registered in 

milliseconds. First, we analyzed RT to visual trials (principal task) that were preceded by auditory 

trials (distracters). Second, we analyzed RT to auditory trials (distracters) that were preceded by 

visual trials (principal task). Third, we used t-tests to explore the influence of rTMS on median RT 

during the first two training blocks. In these blocks, no attentional control is required because RT’s 

are based on stimulus repetitions. Finally, because we noticed that the difference of RT between the 

training block and the task block was different for the principal task and for the distracters, we 

performed additional t-tests.   

Because error rates were extremely low (only a few errors occurred), no accuracy analyses were 

performed. Significance level was set at p <.05 for all the statistical analyses that were conducted 

with SPSS 15.0. Cohen's d effect sizes were calculated based on the standard differences between 

means (using mean and standard deviation). For an overview of all median RT’s, we refer to table 1. 

RESULTS 

Effects on mood 

Because of some missing values during testing, data of only 19 participants were analyzed. For the 

subscales “anger”, “depression” and “vigor” we found no main effects on stimulation or time. We 

found a main effect on the subscale “fatigue” for stimulation *F(1,18) = 5.706, p = .028; s] and on the 

subscale “tension” for time *F(2,18) = 3.694, p = .047, s]. However, no crucial significant interaction 
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effects were found between time and stimulation (p’s < .05). We can therefore conclude that mood 

remained unchanged after left prefrontal HF-rTMS. 

Effects on cognition 

1. Reaction times on Visual trials during the mixed reaction block (block 3) 

Paired t-tests indicated a significantly decreased DT on visual trials after rTMS stimulation as 

compared to pre task [t(19) = 3.795; p = .001; cohen’s d = .65]. In the sham placebo condition, we 

found no significant pre-post differences [t(19) =1.262 ; p = .222; cohen’s d =.18]. Furthermore, for 

MT we found no significant changes in RT either after rTMS [t(19) = .748; p = .464; cohen’s d =.16] or 

after sham [t(19) = .865; p = .398; cohen’s d =.14]. 

2. Reaction times on Auditory trials during the mixed reaction block (block 3) 

As for these trials, no significant differences in RT to auditory trials were found either in the rTMS 

condition [t(19) =.521; p = .609 ; cohen’s d =.09] or in the sham placebo condition [t(19) =.360; p = 

.723; cohen’s d =.07].  

3. Reaction times on the visual and auditory trials in the training blocks (1 & 2) 

As predicted, in the sham placebo condition, there were no RT differences before to after treatment 

either for the auditory trials [t(19) = 0.024; p = .981; cohen’s d =.16], for DT [t(19) = 0.551; p = .588; 

cohen’s d =.07] or MT [t(19) = 1.022; p = .320; cohen’s d =.19] of visual trials. Moreover, after active 

rTMS RT for either auditory trials [t(19) = 0.218; p =  .829; cohen’s d =-.08], DT [t(19) = 0.309; p = 

.760; cohen’s d =.06] or MT [t(19) = 1.022; p = .320; cohen’s d =.17] for the visual trials did not differ 

significantly from the baseline. This indicates that rTMS did not simply influence reaction speed. 

4. Reaction time during the training (blocks 1 and 2) versus reaction time during the mixed task 

block (block 3) 

For visual trials, we found a significantly shorter median DT during the mixed reaction block as 

compared to the training block in all stimulation conditions: Shampre [t(19) = 6.467; p = .0001; 

cohen’s d =1.86] and Shampost [t(19) = 6.645; p = .0001; cohen’s d =1.54]; rTMSpre [t(19) = 4.976; p = 

.0001; cohen’s d =1.68] and rTMSpost [t(19) = 7.454; p = .0001; cohen’s d =2.34]. These results are 

indicative for strong endogenous control mechanisms in the mixed block (block 3).  

We found significantly faster median MT only during the mixed reaction block as compared to the 

training block in the baseline of the placebo condition: Shampre [t(19) = 3.556; p = .002; cohen’s d 

=.92]. No other differences were observed: Shampost [t(19) = 2.018; p = .057; cohen’s d =0.57] 

condition and rTMSpre [t(19) = 1.055; p = .305; cohen’s d =.33] and rTMSpost [t(19) = 1.261; p = .223; 

cohen’s d =.38] conditions.  

For the auditory trials (distracters), we found faster median reaction times on the training block 

compared to the mixed reaction block in Shampre [t(19) = 3.272; p = .004; cohen’s d =1.34] and 

Shampost [t(19) = 3.714; p = .001; cohen’s d =1.58] conditions and in rTMSpre [t(19) = 3.408; p = .003; 

cohen’s d =1.31] and rTMSpost [t(19) = 3.074; p = .006; cohen’s d =1.00] conditions.  



Cognitive effects of rTMS of the left DLPFC__ 7 

Role of age on attention 

For excluding the possible effects of age on attentional performance during this reaction time task, 

we analyzed the correlation between age and RT, DT and ART in all blocks, both for sham and rTMS 

conditions. We did not find any significant correlation (all p’s >.05) which indicates that age was not 

related to attentional performance. 

 

DISCUSSION 

Using HF-rTMS, we investigated the role of the left DLPFC in attentional set activation when subjects 

were prospectively prepared to perform a specific task while a second task was used as a distracter. 

In a mixed reaction task, subjects were instructed to primary pay attention to a one task (i.e. visual 

task) whereas the other task was conceived as a distracter task (i.e. auditory task). Because mood 

remained stable after stimulation, the results could be evaluated independent of mood changes [16].  

Behavioral data of the mixed reaction task indicated significantly decreased DT of visual trials after 

HF-rTMS of the left DLPFC, whereas no changes emerged for MT. This suggests that rTMS had an 

effect on the ability to prepare for certain task requirements by keeping task relevant 

representations online. Indeed, no significant differences in RT were found for auditory trials that 

are considered as being distracters. The fact that, compared to the simple training tasks, only the DT 

of the visual tasks decreased in all the mixed conditions (pre/post/rTMS/SHAM), suggests that task 

relevant representations can be set by the context, in this case being the task instruction prior to the 

mixed reaction task. This decreased visual DT in the mixed reaction task is indicative for an increase 

of endogenous task control. For the auditory distracting trials, we found faster median reaction 

times on the training block trials compared to the mixed block trials. Based on this task context, 

rTMS of the left DLPFC increased performance for a primary task but did not affect RT of the 

distracters. The observation that rTMS of the left DLPFC only influenced DT in the mixed reaction 

task points to a crucial role of the left DLPFC in attentional set representations. Important to 

mention is that both tasks were appearing with the same frequency in the mixed reaction task. 

Behavioral data indicated no changes after placebo sham stimulation, which indicates the specific 

effect of active stimulation. Moreover after active rTMS, RT of visual and auditory training blocks 

were not changed. This indicates that the significant effects on the visual trials cannot be attributed 

to non-specific differences associated with stimulus and/or response mode (visual vs auditory) or to 

effects attributed to general arousal or general speeding (training vs mixed reaction task). Moreover, 

because of the important role of age in attentional performance, we analyzed its possible  effects. In 

this group of subjects ranging in age from 21, to 43 years old, we found no effects of age on 

attentional performance on this task. 

However, it is still possible that with practice participants obtained a certain trade-off between fast 

reacting (lifting the finger from the central pushbutton and selecting and planning the movement to 

the lit pushbutton afterwards) versus movement planning before lifting the finger from the central 

pushbutton. Participants may have shifted from a careful ‘plan-before-you-move strategy’ in the 

training blocks to a quick reaction strategy of ‘first lift and later plan’ in the mixed reaction block. 

However, the MT in training blocks did not reveal to be different compared to the MT for the mixed 
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reaction block before and after rTMS. Moreover, the manifestation of a trade-off pattern between 

MT and DT within the mixed reaction task block after rTMS stimulation should result in a negative 

correlation between RT of both components. However, we found a positive correlation between MT 

and DT before rTMS [r = .438; p = .053; s] and no correlations between both components on the 

other stimulation moments: rTMS post [r = .259; p = .270; ns], Sham pre [r = .105; p = .659; ns] and 

sham post [r =.105; p = .661; ns]. All together, this suggests no different response strategy after 

rTMS stimulation, which indicates that the DLPFC is specifically related to an increased cognitive 

preparedness and not to a changed motor strategy. This is in line with the idea that activation of top 

down attentional control provides signals that favor task-relevant response pathways over 

competitors [17].  

Being principal psychometric concepts, validity and reliability are important regarding the specificity 

of the conclusions and the generality of research results. One might raise questions about the 

validity of the task we used, referring to the degree to which this paradigm accurately reflects the 

concept of attentional set. However, using this paradigm, it was possible to conceptualize 

attentional set in a clear and unambiguous design in which subjects had to focus on specific stimuli 

and ignore other distracting stimuli. This design is in accordance with the definition of how to 

measure attentional control [1, p 792] and attentional set [4]. The second psychometric aspect, 

reliability, addresses whether repeated measures provide consistent results given the same 

circumstances. Because every participant received both a sham and real stimulation session, we can 

conclude about the extent to which the results are consistent. Using a counterbalanced order 

between both sessions, we could compare the two baseline performances before stimulation/sham. 

Statistical analyses did not demonstrate a difference in baseline performance (p ≥ .61], showing that 

RT measurements in this task are reliable. This implies that decreased DT after rTMS, as compared to 

no differences after sham, can be attributed to the stimulation. 

A limitation of this research is that it is generally believed that effects of rTMS are not strictly local 

because of a high degree of connectivity to other cortical areas and subcortical nuclei [18]. Moreover, 

it cannot be excluded that stimulating one hemisphere has effects on the other hemisphere via long-

term potentiation of callosal projections. Being a subsequent limitation of this research, we have no 

information concerning the IQ of every participant. This might be important because fMRI research 

demonstrated that those individuals who showed resistance to distracters during a demanding 

working memory task had both a higher IQ and increased prefrontal activity [19]. Future rTMS 

research should take this variable into account when stimulating the prefrontal cortex. 

To conclude, the current results point to a crucial role of the left DLPFC in the active and endogenous 

preparation for performing a well defined task as compared to performance based on an external 

cue presentation. This goal-driven allocation of attention towards the processing of task-appropriate 

stimuli has been labeled as an increased attentional set [1]. Neuroimaging research has frequently 

associated this goal driven attentional control to left DLPFC computations [20, 21] but this is, to our 

best knowledge, the first study to demonstrate the crucial role of this brain area in task set 

manipulation in favor of a specific task in a mixed reaction task. The task context was set by 

instructions that enhanced attention for a specific task and made a second task a distracter task.  

Importantly, conclusions of this study were based on post hoc tests testing a-priori hypotheses. This 

might be considered as a drawback for the interpretation and reliability of the current results. 
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Therefore, although the effects size of the results shows an important effect, the results should be 

interpreted with caution and further research into the effect of rTMS on cognitive control processes 

is warranted. Therefore, future research combining rTMS with functional brain imaging is essential 

to further investigate the structural and functional activation within the left DLPFC in the circuitry 

that is responsible for higher attentional control.  
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Table 1: Mean Reaction Time latencies (and Standard Deviation) in the mixed reaction task before and after sham control and 
active rTMS.  

 rTMS Sham 

 pre post pre post 

Auditory trials 312.15(53.23) 306.65(65.13) 319.75(57.27) 316.10 (46.14) 

Visual trials_DT 289.80 (38.04) 264.05 (40.84) 281.34 (32.87) 287.87(36.20) 

Visual trials_MT 246.52 (68.71) 257.4 (64.45) 270.3 (59.28) 261.07(64.54) 

 

Table 2: Mean Reaction Time latencies (and Standard Deviation) in the two training blocks before and after sham control and 
active rTMS.  

 rTMS Sham 

 pre post pre post 

Auditory trials 248.5 (43.18) 252.15 (40.60) 238.12 (64.06) 246.92 (41.24) 

Visual trials_DT 348.35 (34.01) 346.36(27.82) 345.90 (35.50) 343.57(27.88) 

Visual trials_MT 227.01 (46.63) 235.45(49.18) 223.43(40.67) 231.02  (36.16) 

 
 

 

 
 


