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This article reviews inverse probability weighting methods and doubly robust 

estimation methods for the analysis of incomplete data sets. We first consider methods 

for estimating a population mean when the outcome is missing at random, in the sense 

that measured covariates can explain whether or not the outcome is observed. We then 

sketch the rationale of these methods and elaborate on their usefulness in the presence of 

influential inverse weights. We finally outline how to apply these methods in a variety of 

settings, such as for fitting regression models with incomplete outcomes or covariates, 

emphasizing the use of standard software programs. 
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1. Introduction 

Missing data are often encountered in social science studies. They raise concern 

over standard analyses which are restricted to subjects with complete data, as these 

subjects may form an unrepresentative subgroup from whom biased conclusions may be 

obtained. The idea that this bias can be corrected by weighting each of these subjects’ 



observations by the inverse of the probability of observing complete data, has been 

around at least since Horvitz and Thompson formally introduced it in 1952 (Horvitz & 

Thompson, 1952). Nevertheless, for many years, the method of inverse probability 

weighting (IPW) gained little acceptance in the missing data literature because of its 

imprecision relative to more popular missing data methods, such as multiple imputation 

(Rubin, 1987). This has changed drastically over the past decade, since the seminal work 

of Robins, Rotnitzky and Zhao (1994), who demonstrated how the precision of IPW 

estimators could be greatly improved in a general regression context to the point where 

they become competitive with imputation estimators (Carpenter, Kenward & 

Vansteelandt, 2006). More recent work by Scharfstein, Robins and Rotnitzky (1999) and 

Robins and Rotnitzky (2001) has also contributed to this. These authors demonstrated 

that some IPW estimators possess a property of double robustness. Estimators that share 

this property are unbiased in large samples when either an imputation model or a model 

for the probability of complete data is correctly specified by the user, but not necessarily 

both. These estimators therefore enjoy greater robustness against model misspecification 

than both imputation and IPW estimators. Despite these advances, the practical 

usefulness of (doubly robust) IPW methods continues to be a matter of debate (see e.g. 

Kang & Schafer, 2008, and the subsequent discussions), partly because the literature on 

this topic is not easily accessible, and mostly because of concerns about the instability of 

IPW estimators in the presence of influential weights.  

The goal of this article is to give an accessible introduction to inverse probability 

weighting methods and doubly robust estimation methods for the analysis of incomplete 

data. The key concepts are outlined in the second section where the focus is on estimating 



a population mean. We contribute to the ongoing debate by elaborating on the usefulness 

of IPW and doubly robust estimators in settings where they tend to give results most 

distinct from imputation estimators (namely in the presence of influential inverse 

weights). We do this in the third section, both using large sample arguments and via 

simulation studies. The generality and flexibility of the inverse weighting idea is 

demonstrated in the fourth section in the context of fitting regression models with 

incomplete outcomes or covariates. This section may be skipped by the less technically 

minded reader upon first reading. Our emphasis throughout is on the intuition behind the 

methods and on the use of standard software. We end with a discussion of the relative 

advantages of the different estimation strategies. 

 

2. Estimating a population mean from incomplete outcome data 

2.1. Inverse probability weighting 

Suppose that we have a study in which it is intended to collect outcome 

measurements Y1,…,Yn on a random sample of n subjects, but that these outcomes are 

missing for some subjects. Specifically, we let RRi = 1 denote that Yi is observed and RiR  = 

0 denote that Yi is missing. When missingness (i.e., whether or not the outcome is 

observed) is associated with prognostic factors Xi of the outcome, then the subjects with 

complete data form a selective subgroup and thus the sample average of their outcomes 

may systematically over/underestimate the population mean. This selection bias can be 

corrected when all prognostic factors Xi for missingness have been measured, in which 

case the data (Yi, Xi) follow a so-called missing at random mechanism. This correction 

can be done by weighting each responder’s data by the reciprocal of the probability πi of 



that subject having observed outcome data Yi on the basis of his/her background 

characteristics Xi. In particular, having estimated the probabilities πi – for instance by 

fitting a logistic regression model for the probability of observed data (i.e., RRi = 1), given 

the background characteristics Xi – we calculate  
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where RRiYi is ‘Ri R x Yi’ and so is defined as zero whenever RR ri is zero. The estimato W IPμ̂  

is called an inverse probability weighted (IPW) estimator. It is a variant of the Horvitz-

Thompson estimator, which was introduced in the context of survey sampling in finite 

populations (Horvitz & Thompson, 1952). In practice, it is easily obtained with standard 

software via the following two-stage procedure: 

1. Fit a logistic regression model for the probability of observing the outcome 

measurements (i.e., RiR

ect 

mated mean response, which we denote by 

 = 1) as a function of prognostic factors Xi. Below, we  

refer to this model as the response model. Let πi denote the fitted value for subj

i. 

2. Fit a linear model to the observed outcome measurements (with no predictors), 

using weighted least squares regression with weights 1/πi. The only estimated 

coefficient is the intercept, i.e. esti

IPWμ̂ . 

The estimator IPWμ̂  is unbiased for the mean outcome in the study population, 

provided that the sample size is ‘sufficiently’ large. Intuitively, this is because the impact 

of inverse probability weighting is to ‘reconstruct’ a random sample from the intended 



study population, by giving more weight to subjects when they are less likely (on the 

basis of their background characteristics Xi) to be observed. Specifically, subjects with a 

50%, 25%, … chance of observed outcome data are only half, a quarter, … as frequently 

seen in the observed sample as in the study population. Thus the observed data for such 

subjects are weighted 2 (=1/0.5) times, 4 (=1/0.25) times, … in the analysis to account 

both for themselves and for missing subjects with the same background characteristics in 

the population. The following somewhat extreme example, adapted from Carpenter, 

Kenward and Vansteelandt (2006), illustrates this. Suppose that the data for 9 subjects are 

as given in Table 1. Then the true outcome mean is 2. Suppose now that outcomes are 

missing for subjects with RRi = 0. Then the outcome mean for responders (i.e., those with 

RiR  = 1) is 13/6, biased. To correct this bias, the IPW estimator IPWμ̂  requires first 

estimating the probability of observed outcome data for each subject on the basis of the 

measured covariate X, which explains the missingness. This probability is 1/3 for subjects 

in group Xi = A because only 1 in 3 subjects have recorded outcome data in that group, 

and likewise 1 and 2/3 for subjects with Xi = B or C, respectively. The single outcome 

that was recorded for subjects with Xi = A is thus counted three times in the IPW 

estimator (see Equation 1): once to account for the subject with observed outcome in that 

group and twice more for the 2 subjects with missing data in that group. Note that the 

impact of this is to reconstruct the original measurements. Likewise, the observed 

outcome measurements for subjects with Xi = B or C are each counted 1 and 1.5 times, 

respectively. More generally, the principle behind IPW estimators is illustrated in Figure 

1 where the top left panel shows a simulated complete dataset. Now suppose some of the 

outcomes were made missing with probability 1-πi, depending on Xi. These outcomes are 



shown by question marks. The top right panel shows all observed measurements 

weighted by 1/πi, where the circle’s area is proportional to the weight. The IPW estimator 

is the weighted average of these measurements. It thus gives more weight to the observed 

outcomes to the left of the panel to account for the relatively greater number of missing 

outcomes in that region.  

A more subtle intuition for the IPW estimator comes from noticing that inverse 

probability weighting removes the association between missingness and prognostic 

factors Xi, and thus makes the missingness non-selective. Indeed, the dependence of 

missingness on background characteristics is entirely explained by the missingness 

probabilities πi, and thus completely disappears after inverse probability weighting (since 

RRi/πi is on average 1 at all levels of the background characteristics Xi (see Table 1) and 

thus missingness RiR  is not associated with Xi after inverse probability weighting). Finally, 

from a more theoretical perspective, the large-sample unbiasedness of the IPW estimator 

follows from (i) missingness having no residual association with the outcome after 

adjusting for Xi and (ii) RR

increases, this is enough to ensure the IPW estimator 

i/πi being 1 on average (e.g. Table 1). As the sample size 

IPWμ̂  and the intended sample 

average ∑
=i

in 1

Despite their theoretical validity and computational simplicity, a drawback of 

IPW estimators is that they can behave very badly in examples where a few individuals 

receive a very large weights (Robins, Rotnitzky & Zhao, 1995; Robins & Wang, 2000; 

Kang & Schafer, 2008; Robins et al., 2008). This is likely to happen when measured 

background characteristics are strongly predictive of mi

n

Y1 are the same in expectation. 

ssingness in the outcome. In view 

of this, we consider a number of alternative estimators. 



Figure 1 about here. 

2.2. Im

i) from this model. Next, the 

sample average from the imputed data se

putation 

Imputation estimators (Kenward & Carpenter, 2007, or in more detail, Rubin, 

1987) tend to be less variable than IPW estimators in the presence of extreme weights 

(Robins & Wang, 2000). In regression mean imputation, for instance, a model for the 

expected outcome given the background characteristics Xi is fitted to the responders, and 

then the missing values are imputed with fitted values m(X

t is calculated: 
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This estimation principle is visualized in Figure 1 (bottom left panel) where the missing 

outcomes are replaced with their expectations m(X

n

XmRYR −+= ∑μ .      (2) 

 article, although the 

conclus

l fit, Equation 2 is identical to the sample average of 

the fitted values in all subjects, i.e.   

i) on the basis of the measured 

background characteristics Xi. More generally, one may consider multiple imputation 

(Rubin, 1987; Kenward & Carpenter, 2007). This would lead to an equivalent estimator 

of the population mean as in Equation 2 in the case of an infinite number of imputations. 

Multiple imputation will therefore not be explicitly considered in this

ions drawn for regression mean imputation will extend to it. 

In view of later results, it is useful to note that when m(Xi) is obtained as the fitted 

value from a generalized linear mode

∑
=i

iIMP n 1

This is so because the outcome 

=
n

Xm )(1μ̂ .       (3) 

and fitted values from a generalized linear model analysis 

have the same sample average. 



Throughout, we will refer to a model for the expected outcome in the responders, 

given the missingness predictors (e.g., Xi), as an imputation model. 

This is the model leading to the mean imputations m(Xi). When this model is correctly 

specified, the regression mean imputation estimator IMPμ̂  gives an unbiased estimate of 

the mean outcome in the study population. This is because when missingness is 

completely explained by Xi, the predicted value m(Xi) – although obtained by fitting a 

regression model to the responders’ data – is also the correct expected outcome in 

nonresponders with background characteristics Xi.  

 

2.3. Model misspecification and extrapolation 

The reliance on correct specification of the imputation model is a salient feature 

of imputation estimators, in the same way that reliance on the correct specification of the 

response probability πi is characteristic of IPW estimators. Ideally, the choice between 

these estimators should thus, at least partly, be based on which of these two models is 

more likely to be correctly specified: the imputation model or the response model. 

Throughout, we will characterize both models as ‘working models’ because they are not 

guaranteed to be correct. While standard goodness-of-fit techniques may be adopted for 

assessing the adequacy of these working models, such techniques may have limited 

success for detecting misspecification of the imputation model. This is because this 

model should appropriately predict the outcome in nonresponders and thus fit well in the 

region where the latter’s X-measurements are situated. When the covariate distribution 



shows large separation between responders and nonresponders, conventional model 

checking (of the imputation model) cannot detect misspecification in that region. The 

imputation model, which is fitted to the responders, is then not reliable for imputing the 

outcome in nonresponders, as it may involve serious extrapolations beyond the range of 

the observed data (Tan, 2008). This is illustrated in Figure 1 (bottom left panel), which 

shows that the nonlinear trend of the outcome in X is difficult to detect on the basis of 

subjects with observed data alone. More generally, the imputation estimator under a 

linear prediction model may be heavily influenced by extreme extrapolations. This is not 

revealed by the output of multiple imputation software and is thus entirely implicit. These 

same limitations hold for maximum likelihood and mean score methods, which estimate 

parameters in the presence of missing data by averaging over the conditional (imputation) 

distribution of the missing data. 

IPW estimators do not suffer directly from this extrapolation problem because 

they merely rely on a model for the probability of observing the outcome data, given 

background characteristics X, and this model is estimated from all the units in the data 

set. Instead, these estimators must deal with extreme weights which are likely to arise 

when responders and nonresponders are dissimilar in terms of background characteristics 

(X). This is reflected in large standard errors for the IPW estimators, arising because a 

few subjects are very influential in the analysis so minor changes in their data (hence 

weights) may non-trivially affect the results. This instability of IPW estimators at least 

partly explains the reason why these estimators, which are easy to compute, are not 

routinely used in practice. Note however that their instability is a proper reflection of the 

separation of the background characteristics between responders and nonresponders (Tan, 



2008), and thus of the lack of information on the population mean in the data from the 

nonresponders. Thus it should not necessarily be regarded as a disadvantage of the 

approach, but rather as a consequence of its transparency in such settings. In particular, 

when there is complete separation in the distribution of background characteristics 

between responders and nonresponders, then IPW estimators will break down – i.e.,  

nonresponders will have response probabilities πi equaling zero (and thus RRi/πi = 0/0 is 

not defined for these subjects). As such, they make clear that there is no basis for 

inferring the expected outcome in nonresponders. In contrast, maximum likelihood and 

(multiple) imputation estimators with comparatively small standard errors, but possibly 

large bias, will still be produced because they are based on this implicit extrapolation (see 

Murray & Findlay (1988) for an example). 

 

2.4. Doubly robust estimators 

Imputation and maximum likelihood estimators can be substantially more precise 

than IPW estimators when their respective working models are correctly specified, as 

they make more efficient use of all subjects’ data. However, as explained in the previous 

section, assessing the working imputation model is more subtle and can be impossible in 

some situations. This raises the question as to which estimator to use in a given setting. 

Doubly-robust estimators (Robins & Rotnitzky, 2001; Davidian, Tsiatis & Leon, 2005; 

Carpenter, Kenward & Vansteelandt, 2006) overcome the need for choosing between the 

two alternative working models by maintaining validity when either one, but not 

necessarily both of them is correctly specified. One such estimator is obtained by 

replacing the expected value m(Xi) in (3) by the fitted value m*(Xi) of a generalized linear 



model analysis of outcome Yi on background characteristics Xi, fitted to the responders 

using the weights 1/πi (Robins et al., 2008). In particular, they can be obtained using 

standard software via the following three-stage approach: 

1. Fit a logistic regression model for the probability of observing Yi (i.e., RiR  = 1) as a 

function of prognostic factors Xi, and let πi denote the fitted value for subject i. 

2. Fit a generalized linear model for the outcome of responders in function of 

prognostic factors Xi using weights 1/πi and let m*(Xi) denote the fitted value for 

subject i. 

3. Take the sample average of the fitted values m*(Xi) of both responders and 

nonresponders as an estimate of the outcome mean.  

This estimation principle is visualized in Figure 1 (bottom right panel) where the missing 

outcomes are predicted on the basis of the measured background characteristics Xi, but 

where outcomes receive larger weight in calculating the mean response when they are 

more likely to be missing. By thus focusing more on regions of the covariate space where 

the nonresponders are located, these predictions may succeed better at predicting the 

outcome in the study population. 

The doubly robust nature of the estimator (i.e., Equation 3 with m(Xi) replaced by 

m*(Xi)) can be understood from the following argument, which may be skipped by the 

less technically minded reader. First, when the imputation model is correctly specified, 

then misspecification of the weights 1/πi does not hamper the validity of the estimators 

m*(Xi), and hence of the doubly robust estimator. This is because the weights 1/πi only 

depend on Xi and the model residuals have mean zero for each Xi. Second, when the 

response model is correctly specified, then misspecification of the imputation model does 



not affect the validity of the doubly robust estimator because the weighted (iteratively 

reweighted) least squares estimator satisfies 
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With RRi/πi being on average 1 at all levels of the background characteristics, it follows 

that m (X*
i) equals the outcome Yi in expectation. 

The proposed doubly robust estimator has the additional advantage of being more 

precise than the IPW estimator when both working models are correctly specified. This is 

because it extracts additional information from the imputation model (Robins, Rotnitzky 

& Zhao, 1995). This will emerge more clearly in the fourth section in the context of 

regression models with incomplete covariates. However, the doubly robust estimator is 

less precise than the imputation estimator IMPμ̂  when the imputation model is correctly 

specified. This is the price to pay for this estimator which, in contrast to the imputation 

estimator, is unbiased in large samples when the outcome regression is mis-specified, 

provided that the probability of missing data is well modeled in function of background 

characteristics. The choice between doubly robust estimators and imputation estimators is 

thus mainly a tradeoff between bias and efficiency. Because the bias of an estimator is 

invisible, in contrast to its imprecision which is reflected through its standard error, the 

concern for bias usually trumps efficiency concerns and thus the doubly robust estimator 

may be the preferred one for routine use. However, the above reasoning is based on large 

sample arguments and may not provide a good picture of the finite sample behavior of 

the estimators, especially when the weights are extreme for some subjects. To gain some 

insight into this question, we report some small to moderate sample simulation 

experiments in the third section.  



Alternatively, to reduce the chance of bias, one could envisage choosing flexible 

working models for the probability of missing data in the IPW (and doubly robust) 

estimator and for the expected outcome in the imputation (and doubly robust) estimator 

(Little & An, 2004). For the IPW and doubly robust estimator, increasing the flexibility 

of the former model not only reduces the potential for bias, but at the same time increases 

the precision of the estimator (so long as the model does not contain an excessive number 

of predictors) (Robins, Rotnitzky & Zhao, 1995). This flexibility in choosing a response 

model is an additional attraction of these estimators. In contrast, imputation estimators 

may lose substantial precision when flexible imputation models are adopted, and may 

then even become less precise than the IPW estimator in finite samples (see the third 

section). To overcome the potential for bias of the imputation estimator, without 

sacrificing too much precision, it has been suggested – with some good results – that one 

should reduce multiple background characteristics Xi into a single characteristic πi which 

may then be modeled more flexibly (David, Little, Samuhel & Triest, 1983; Little & An, 

2004).  

 

3. Simulation study 

In this section, we present results from two simulation experiments, each with 

sample sizes 200 and 500. The goal of these simulation studies is to understand better 

how the different estimators perform (a) when there is little overlap in the distribution of 

background characteristics between responders and nonresponders and, additionally, their 

association with outcome differs between these groups; and (b) when flexible working 

models are used. In both experiments, X and ε were generated from the standard normal 



distribution. Next, Y was generated as X2 + ε in the first experiment and as 1 – exp(X) + ε 

in the second experiment. Outcomes were then made missing by generating a binary 

missingness indicator R (R = 0 if missing and 1 otherwise) with missingness probability 

satisfying logit{P(R=1)} = αX and α=3 (α=-3). Under this simulation set-up, 50% of the 

data are missing and there is large separation between the covariate distribution of 

responders and nonresponders, so that the regression mean imputation estimator will 

suffer from extrapolation and the IPW estimator from extreme weights. These two data-

generating mechanisms are illustrated, respectively, by the particular realizations shown 

in Figure 1 (top, left) for the first experiment and in Figure 2 (top, left) for the second 

experiment. 

Figure 2 about here. 

We used 1000 replications in each simulation experiment. In each replication, the 

following estimators were calculated. The IPW estimator in Equation 1 with weights 

estimated by fitting a k-th order (i.e., with predictors X0,…,Xk)  logistic regression model 

(IPW(k)), the regression mean imputation estimator in Equation 2 with a k-th order linear 

imputation model (RMI(k)), the doubly robust estimator with weights estimated by fitting 

a k-th order logistic regression model and mean imputations obtained from a l-th order 

linear imputation model (DR(k,l)), and the doubly robust estimator DR(4,4) with 

probabilities πi truncated at 0.05 when they were estimated below 0.05 (DR trunc). Note 

that we only evaluate the impact of weight truncation for the doubly robust estimator 

because this estimator continues to be valid in the presence of misspecified weights (e.g., 

truncated weights) provided that the imputation model holds.  



We used the nonparametric bootstrap (bias corrected and accelerated bootstrap 

percentile confidence intervals (Carpenter & Bithell, 2000)) for inference with all 

estimators. We used bootstrap standard error estimators because the usual calculations of 

standard errors and confidence intervals based on a sample average are invalid. For IPW 

estimators, this is because they ignore the imprecision of the weights, which were 

estimated using (logistic) regression models. For regression mean imputation estimators, 

this is because they ignore the imprecision of the fitted values m(Xi), because these fitted 

values vary less than the real outcome and because they should not be considered as 

‘real’ observations when calculating the standard error. For doubly robust estimators, this 

is true for both the above reasons.  

Table 2 about here. 

The results from the first and second simulation experiment are summarized in 

Tables 2 and 3, respectively. In both experiments, we evaluated the use of first to fourth 

order working models. Note that the first order imputation model is misspecified, but the 

first order response model is not, thus giving a relative advantage to the IPW estimator. 

The reason for our choice is that deviations from a linear model are difficult, or 

impossible, to detect in the imputation model as a result of separation in the covariate 

distribution of responders and nonresponders, while such deviations are detectable in the 

response model. We refer the reader to Bang and Robins (2005), Carpenter, Kenward and 

Vansteelandt (2006), Kang and Schafer (2008), Robins et al. (2008) and Vansteelandt, 

Rotnitzky and Robins (2007) for examinations on the impact of misspecification of the 

response model. 



In the first experiment, the smallest variance occurs for the regression mean 

imputation estimator under a linear prediction model (RMI(1)). However, this estimator 

has a large bias as a result of extrapolation. This bias disappears upon choosing higher 

order imputation models, but at the expense of a greatly inflated variance when third or 

fourth order imputation models are used. This variance inflation is even more pronounced 

for the doubly robust estimator. In contrast, the IPW estimator handles the high 

dimensionality of the working model much better in the sense of having much smaller 

variance than the other estimators when higher order working models are used. This 

estimator is less biased than the regression mean imputation estimator RMI(1), but still 

significantly biased in finite samples. As can be seen in Figure 1 (top, right), this is 

because the separation in the covariate distribution between responders and 

nonresponders is so large that, with the considered sample sizes, no random sample from 

the study population can be ‘reconstructed’ using just the complete observations. As a 

result, confidence intervals based on this estimator do not attain the specified level of 

coverage. Even so, when flexible working models of order at least 3 are used, the 

smallest mean squared errors are seen for the IPW estimator, suggesting that it tends to 

end up closest to the true population mean. 

Overall, as predicted by the theory, the best results are obtained for the regression 

mean imputation estimator RMI(2) under a correctly specified imputation model. In 

interpreting the results, one should note, however, (a) that the evidence for nonlinear 

imputation models may be weak when responders and nonresponders are very distinct in 

their prognostic factors X, and (b) that standard software for imputation usually does not 

accommodate nonlinear imputation models. With concern for bias, one could choose to 



use flexible imputation models. However, this simulation experiment demonstrates that 

both imputation, and doubly robust, estimators cannot handle high-dimensional 

imputation models very well. The doubly robust estimator with truncated weights 

performs substantially better in terms of precision, but also does not succeed at 

approximating the mean squared error of the IPW estimator.  The IPW estimator with 

flexible response model thus forms an attractive alternative: although prone to some 

finite-sample bias and undercoverage of confidence intervals in this setting, it tends to 

end up closest to the population mean. 

The characteristic feature of the second simulation experiment is that all 

imputation models are now mis-specified. Similar results are obtained as in the first 

simulation experiment, with the exception that the doubly robust estimator with linear or 

second order imputation model and the doubly robust estimator with truncated weights 

now substantially outperform the other estimators in terms of mean squared error. This is 

because the misspecification of the linear model is insufficiently severe for the precision 

of this estimator to break down. In terms of coverage, the worst results are obtained via 

regression mean imputation with standard linear models and the best results with 

regression mean imputation or doubly robust estimation based on at least second order 

imputation models. 

Table 3 about here. 

 

4. Estimating regression models with incomplete outcome or covariate 

data 



 We first generalize the principle behind (doubly robust) IPW estimators. We then 

apply it to regression models with incomplete outcomes or incomplete covariates. 

  

4.1. General inverse probability weighting estimators and doubly robust estimators 

 Virtually all standard estimators  of statistical parameters β are obtained as the 

solution to a so-called unbiased estimating equation 

β̂
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where Ui(β) is a function of the observed data, which is unbiased in the sense that it has 

mean zero when evaluated at the true parameter value β*. For instance, maximum 

likelihood estimators are obtained by solving Equation 4 with Ui(β) the maximum 

likelihood score function. Likewise, the sample average is obtained by solving Equation 4 

with Ui(β) = Yi – β. Estimators obtained by solving such unbiased estimating equations 

are themselves unbiased for the true parameter value β* when the sample size is 

sufficiently large (and weak regularity conditions hold). Intuitively, this follows from 

Ui(β) having mean zero when evaluated at the true parameter value β* and thus the 

sample analog, Equation 4, attaining zero at values  close to ββ̂ *. 

 When the data for some subjects are incomplete, the full estimating equation 

cannot be solved because the contribution of these subjects to the estimating equation is 

unknown. Evaluating the sample average in Equation 4 only for responders’ data may no 

longer yield an unbiased estimating equation when missingness is selective, so the 

remaining subjects with no missing data are unrepresentative. Following the second 

section, this can be corrected for by weighting each observed contribution inversely by 



the probability πi of having completely observed data (given all data required to evaluate 

Ui(β) and possibly additional background characteristics): 
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The solution  to Equation 5 is also called an IPW estimator and remains unbiased in 

large samples because  R

β̂

Ri/πi is 1 on average so that Equations 4 and 5 are on average the 

same. 

 The IPW estimator obtained by solving Equation 5 can be very imprecise because 

it merely extracts information from responders, thus ignoring the partial information that 

may be available for nonresponders. In contrast, doubly robust estimators extract 

additional information from nonresponders and have the additional advantage of being 

valid when either one of two working models hold. In the spirit of the second section, 

they can be obtained by solving the predicted estimating equation 

( )β̂10
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where mi(β) is the expected value of Ui(β) calculated from the observed data using 

weights RRi/πi: this can be obtained from a weighted least squares regression of Ui(β) on 

the observed data, with weights RiR /πi. This is illustrated in the following sections for the 

case of regression models with an incomplete outcome and incomplete covariate, 

respectively. 

 

4.2. Regression models with missing outcome values, but fully observed covariates 



Suppose that we have a study in which it is intended to collect outcome 

measurements Y1,…,Yn (e.g., income) and covariate measurements Z1,…,Zn (e.g., 

education) on a random sample of n subjects, in order to learn about the association 

between outcome and covariate. In particular, we may be interested in fitting a 

generalized linear model 

  E(Y) = g(βZ),       (7) 

where g(.) is an (inverse) canonical link function (e.g., the identity link for a normally 

distributed outcome or the inverse logit link for a binary outcome) and where the 

covariate vector Z includes 1 to allow for an intercept. When the outcomes are missing 

for some subjects, then restricting the analysis to responders will not introduce bias when 

missingness is solely related to the covariate measurements Z, but may introduce bias 

when it is additionally related to prognostic factors X (e.g., social class) of the outcome 

that are not contained in Z. Although additionally including these prognostic factors in 

the regression model accommodates this, we may have good reasons not to do so. For 

example, this would be the case when X is affected by Z so that adjustment for X distorts 

the association between outcome and covariate Z (Rosenbaum, 1984). This is also the 

case when, for instance, the model of interest is a logistic regression model. Indeed, due 

to noncollapsibility of the odds ratio (Greenland, Robins & Pearl, 1999), the additional 

adjustment for X then changes the magnitude and interpretation of the other parameters in 

the model, even if X has no residual association with Y. In these cases, one may account 

for missingness being selective following the earlier methods. Specifically, by 

reweighting each responder’s contribution, Zi{Yi - g(βZi)}, the score equation becomes 
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n

i
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ii∑
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valid estimators  are obtained provided that the probabilities πβ̂ i of complete outcome 

data are well modeled as a function of the covariates Zi and the additional background 

characteristics Xi. In practice, IPW estimates are thus obtained using the following two-

stage procedure: 

1. Fit a logistic regression model for the probability of observing Yi (i.e., RiR

 i.e. Equation 7, to the responders, 

 latter is derived from a regression model 

for the 

are thus obtained by replacing step 2 in 

 

7 upon substituting the 

outcome of responders and nonresponders with m*(Zi,Xi). 

 = 1) as a 

function of prognostic factors Zi and Xi. Let πi denote the fitted value for subject 

i. 

2. Fit the generalized linear model of interest,

using weighted regression with weights 1/πi. 

It also follows from the previous section that a doubly robust estimator can be obtained 

by fitting the model of interest, Equation 7, with the outcome for responders and 

nonresponders substituted by a fitted value. The

outcome as a function of both X and Z,  

E(Y) = g(γzZ+γxX),       (8) 

which is fitted to the responders, weighting each subject’s contribution by the reciprocal 

of the fitted probability of complete data, i.e., 1/πi. Note that the model in Equation 8 is 

only used for predicting the outcome in the nonresponders, unlike the model of interest in 

Equation 7. In practice, doubly robust estimates 

the above procedure by the following two steps: 

2. Fit the generalized linear model in Equation 8 to the responders using weighted

regression with weights 1/πi and let m*(Zi,Xi) denote the fitted value for subject i. 

3. Fit the generalized linear model of interest in Equation 



In large samples, the resulting estimator is at least as precise as the IPW estimator when 

the imputation model in Equation 8 is correctly specified. In addition, it is unbiased in 

large samples if either the response model or the imputation model is correctly specified. 

 

4.3. Regression models with missingness in a single covariate 

Suppose now that we have a study in which it is intended to collect outcome 

measurements Y1,…,Yn and covariate measurements (Z1,M1),…,(Zn,Mn) on a random 

sample of n subjects, but that the (possibly multivariate) covariate value Mi is missing for 

some subjects. Fitting the linear regression model 

 E(Y) = βzZ + βmM       (9) 

to the responders may then introduce bias when missingness is possibly associated with 

the outcome Y or with prognostic factors X of outcome and covariate M. Including these 

prognostic factors in the regression model does not accommodate this problem when 

missingness is associated with the outcome. Instead, we may re-weight each responder’s 

contribution to the standard normal equations for the model of interest by the reciprocal 

of the fitted probability πi of complete covariate data, calculated as a function of the 

outcome Yi, completely observed covariates Zi and the additional background 

characteristics Xi. Note that, when the outcome is observed, it needs to be included in the 

model for the weights. This is possible with standard software using the following two-

stage approach: 

1. Fit a logistic regression model for the probability of observing Xi (i.e., RiR  = 1) as 

a function of prognostic factors Yi, Zi and Xi. Let πi denote the fitted value for 

subject i. 



2. Fit the linear model in Equation 9 to the responders using weighted regression 

with weights 1/πi. 

Because this approach ignores the partial information on Yi and Zi that is available on 

nonresponders, estimates may be very imprecise. It is therefore more attractive to 

calculate a doubly robust estimator following the methods that were introduced earlier. 

Below, we propose a novel, iterative procedure for obtaining such estimator on the basis 

of standard software routines: 

1. Calculate expected values for M and M2 as a function of Y, Z and X by 

postulating (separate) models for them and then fitting these models to the 

responders’ data, weighting each subject’s contribution by the reciprocal of the 

fitted probability of complete data. For instance, we may postulate a linear model 

for M 

  E(M) = γzZ + γyY + γxX, 

and, assuming that M has a constant variance, choose 

  E(M2) = (γzZ + γyY + γxX)2 + γ. 

Note that, having fitted the model for E(M), the model for E(M2) contains just one 

unknown parameter and (γzZ + γyY + γxX)2 can be treated as an offset term.  

2. Starting from the IPW estimates as initial estimates of βz and βm in Equation 9, 

repeat the following steps until the estimates for βz and βm converge: 

a. Fit model  

E{Y - βmE(M)} = βzZ,      

to all subjects with βm evaluated at the current estimate, and obtain an 

updated estimate of βz. 



b. Fit model 

   E{(Y - βzZ)E(M)/E(M2)1/2} = βm E(M2)1/2,    

to all subjects with βz evaluated at the current estimate, and obtain an 

updated estimate of βm. 

The resulting estimators for βz and βm which are obtained upon convergence of the 

algorithm, are again at least as precise as the IPW estimator when the sample size is 

sufficiently large and the regression models for M and M2 are not too grossly 

misspecified. This is mainly because this doubly robust estimator additionally extracts 

information from the responders by substituting the missing covariate values with their 

expectation. In addition, as shown in the Appendix, this estimator is unbiased in large 

samples if either the response model or the two imputation models for M and M2 are 

correctly specified. Note that this algorithm sides-steps the problem of non-monotone 

non-response, by grouping all the variables with missing data in ‘M’.  

 

5. Discussion 

In this article, we have tried to give an intuitive explanation of the use of IPW and 

doubly robust estimators for the mean of an incomplete outcome and for regression 

parameters in generalized linear models with incomplete outcome or covariate data, 

emphasizing how to obtain these estimators via standard software. In addition, we have 

demonstrated the general principle which underpins these estimators in other contexts. In 

particular, (doubly robust) IPW estimators have been developed for handling drop-out or 

attrition (see e.g., Robins, Rotnitzky & Zhao, 1994, 1995) and intermittent missingness 

(Lin, Scharfstein & Rosenheck, 2004; Vansteelandt, Rotnitzky & Robins, 2007) in 



longitudinal studies, for censoring adjustment in survival studies (Rotnitzky & Robins, 

2005) and for handling missing not at random data (Scharfstein, Rotnitzky & Robins, 

1999; Vansteelandt, Rotnitzky & Robins, 2007). So far, they have not been developed to 

handle general missingness patterns on multiple covariates. Work by the authors is 

ongoing to address these more general cases. 

 In line with other results in the literature, our simulations indicate that among the 

estimators considered, regression mean/multiple imputation yields the most precise 

estimators, provided that the imputation models are correctly specified, but not 

overspecified. This is because it is in effect an approximation to maximum likelihood. In 

some settings, the regression mean/multiple imputation may be tricky, however. First, 

because the imputation model must be sufficiently flexible with respect to the analysis 

model (Kenward & Carpenter, 2007). For instance, when the outcome model of interest 

involves interactions between an incomplete and complete covariate, the imputation 

model must be sufficiently rich not to a priori exclude such interactions. This is often 

difficult in practice. Similar difficulties occur when the model is nonlinear or when the 

data are clustered (Kenward & Carpenter, 2007). Second, the imputation model may be 

difficult to choose when responders and nonresponders are very dissimilar in terms of 

background characteristics because any statistical imputation model will be forced to 

make extrapolations beyond the range of the observed data. By avoiding imputation 

models altogether, IPW estimators do not suffer these problems. Similarly, doubly robust 

IPW estimators, although they rely on imputation models, seek to minimize the impact of  

these issues. Indeed, they incorporate the information in the imputation model in order to 

bolster their efficiency relative to IPW estimators, but do so in such a way as to minimize 



the bias that occurs if the imputation model is mis-specified (provided that the response 

probabilities are well modeled). 

The simulation studies in the third section suggest that the precision of multiple 

imputation estimators and doubly robust estimators can deteriorate quickly with the 

increasing complexity of the working models. As predicted by theory (Robins, Rotnitzky 

& Zhao, 1994), this is not the case for IPW estimators. These tend to be more precise and 

less biased with increasing complexity of the missingness model, but are prone to some 

finite-sample bias and undercoverage of confidence intervals when missingness is very 

selective (unless the sample size is large). In view of this, and because appropriate 

strategies for selecting imputation and response models have received relatively little 

attention, with few exceptions (Brookhart & van der Laan, 2006), we recommend trying 

various working models and estimation strategies for critical analyses. Based on the 

results in this article, we conjecture that model selection strategies may succeed better at 

identifying the true imputation model when inverse probability weighting is used to fit 

the imputation model, as in the doubly robust estimator. This is because estimation then 

focuses also on regions of the covariate space where the nonresponders are located. This 

is suggested by Figure 1 (bottom right panel), where the nonlinear pattern becomes more 

clearly apparent after inverse weighting. In future work, we will investigate whether, as 

anticipated, the benefits of doubly robust estimators become more pronounced in 

combination with careful model selection strategies. Further study is also warranted on 

how to best assess the standard errors of (doubly robust) IPW estimators in the presence 

of extreme weights. In this article, we have used the bootstrap for simplicity, but the 

bootstrap might not perform well when some individuals have large weights and get 



oversampled in some of the bootstrap samples. As an alternative, closed-form `sandwich’ 

estimators have been proposed for the standard errors of (doubly robust) IPW estimators. 

These require programming and might not perform well in the presence of large weights 

because they are based on large sample approximations which may become poor when 

some individuals have large weights. 
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Appendix 

In this Appendix, we show that the estimators proposed in the section on 

incomplete covariates satisfy the double robustness property. First, note that by 

construction, the fitted values are obtained from a weighted least squares regression of 

models E(M) = γzZ + γyY + γxX and E(M2) = (γzZ + γyY + γxX)2 + γ, with weights 1/πi. 

When these models are correctly specified, the obtained fitted values will be consistent, 

even if the weights are misspecified, by the fact that the models are conditional on 

(X,Y,Z) and the weights are functions of (X,Y,Z). In addition, these fitted values satisfy  
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Second, note that the estimates for βz and βm satisfy and 

 and thus solve 
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with Ui(βz,βm) = (Zi’ Mi’)’(Y- βzZ - βmM). The double robustness is now immediate 

because, if the imputation models for M and M2 are correctly specified, then Equation A2 

is an unbiased estimator of the population mean equations and thus an unbiased 

estimating equation. In contrast, when the probabilities of complete covariate data are 

correctly specified, then because the equalities given in Equation A1 imply 
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Figure 1. Simulation experiment 1: Observed (small circles) and missing (?) observations (top, left); 
Inverse probability weighted observations (top, right); Observations for responders and OLS 
predictions for nonresponders (bottom, left); Observations for responders and weighted least squares 
predictions for nonresponders (bottom, right). 
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Figure 2. Simulation experiment 2: Observed (small circles) and missing (?) observations (top, left); 
Inverse probability weighted observations (top, right); Observations for responders and OLS 
predictions for nonresponders (bottom, left); Observations for responders and weighted least squares 
predictions for nonresponders (bottom, right). 



Table 1: Toy example. 
Xi A A A B B B C C C

Yi 1 1 1 2 2 2 3 3 3 

RRi 1 0 0 1 1 1 1 1 0 

πi 1/3   1 1 1 2/3 2/3  

RRi/πi 3 0 0 1 1 1 1.5 1.5 0 

 
 



Table 2: Median bias and empirical variance of the estimates, empirical coverage probability and 
average length of 95% confidence intervals, and mean squared error (MSE) in simulation 
experiment 1 for sample sizes 200 and 500. 

N Estimator Median 

bias 

Empirical 

variance 

Coverage 

95% CI 

Average length 

95% CI 

MSE 

200 IPW(1) -0.24 0.12 0.64 0.67 0.15 

 DR(1,1) -0.41 0.16 0.53 0.93 0.30 

 RMI(1) -1.11 0.052 0.00 0.84 1.3 

 IPW(2) -0.24 0.067 0.64 0.76 0.11 

 DR(2,2) -0.012 0.097 0.93 1.98 0.097 

 RMI(2) 0.0055 0.055 0.94 1.78 0.055 

 IPW(3) -0.24 0.060 0.67 0.76 0.10 

 DR(3,3) -0.0068 0.26 0.93 4.06 0.26 

 RMI(3) 0.0013 0.17 0.94 1.77 0.17 

 IPW(4) -0.24 0.11 0.72 0.99 0.17 

 DR(4,4) -0.0075 3.7 107
  0.93 891 3.7 107

 DR(4,1) -0.41 2.3 0.66 1.31 2.4 

 DR(1,4) -0.016 1.2 1.00 5.54 1.2 

 DR trunc -0.44 0.095 0.51 0.91 0.31 

 RMI(4) 0.0018 0.88 0.98 2.86 0.88 

500 IPW(1) -0.20 0.12 0.58 0.50 0.14 

 DR(1,1) -0.31 0.097 0.56 0.73 0.17 

 RMI(1) -1.13 0.021 0.00 0.52 1.3 

 IPW(2) -0.20 0.063 0.58 0.64 0.092 

 DR(2,2) -0.0038 0.038 0.94 1.03 0.038 

 RMI(2) 0.00080 0.022 0.97 0.89 0.022 

 IPW(3) -0.19 0.039 0.60 0.65 0.069 

 DR(3,3) 0.0021 0.073 0.94 1.03 0.073 

 RMI(3) 0.0027 0.043 0.96 0.89 0.043 

 IPW(4) -0.20 0.057 0.62 0.69 0.089 

 DR(4,4) -0.0017 6.6 107
  0.95 3.52 6.6 107

 DR(4,1) -0.29 0.14 0.60 0.85 0.22 

 DR(1,4) 0.00024 0.23 1.00 2.03 0.23 

 DR trunc -0.41 0.035 0.41 0.66 0.20 

 RMI(4) -0.0045 0.14 0.96 1.34 0.14 

 
 



Table 3: Median bias and empirical variance of the estimates, empirical coverage probability and 
average length of 95% confidence intervals, and mean squared error (MSE) in simulation 
experiment 2 for sample sizes 200 and 500. 

N Estimator Median 

Bias 

Empirical 

variance 

Coverage 

95% CI 

Average length 

95% CI 

MSE 

200 IPW(1) 0.52 0.34 0.47 0.85 0.48 

 DR(1,1) 0.36 0.086 0.55 0.77 0.19 

 RMI(1) 0.61 0.026 0.040 0.60 0.40 

 IPW(2) 0.52 0.12 0.42 1.01 0.32 

 DR(2,2) 0.22 0.097 0.92 2.05 0.14 

 RMI(2) 0.31 0.057 0.92 1.79 0.15 

 IPW(3) 0.51 0.11 0.46 1.04 0.32 

 DR(3,3) 0.14 0.26 0.93 2.06 0.27 

 RMI(3) 0.15 0.18 0.92 1.79 0.20 

 IPW(4) 0.49 0.13 0.66 1.19 0.31 

 DR(4,4) 0.074 5.1 107
  0.94 751 5.1 107

 DR(4,1) 0.36 1.0 0.68 1.07 1.2 

 DR(1,4) 0.56 1.9 0.97 3.84 2.4 

 DR trunc 0.38 0.057 0.53 0.78 0.20 

 RMI(4) 0.083 0.73 0.97 2.81 0.73 

500 IPW(1) 0.44 0.50 0.51 0.74 0.57 

 DR(1,1) 0.31 0.068 0.49 0.57 0.14 

 RMI(1) 0.61 0.011 0.00 0.37 0.39 

 IPW(2) 0.45 0.20 0.42 0.99 0.31 

 DR(2,2) 0.19 0.049 0.87 1.04 0.083 

 RMI(2) 0.31 0.023 0.87 0.89 0.12 

 IPW(3) 0.43 0.11 0.46 1.01 0.23 

 DR(3,3) 0.11 0.088 0.88 1.04 0.10 

 RMI(3) 0.16 0.047 0.88 0.89 0.072 

 IPW(4) 0.41 0.14 0.55 0.86 0.24 

 DR(4,4) 0.059 1.5 105
  0.95 3.48 1.5 105

 DR(4,1) 0.30 0.12 0.56 0.67 0.20 

 DR(1,4) 0.057 0.27 0.95 1.91 0.27 

 DR trunc 0.36 0.026 0.38 0.54 0.15 

 RMI(4) 0.065 0.14 0.95 1.36 0.15 

 


