

biblio.ugent.be

The UGent Institutional Repository is the electronic archiving and dissemination platform for all
UGent research publications. Ghent University has implemented a mandate stipulating that all
academic publications of UGent researchers should be deposited and archived in this repository.
Except for items where current copyright restrictions apply, these papers are available in Open
Access.

This item is the archived peer-reviewed author-version of:

Format-independent Media Delivery, Applied to RTP, MP4, and Ogg

Davy Van Deursen, Wim Van Lancker, Pedro Debevere, and Rik Van de Walle

In Proceedings of the 4th International Conference on Multimedia and Ubiquitous
Engineering, 6 pages on CD-rom, August, 2010, Cebu, Philippines.

To refer to or to cite this work, please use the citation to the published version:

D. Van Deursen, W. Van Lancker, P. Debevere, and R. Van de Walle (2010). Format-
independent Media Delivery, Applied to RTP, MP4, and Ogg. In Proceedings of the 4th
International Conference on Multimedia and Ubiquitous Engineering, 6 pages on CD-rom,
August, 2010, Cebu, Philippines.

FORMAT-INDEPENDENT MEDIA DELIVERY, APPLIED TO RTP, MP4, AND OGG

Davy Van Deursen, Wim Van Lancker, Pedro Debevere, and Rik Van de Walle

Ghent University – IBBT
Department of Electronics and Information Systems – Multimedia Lab

Gaston Crommenlaan 8, bus 201, 9050 Ledeberg-Ghent, Belgium
Email: {davy.vandeursen, wim.vanlancker, pedro.debevere, rik.vandewalle}@ugent.be

ABSTRACT
The current multimedia landscape is characterized by a
significant heterogeneity in terms of coding and delivery for-
mats, usage environments, and user preferences. This paper
introduces a transparent multimedia content adaptation and
delivery approach, i.e., model-driven content adaptation and
delivery. It is based on a model that takes into account the
structural metadata, semantic metadata, and scalability infor-
mation of media bitstreams. Further, a format-independent
multimedia packaging method is proposed based on this
model for media bitstreams and MPEG-B BSDL. Thus, mul-
timedia packaging is obtained by encapsulating the selected
and adapted structural metadata within a specific delivery
format. This packaging process is implemented using XML
transformation filters and MPEG-B BSDL. To illustrate this
format-independent packaging technique, we apply it to three
packaging formats: RTP, MP4, and Ogg.

I. INTRODUCTION
The multimedia landscape is characterized by a growing

amount of multimedia content and an increasing diversity in
end-user devices that are able to consume multimedia. In or-
der to provide (personalized) multimedia content anywhere,
at anytime, and on any device, a transparent multimedia
content adaptation and delivery approach is needed. In this
context, metadata, which are generally defined as ‘data about
data’, play a crucial role. Multimedia metadata enable the
effective organization, access, and interpretation of multi-
media content. Therefore, metadata have an increasingly
important role in bringing order to the growing amount
of available multimedia content. In this paper, we tackle
the aforementioned problems by using format-independent
content adaptation and delivery techniques. Furthermore,
these techniques provide a seamless integration with today’s
manifold available multimedia metadata schemes.

To perform high-level adaptation operations (e.g., ex-
ploitation of scalability or scene selection), we have devel-
oped model-driven content adaptation. Its basic design is
inspired by the principles of XML-driven content adaptation
techniques, while its final design and the implementation
thereof are based on Semantic Web technologies such as

the Resource Description Framework (RDF), Web Ontology
Language (OWL), and SPARQL Protocol And RDF Query
Language (SPARQL). Semantic Web technologies are used
to enhance the interoperability among the different metadata
standards for multimedia content, thanks to their natural
representation of objects and relationships. Furthermore, the
adaptation algorithm is steered by a model for describing
structural, semantic, and scalability information of media
bitstreams. This model, implemented by making use of
OWL, provides support for a seamless integration of the
adaptation operations and semantic metadata. Therefore, it
enables the definition of adaptation operations on a higher
level (i.e., based on the model). Furthermore, when existing
coding formats are mapped to this model, they can be
adapted in a format-independent way.

A logical step after the adaptation of multimedia content
is multimedia delivery. Multimedia content is usually not
delivered as elementary bitstreams but packed in a particular
delivery format. Today, a significant number of delivery or
packaging formats exists; examples are MPEG-4 Part 14
(MP4 file format), Ogg, and Real-time Transport Protocol
(RTP). Thus, we have to deal with different coding formats
on the one hand, and different delivery formats on the
other hand. The major contribution of this paper is the
development of a format-independent multimedia packager,
i.e., a generic software module that is independent of the
incoming coding format and the outgoing delivery format.
We investigate three packaging formats in more detail: RTP,
Ogg, and MP4. For these three delivery formats, we illustrate
how they are implemented within our format-independent
multimedia packager.

II. MODEL-DRIVEN CONTENT ADAPTATION AND
PACKAGING

In this section, we present a new media resource adap-
tation and packaging technique, which is inspired by the
principles of XML-driven content adaptation techniques. Its
design is based on Semantic Web technologies and a model
for media bitstreams covering the structural, semantic, and
scalability properties of these media bitstreams.

�����
���	�
���

��
���
����		
�
��

���������

��	��
����
�

��	��
����
�

����	����

������
�
��
�����

������
�
��
�����

����	����
����

�	���
����

�	��������

Fig. 1. Excerpt of the structural part of the model for media
bitstreams. Ellipses and arrows represent OWL classes and
properties respectively.

II-A. Model for Media Bitstreams

The model for media bitstreams provides support for a
seamless integration of adaptation operations and semantic
metadata. As such, it enables the definition of adaptation
operations on a higher level (i.e., based on the model), on
the condition that current and future coding formats can be
mapped to this model. The model for media bitstreams is
implemented as an OWL ontology. The instances of the
model (i.e., the structural metadata) are expressed in RDF.
The transformation of the structural metadata is implemented
by using SPARQL queries, which are independent of the
coding format. A visualization of an excerpt of the structural
part of our model is given in Fig. 1.

The structural metadata part of the model describes
information regarding the high-level structure of a com-
pressed MediaBitstream. Such a MediaBitstream points to
the physical location of the media bitstream by means of
the bitstreamSource property. Also, delivery parameters (to
assist in the packetization process) can be present by means
of the deliveryParameter property. An example of a delivery
parameter is the sampling frequency when the underlying
coding format is AAC.

A MediaBitstream points to a list of RandomAccessUnits
by means of the hasStructure property. Random access refers
to the ability of the decoder to start decoding at a point in a
compressed media bitstream other than at the beginning and
to recover an exact representation of the decoded bitstream.

Each random access unit points to a list of DataBlocks by
means of the hasStructure property. A DataBlock points to
a particular byte range of the compressed media bitstream.
Further, each DataBlock has a timestamp, which represents a
number related to the display time of the data block. In order
to actually calculate the display time, the timestampRate
property of the MediaBitstream class is used. The latter
contains a number indicating the amount of timestamps that
are contained in one second.

���
��
���	�
���

��������
��
�
����
 ��!"�
����	

��������"
��!"�
����	

����"�����"
	�������

��!#��#$�%"
�
�
	&�
�����

���"
'�����
��
�"
���	�
���(

���
�
�
	&�
�����

���
'������
���	�
���(

�������

��"������"
'������
�
&�
���(

������"�
�"
�������"
���	�
���

')(

'*(

'+(

',(

'-(

'.(

/
�
	&�
�����
"
	����	����

!�
���#�
����
��
�"
�������
�

Fig. 2. The general workflow of model-driven content adap-
tation and packaging.

PREFIX mmo: <multimedia_model.owl#>
CONSTRUCT {

triples to describe a datablock:
?db rdf:type mmo:DataBlock.
...

}
WHERE {

?bitstream rdf:type mmo:MediaBitstream.
?bitstream mmo:format 'video/H264'.
?bitstream mmo:hasStructure ?rau.
?rau mmo:hasStructure ?db.
?db rdf:type mmo:DataBlock.
?db mmo:timestamp ?ts.
FILTER(?ts < 400)

}

Listing 1. SPARQL query selecting data blocks based on
timestamp restrictions.

II-B. Workflow

The general workflow of model-driven content adaptation
and packaging is depicted in Fig. 2. If media bitstreams
need to be adapted and packaged with our proposed method,
metadata instances compliant to our model need to be gener-
ated during the metadata generation step (1). The requested
parts of the media streams are obtained during the data block
selection step (2), where RDF graphs describing data blocks
are queried using SPARQL. An example of such a query
is shown in Listing 1. Based on the selected data blocks, a
simple RDF-to-XML transformation is performed (3). The
result of this transformation is an XML description of the
selected datablocks, called a Bitstream Syntax Description
(BSD). The latter can be used to create a packaged version
of the adapted media bitstream. The classes and properties
defined in our model, needed for the packaging process, are
mapped to XML elements and attributes respectively.

The actual packaging process starts with the transforma-
tion of the BSD representing (part of) the elementary media
bitstream (4). The resulting BSD represents an adapted and

0�	��	�����1
0�	���������/���"
���23�/�4�����
31
0�	��	�5��
��1
0�	�������
�"
���2363"����23
����*3"&����23*371
0�	�������
�"
���23�3"����23
����)371
0�	�������
�"
���23$3"����23
����)371
0�	�������
�"
���23883"����23
����,371
0�	�������
�"
���23�3"����23
����)371
0�	�������
�"
���23�/3"����23
����9371
0�	�������
�"
���23�:3"����23�	���
	��
�����
�371
0�	�������
�"
���23/�3"����23�	���
	��
��;
�371
0�	�������
�"
���23���83"����23�	���
	��
��;
�371
0<## ==="##1
07�	��	�5��
��1
07�	���������/���1
0�	���������/���"
���23�/�4������31
0�	��	�5��
��1
0�	�������
�"
���23
��4�����
3"����23
����/�4�����
371
0�	�������
�"
���23
��4�������3"����23�)�������
��371
07�	��	�5��
��1
07�	���������/���1
0�	�������
�"
���23�/�4	�
���31
0�	���������/���1
0�	��	�5��
��"��� ���
	23�
���
���31
0�	�������
�"
���23
��4������3"����23
����/�4������371
07�	��	�5��
��1
0�	�����
�����"
�&23�)����	�
�����;371
07�	���������/���1
07�	�������
�1
07�	��	�����1

Fig. 3. BS Schema for RTP.

packaged media bitstream. The obtained BSD is compliant
with MPEG-B BSDL [1], which implies that the BSDL
framework can be used for further processing. The BSD
transformation can be implemented using XSLT or STX,
which enables the use of a format-independent transforma-
tion engine. Additionally, a Bitstream Syntax Schema (BS
Schema, [1]) needs to be created, describing the high-level
structures and syntax elements of the packaging format (5).
Finally, the adapted and packaged media bitstream is cre-
ated using BSDL’s format-independent BSDtoBin parser [1],
based on the BSD representing the adapted and packaged
media bitstream, the BS Schema describing the delivery
format, and the original media bitstream (6).

III. IMPLEMENTATION OF EXISTING DELIVERY
FORMATS

In order to illustrate our proposed format-independent
packaging technique, we apply it to three popular packaging
formats: RTP, MP4, and Ogg. For each packaging format,
we discuss the development of the BS Schema. Further,
examples are provided regarding the BSD transformation
from a BSD describing an elementary bitstream to a BSD
describing a packed bitstream. Note that, for the sake of
simplicity, our examples use AAC as underlying coding
format for the RTP and MP4 packaging formats, and Ogg
Vorbis for the Ogg packaging format.

0��������	�
��� �	
���23,,)>>3
	��
��23�����77&��=&��7�������=���31

0������
���
�����
	1
0	�����
�!
�51,,)>>07	�����
�!
�51
07������
���
�����
	1
0���������"	��
�23,)-)?3"��
���23*,93"�	23>371
0���������"	��
�23,)9.-3"��
���23,,>3"�	23)>*,371"
0<## ==="##1
07��������	�
���1

0�/�4	�
���"
�)����	�
�����;23�����77&��=&��7�������=���31
0
��4������1
0
��4�����
1
061*0761
0�1>07�1
0$1>07$1
0881>07881
0�1)07�1
0�/1@.07�/1
0�:1>07�:1
0/�1>07/�1
0���81>07���81
0<## ==="##1
07
��4�����
1
0
��4�������1,)-)?"*,907
��4�������1
07
��4������1
0<## ==="##1""""
07�/�4	�
���1

��������	�
��
�������
��	�

�����������������
��	�

Fig. 4. XML-driven RTP packaging.

III-A. Real-time Transport Protocol (RTP)

The Real-time Transport Protocol (RTP, [2]), formally
known as RFC 3550, defines a standardized packet format
for delivering audio and video over the Internet. More
specifically, RTP provides end-to-end delivery services such
as payload type identification, sequence numbering, times-
tamping, and delivery monitoring for data with real-time
characteristics.

An excerpt of the BS Schema for the RTP format is
depicted in Fig. 3. An RTP stream consists of a sequence of
RTP packets, each containing an RTP header and payload
data. RTP header components include: a sequence number
(SN), which is used to detect lost packets; payload iden-
tification PT, which describes the specific media encoding
so that it can be changed if it has to adapt to a variation in
bandwidth; frame indication (M), which marks the beginning
and end of each frame; source identification (SSRC), which
identifies the originator of the frame; and intramedia syn-
chronization (TS), which uses timestamps to detect different
delay jitter within a single stream and compensate for it.

In Fig. 4, XML-driven RTP packaging is shown with
an example XML instance describing a media resource
compliant to our model introduced in Sect. II-A. Data blocks
are packed in RTP packets. Note that, depending on the
underlying coding format and the size of the data block,
multiple data blocks can be part of one RTP packet or one

0�	��	�����1
0�	���������/���"
���23//����31
0�	���������8�
��
�1
0�	������
	��
"��	�23��,�!������31
0�	��	�5��
��1
0�	�������
�"
���23�
�
�4���
�3"����23�	���
	��
��;
�371
0�	��	�5��
��"��
 ���
	23>3"��� ���
	23�
���
���31
0�	�������
�"
���23	�����8��
�3"����23�	���
	��
��;
�371
0�	�������
�"
���23	����������3"����23�	���
	��
��;
�371
07�	��	�5��
��1
07�	��	�5��
��1
07�	������
	��
1
07�	���������8�
��
�1
07�	���������/���1
0�	���������/���"
���23�����31
0�	���������8�
��
�1
0�	������
	��
"��	�23��,�!������31
0�	��	�5��
��1
0�	�������
�"
���23	�������A�3"����23�	���
	��
��;
�371
0�	�������
�"
���23	�����8��
�3"����23�	���
	��
��;
�371
0�	�������
�"
���23�
�
���A�3"����23�	���
	��
��;
�3""

��
 ���
	23>3"��� ���
	23�
���
���371
07�	��	�5��
��1
07�	������
	��
1
07�	���������8�
��
�1
07�	���������/���1
0�	���������/���"
���23������������31
0�	���������8�
��
�1
0�	������
	��
"��	�23��,����31
0�	��	�5��
��"��
 ���
	23>3"��� ���
	23�
���
���31
0�	�������
�"
���23����3"����23��,��	��4�������371
07�	��	�5��
��1
07�	������
	��
1
07�	���������8�
��
�1
07�	���������/���1
0�	�������
�"
���23��,4	�
���31
0�	���������/���1
0�	��	�5��
��1
0�	��������"��� ���
	23�
���
���31
0�	�������
�"
���23��	���3"����23��,�//����371
0�	�������
�"
���23		���3"����23��,������371
0�	�������
�"
���23�������3"����23��,�������������371
0<## ==="##1
07�	��������1
07�	��	�5��
��1
0�	�����
�����"
�&23�)����	�
�����;371
07�	���������/���1
07�	�������
�1
07�	��	�����1

Fig. 5. BS Schema for MP4.

data block can be spread over multiple RTP packets. In case
one data block is encapsulated in one RTP packet, the byte
range of the rtp_payload element corresponds to the
byte range of the data block. Regarding the timing infor-
mation, RTP timestamps (TS element) for the AAC coding
format are calculated based on the timestamp information
of data blocks and the underlying sampling frequency (i.e.,
44100 Hz in this example).

III-B. MP4 File Format

MPEG-4 Part 14 or MP4 file format, formally known
as ISO/IEC 14496-14:2003 [3], is a multimedia container
format standard specified as a part of MPEG-4. It is able to
store digital video and digital audio streams as well as other
data such as subtitles and still images. The MP4 file format

0��,4	�
���"
�)����	�
�����;23�����77&��=&��7�������=���31
0<## ==="##1
0��	���1
0	�A�1*,07	�A�1
0����1	��	07����1
0��
	��
1>07��
	��
1
0&���	1>07&���	1
0�
�
�4���
�1)07�
�
�4���
�1
0	�����4���
�1).-+07	�����4���
�1
0	�����4�����1)>*,07	�����4�����1
07��	���1
0		���1
0	�A�1..+*07	�A�1
0����1	�	A07����1
0��
	��
1>07��
	��
1
0&���	1>07&���	1
0	�����4	�A�1>07	�����4	�A�1
0	�����4���
�1).-+07	�����4���
�1
0�
�
�4	�A�1*,907�
�
�4	�A�1
0�
�
�4	�A�1,,>07�
�
�4	�A�1
0<## ==="##1""""
07		���1
0<## ==="##1
0�������1
0	�A�1.*-?9)07	�A�1
0����1����07����1
0����1,)-)?"*,907����1
0����1,)9.-",,>07����1
0<## B"##1
07�������1
07��,4	�
���1

��������	�
��
�������
��	�

�����������������
��	�

0��������	�
��� �	
���23,,)>>3
	��
��23�����77&��=&��7�������=���31

0������
���
�����
	1
0	�����
�!
�51,,)>>07	�����
�!
�51
07������
���
�����
	1
0���������"	��
�23,)-)?3"��
���23*,93"�	23>371
0���������"	��
�23,)9.-3"��
���23,,>3"�	23)>*,371"
0<## ==="##1
07��������	�
���1

Fig. 6. XML-driven MP4 packaging.

is built on top of the ISO Base Media File Format (known
as MPEG-4 Part 12), which is in turn based on Apple’s
QuickTime file format.

An excerpt of the BS Schema for the MP4 file format is
shown in Fig. 5. Files conforming to the MP4 file format
are formed as a series of objects, called ‘boxes’. All data is
contained in boxes and there is no other data within the
file. The ‘box’ is a building block defined by a unique
type identifier and length. In Fig. 5, only the definition
of three boxes are shown, due to space constraints. More
specifically, the Time To Sample Box (TTSBox) is depicted,
which describes a compact version of a table that allows
indexing from decoding time to sample number. Each entry
in the table gives the number of consecutive samples with the
same time delta, and the delta of those samples. By adding
the deltas a complete time-to-sample map may be built.
Further, the Sample Size Box (SSBox) is shown, describing
a table giving the size in bytes for each sample. Finally,

0�	��	�����1
0�	���������/���"
���23�������31
0�	��	�5��
��1
0�	�������
�"
���23���3"����23�������371
0�	�������
�"
���23��
	��
3"����23�����?371
0�	�������
�"
���23�����
4����3"����23�����?371
0�	�������
�"
���23�
�
4��	3"����23�)���
�%C371
0�	�������
�"
���23���4	�
���4

3"����23�)��
�%C371
0�	�������
�"
���23����4	�54

3"����23�)��
�%C371
0�	�������
�"
���23�
�4�����	��3"����23�)��
�%C371
0�	�������
�"
���23
4����4	����
�	3"����23�����?371
0�	��	�5��
��"��
 ���
	23>3"��� ���
	23�
���
���31
0�	�������
�"
���23	����
�4�����4�3"����23�����?371
07�	��	�5��
��1
0�	��������"��
 ���
	23>3"��� ���
	23�
���
���31
0�	�������
�"
���23������3"����23�)�������
��371
07�	��������1
07�	��	�5��
��1
07�	���������/���1
0�	�������
�"
���23 ��4	�
���31
0�	���������/���1
0�	��	�5��
��"��
 ���
	23>3"��� ���
	23�
���
���31
0�	�������
�"
���23 ������3"����23�����������371
07�	��	�5��
��1
0�	�����
�����"
�&23�)����	�
�����;371
07�	���������/���1
07�	�������
�1
07�	��	�����1

Fig. 7. BS Schema for Ogg.

the Media Data Box (MediaDataBox) describes the media
data. For example, for video tracks, this box would contain
the encoded video frames.

In Fig. 6, XML-driven MP4 packaging is illustrated. The
Time To Sample Box makes use of the timestamps provided
by the incoming data blocks to build up its table. Further, the
Sample Size Box describes the size of each incoming data
block. Note that in this example, each data block corresponds
to one AAC frame (which consists of 1024 audio samples).
Finally, the byte ranges described by the data elements
located in the Media Data Box correspond to the byte ranges
described by the incoming data blocks.

III-C. Ogg Container Format

The Ogg container format is a multimedia container
format and the native file and stream format for the Xiph.org
multimedia codecs [4]. It is an open format free for anyone
to use. It is able to encapsulate compressed audio and video
streams. Ogg is a stream-oriented container, meaning it can
be written and read in one pass, making it a natural fit for
Internet streaming and use in processing pipelines. Note that
this stream orientation is the major design difference to other
file-based container formats.

An excerpt of the BS Schema for the Ogg container format
is shown in Fig. 7. Ogg provides packet framing (through
OggPages), error detection (crc_checksum), and peri-
odic timestamps for seeking (gran_pos). An Ogg stream
is structured by dividing incoming packets into segments of
up to 255 bytes and then wrapping a group of contiguous

0 ��4	�
���"
�)����	�
�����;23�����77&��=&��7�������=���31
0<## ==="##1
0�������1
0���1,!.9.9-+07���1
0��
	��
1>07��
	��
1
0�����
4����1>07�����
4����1
0�
�
4��	1+@>,07�
�
4��	1
0���4	�
���4

1+),)-07���4	�
���4

1
0����4	�54

1*07����4	�54

1
0�
�4�����	��1@++.@9>?.07�
�4�����	��1
0
4����4	����
�	1+907
4����4	����
�	1
0	����
�4�����4�1)?.07	����
�4�����4�1
0	����
�4�����4�1*>>07	����
�4�����4�1
0<## B"##1""""""""
0������1*+9)*")?.07������1
0������1*?>+,"*>>07������1
0<## B"##1
07�������1
0<## ==="##1""""
07 ��4	�
���1

��������	�
��
�������
��	�

�����������������
��	�

0��������	�
���"�	
���23,,)>>3
	��
��23�����77&��=&��7�������=���31

0<## B"##1
0������
���
�����
	1
0	�����
�!
�51,,)>>07	�����
�!
�51
07������
���
�����
	1
0���������"	��
�23*+9)*3"��
���23)?.3"�	23*??>371
0���������"	��
�23*?>+,3"��
���23*>>3"�	23+@>,371"
0<## ==="##1
07��������	�
���1

Fig. 8. XML-driven Ogg packaging.

packet segments into a variable length page preceded by a
page header. Both the header size and page size are variable;
the page header contains sizing information and checksum
data to determine header/page size and data integrity. Thus,
an Ogg container consists of a sequence of pages, in order,
belonging to a single coding format instance.

In Fig. 8, XML-driven Ogg packaging is depicted. The
incoming data blocks correspond to the packets contained
in an Ogg page. Hence, the byte ranges described by the
packet elements correspond to the byte ranges described
by the incoming data blocks. Note that, when a data block
has a larger size than 255 bytes, the data block is divided over
multiple packets. With respect to the timing information, the
syntax element granulePosition (i.e., the XML element
gran_pos) gives an indication of the timing of the current
page. More specifically, in case of an Ogg page encapsulat-
ing an Ogg Vorbis stream, the granule position is a count
of the number of raw audio samples from the beginning of
the stream. Hence, the absolute time of a granule position
is granulePosition/samplingFrequency. Thus, the value
of the granule position is a combination of the timestamps
of the incoming data blocks and the sampling frequency.

IV. RELATED WORK

A number of approaches regarding format-independent
streaming have been proposed in the past. For instance, Digi-
tal Item Streaming (DIS, [5]), which is Part 18 of MPEG-21,
enables the incremental delivery of a Digital Item (covering
both metadata and media resources) in a piece-wise fashion.
DIS relies on the Bitstream Binding Language (BBL) for
this purpose. BBL defines syntax and semantics to describe
instructions on how a Digital Item can be fragmented and
mapped into one or more delivery channels. It uses the same
principles for serializing the packed media bitstream as our
proposed method, i.e., MPEG-B BSDL is used to abstract
the media bitstream and to enable the use of format-agnostic
software modules. However, the BBL approach requires
a new language to be used to specify the fragmentation
and packetization process. Our proposed method to perform
format-independent packaging only requires knowledge of
commonly used XML transformation languages such as
XSLT or STX. Furthermore, our model for media bitstreams
provides support for the multimedia packaging process (i.e.,
timestamp support and coding-format specific parameters).
Hence, this information can already be calculated during the
(offline) metadata generation step, which is in contrast to the
BBL approach where this information needs to be calculated
during the packaging process.

Ransburg et al. propose to use Media Streaming In-
structions within BSDs to implement a generic streaming
server [6]. More specifically, access units (i.e., the smallest
unit of data to which timing may be attached) are identified
and timestamps are assigned to them. Using Media Stream-
ing Instructions, the fragmentation process and timestamp
calculation is performed during the BSD generation step
(i.e., during structural metadata generation). However, the
fragmentation process is dependent on the delivery format
(e.g., fragmentation of H.264/AVC streams is different for
RTP and MP4 packetization). Also, BSDs including Media
Streaming Instructions are processed by delivery-format spe-
cific software modules (e.g., an RTP packetizer).

Finally, the Darwin Streaming Server1 (DSS) is an open
source, cross-platform RTP/RTSP streaming server. It pro-
vides a coding-format agnostic design, i.e., no codecs are
present in the server. The streaming of media resources is
guided by hint tracks, which contain all the information
necessary to packetize and stream the media resource. The
creation of these hint tracks is coding-format specific. Note
that the functionality of hint tracks is also present in our
strucutural metadata (i.e., the mapping of timestamps to
byte ranges of the media resource). However, support for
adaptation operations is not available in DSS. Also, packing
multimedia content with other delivery formats (other than
RTP) is not possible.

1http://developer.apple.com/opensource/server/streaming/

V. CONCLUSIONS
The current multimedia landscape is characterized by a

significant heterogeneity in terms of coding and delivery
formats, usage environments, and user preferences. In order
to provide (personalized) multimedia content anywhere, at
anytime, and on any device, we proposed a transparent
multimedia content adaptation and delivery approach. More
specifically, we introduced model-driven content adaptation
and delivery. The proposed approach relies on a model,
implemented using Semantic Web technologies, that takes
into account the structural metadata, semantic metadata,
and scalability information of media bitstreams. Further, a
format-independent multimedia packaging method (i.e., a
generic software module that is independent of the incoming
coding format and the outgoing delivery format) was pro-
posed based on the model for media bitstreams and MPEG-
B BSDL. To illustrate this format-independent packaging
technique, we applied it to three packaging formats: RTP,
Ogg, and MP4. More specifically, we provided excerpts
of their BS Schemas and example instances within our
presented workflow.

ACKNOWLEDGMENTS

The research activities as described in this paper were
funded by Ghent University, the Interdisciplinary Institute
for Broadband Technology (IBBT), the Institute for the
Promotion of Innovation by Science and Technology in
Flanders (IWT), the Fund for Scientific Research-Flanders
(FWO-Flanders), and the European Union.

VI. REFERENCES
[1] ISO/IEC, “Information technology – MPEG systems

technologies – Part 5: Bitstream Syntax Description
Language,” ISO/IEC 23001-5:2008, February 2008.

[2] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacob-
son, RFC 3550: “RTP: A Transport Protocol for Real-
Time Applications,” Available on http://www.ietf.org/
rfc/rfc3550.txt.

[3] ISO/IEC, “Information technology – Coding of Audio,
Picture, Multimedia and Hypermedia Information – Part
14: MP4 file format,” ISO/IEC 14496-14:2003, Decem-
ber 2003.

[4] S. Pfeiffer, RFC 3533: “The Ogg Encapsulation Format
Version 0,” Available on http://www.ietf.org/rfc/rfc3533.
txt.

[5] ISO/IEC, “Information technology – Multimedia frame-
work (MPEG-21) – Part 18: Digital Item Streaming,”
ISO/IEC 21000-18:2007, June 2007.

[6] M. Ransburg, S. Devillers, C. Timmerer, and H. Hell-
wagner, “Processing and Delivery of Multimedia Meta-
data for Multimedia Content Streaming,” in Proceedings
of 6th Workshop on Multimedia Semantics - The Role of
Metadata, Aachen, Germany, March 2007.

