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Abstract— Dance as a complex expressive form of motion is
able to convey emotion, meaning and social idiosyncrasies that
opens channels for non-verbal communication, and promotes
rich cross-modal interactions with music and the environment.
As such, realistic dancing characters may incorporate cross-
modal information and variability of the dance forms through
compact representations that may describe the movement
structure in terms of its spatial and temporal organization. In
this paper, we propose a novel method for synthesizing beat-
synchronous dancing motions based on a compact topological
model of dance styles, previously captured with a motion cap-
ture system. The model was based on the Topological Gesture
Analysis (TGA) which conveys a discrete three-dimensional
point-cloud representation of the dance, by describing the spa-
tiotemporal variability of its gestural trajectories into uniform
spherical distributions, according to classes of the musical
meter. The methodology for synthesizing the modeled dance
traces back the topological representations, constrained with
definable metrical and spatial parameters, into complete dance
instances whose variability is controlled by stochastic processes
that considers both TGA distributions and the kinematic con-
straints of the body morphology. In order to assess the relevance
and flexibility of each parameter into feasibly reproducing the
style of the captured dance, we correlated both captured and
synthesized trajectories of samba dancing sequences in relation
to the level of compression of the used model, and report on a
subjective evaluation over a set of six tests. The achieved results
validated our approach, suggesting that a periodic dancing
style, and its musical synchrony, can be feasibly reproduced
from a suitably parametrized discrete spatiotemporal repre-
sentation of the gestural motion trajectories, with a notable
degree of compression.

I. INTRODUCTION

The process of generating human-like motions plays a
key role in robotics, computer graphics, computer games
and virtual reality systems. On other hand, the success in
reproducing natural human body motions may be highly
improved by introducing expressiveness and style which is
able to convey emotion, meaning and social idiosyncrasies.
Dance movements form a complex class of human motions
that offer infinite forms of expressiveness, modes of non-
verbal communication, diverse cultural vocabularies and a
rich use of multimodal interactions with music and other
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modalities. It imposes fascinating challenges to robotics and
outstanding opportunities to deepen our understanding about
the phenomenon of dance.

State of the art applications in robotics/computer anima-
tion and dance often manipulate captured instances of dance
performances as temporal sequences that are wrapped [1],
[2], [3], merged [1], [2], [4] and segmented [5], [6], [7].
Such applications are specially relevant in the universe of
popular dances, which often exhibit a limited vocabulary
of idiosyncratic gestures and frequently exhibit periodic
spatiotemporal characteristics. However, the manipulation
of static temporal instances of dance performances are not
sufficient to provide the necessary quality attached to hu-
man movement and the proper balance between variability
and predictability. The expressiveness of human movement
appears to be influenced by stochastic processes and cross-
modal links that affect the dancer’s reasoning about space
and all the kinematic and kinetic constraints of his/her body
in space. Realistic dancing characters may benefit from
methods that manage cross-modal information and variability
and incorporate perception-action loops verified in reality.
Methods that incorporate generative models of dance forms
may offer more quality and less processing load than fixed
temporal instantiations of dance performances.

In this study, we propose an original method for generating
beat-synchronous dancing sequences based on a topological
model of a dance style. The model builds on TGA (Topolog-
ical Gesture Analysis) method [8], which offers a formalized
description that conveys both spatiotemporal variability and
cross-modal characteristics of dance gestures. This method
relies in the projection of cues (e.g. musical cues) onto the
gestural trajectories, which generates spatiotemporal point
cloud representations in the three-dimensional space. Point
clouds are filtered, discriminated and then interpreted as
distributions or topologies in space. The characteristics of
these clouds inform about the space and the variability of
the dance in relation to the musical cue. We used metrical
cues (e.g.: bar, beat, half beat points) to find these distri-
butions of gestural space according to musical meter. Our
methodology for generating dance sequences traces back
the topological representations into complete dance instances
whose variability is controlled by stochastic processes and
complementary parameters manipulated in accordance to the
interactive model. This process involves (i) a solution of
kinematic constraints, (ii) a stochastic mechanism to find
choices within the representation of variability and a (iii)
heuristics for interpolation of key-poses. We used a selection
of these parameters to generate sequences of samba dances



modeled from a motion capture recording of a professional
samba dancer. In order to assess the relevance and flexibility
of each parameter into feasibly reproducing the style of the
captured dance, we correlated both captured and synthesized
trajectories of samba dancing sequences in relation to the
level of compression of the used model, and report on a
subjective evaluation over a set of six tests. Such tests con-
sider different temporal and spatial hypotheses of interaction
between the movement and music, regarding the chosen
metrical resolution and the integration of spatial variability.

The paper is structured as follows: in the Section II we
review related work on the synthesis of beat-synchronous
dancing and rhythmic motions from mocap data. Section III
specify the details of modeling, representation and re-
synthesis of dance sequences. Section IV describes our
evaluation method and discusses the main results concerning
the level of similarity and style representation of a set of
synthesized dancing sequences over captured samba dance.
Finally, in the Section V we conclude this paper and present
some paths for future work.

II. RELATED WORK

The generation of human motion data from scratch has
proven to be time expensive and complex, even when
techniques such as key-framing and physical simulation are
available. A common solution for this problem is to capture
human motion data using motion capture systems (e.g.:
[9], [10], [11], [12], [6], [13]), which became increasingly
accessible in the last years.

In the attempt to bring expressiveness to movement se-
quences, researchers have often opted to manipulate or
transform of human motion recordings rather than deal
with the biomechanical, choreological and musicological
network and reasoning behind the gestures. For example,
early computer animation researchers developed techniques
for processing [9] and retargetting [14] motion capture data
in order to automatically generate new character animations.
Later approaches explored the rearrangement and blending
of mocap clips, recurring to motion graphs [15], [11] and
statistical models [10] for synthesizing smooth motion tran-
sitions, while flexibly and on-the-fly [16] satisfying user-
defined constraints. Others dealt with the compression and
representation of mocap data recurring to Bezier curves and
clustered Principal Component Analysis (PCA) [17], or by
exploring the redundancy of motion patterns [18], to reduce
dimensionality of the data with minor loss.

A more comprehensive approach to expressive human
movements, and in special dance movements, requires anal-
ysis and representation of the movement structure. Relevant
information of dance gestures seem to be encoded in the two
main dimensions of the dance gesture, namely, space, which
is considered the medium for the deployment of movement,
and time, which is considered the medium for segmentation
and synchronization of movement. Dance gestures often
deploy gestural forms through synchronization with musical
time, which can be structured by hierarchies of musical
meter. The question is how both space and musical time can

be articulated together. Most approaches so far have focused
on the spatial deployment of gesture using a temporal grid
for the time dimension that impregnate the majority of dance
representation. The literatures spans from early attempts,
such as [19], to more contemporary score-like notations,
such as [20] or computer based representations (see [21] for
more detail). Yet, in robotics and computer animation most
researchers generated dancing motions upon symbolic dance
representations made up of primitive motions that are fur-
ther synched with music. These motions constitute essential
postures, characteristic of a given style [6], [13]. Besides,
researchers had to overcome the kinematic and dynamic
constraints resultant from mapping captured dancing motions
onto different humanoid morphologies [12], [6], [13].

Working with synthesis of Japanese folk dances, [5] and
[6] segmented captured dancing sequences, according to
the minimum velocities of the end-effectors’ (hands and
feet) trajectories. The resulting key-poses were clustered and
interpolated for generating variations of the original dance.
Similarly, [4] extracted motion key-poses in terms of motion
rhythm and intensity, calculated from local minimums of La-
ban’s ”weight effort” [22] (stop motions), which were respec-
tively correlated with musical rhythm and intensity features
for modeling musical synchronization. [1] and [2] generated
rhythmic motion patterns, such as dancing and locomotion,
by clustering and interpolating unlabeled mocap segments in
terms of motion beats, corresponding to moments of rapid
change in the motion signal, given by zero-crossings of
the second derivative of all joints orientation. [7] calculated
points for the feet and found key-poses by correlating them
with indicators of extreme positions of arm swings given
by Kinematic Centroid Segmentation (KCS). After retrieving
motion features and the corresponding musical cues (such
as beats, pitch, intensity and chord progression), mostly
matched music and dance streams by relying on signal
alignment and optimization techniques such as time-warping
[1], [3], dynamic programming [7], and genetic algorithms
[2].

On other hand, by using a cross modal algorithm for
periodicity analysis, [23], [24] developed a methodology
for the representation and analysis of periodic gestures in
popular dances.

Although these methodologies build on the concept of time
and space, the representation of time seem to be always fixed
in a linear concept of time and a strictly deterministic concept
of gesture. In other words, time is always represented linearly
and sequentially and gestures tend to be represented as poses
or patterns that tend to a precise point in space. In order
to cope with these questions [25] proposed a method that
projects classes of musical features in the space of dance
gestures. The TGA method (Topological gestures analysis)
cluster temporal information of the same class in a region or
”topology” in the space, which gives rise to representations
that are not linear in time but encode the variability of the
original system. A better description of this method will be
presented in Section III-B.



III. METHODOLOGY

In this section we describe the methodology for analysis
and synthesis of beat-synchronous dancing styles based on
captured dancing sequences. Our methodology includes four
stages: (1) data acquisition, (2) representation of the dance
style, (3) synthesis of dancing sequences, (4) visualization
of dancing sequences, and (5) evaluation of the synthesized
dances. The architecture of the process is displayed in Fig. 1.

Fig. 1. Methodology workflow for dancing representation and synthesis.

A. Data acquisition

1) Motion Capture data: The dance recordings were
realized in Brazil with a motion capture system (Optitrack /
Natural Point) that consisted of 8 cameras positioned around
a the dancer. The dance movements were recorded at a frame
rate of 60 Hz, interpolated to 100Hz in the editing phase.
The motion recordings were synchronized with audio in the
editing phase. The dance sequences were also normalized
at each frame, in relation to the centroid of the body. This
process subtracts the effect of the movement of the whole
body on the trajectories of the limbs. The sequences were
imported into Matlab by using the Mocap toolbox [26]. The
calculation of body basic joint positions, the filtering of
raw vectors, the normalization and part of the visualization
functions were also based on the Mocap toolbox.

2) Annotation data: The manual annotation of metrical
points of the audio sequences (see Fig. 2) were realized
by specialists, using Sonic Vizualizer[27]. From the beat
annotation we derived both macro level (2 beat cycles,
derived by mathematical multiplication) and micro levels of
the musical meter (half-beat and quarter-beat levels, derived
by mathematical subdivision). These levels encompass the
resolution of the metrical parameters that will be used in the
syntheses. See a schematic description of these levels in the
time domain in Fig. 2 (”Metric levels”).

3) Procedures: The dances were performed by a profes-
sional female dancer, specialized in Afro-Brazilian dances.
We asked the dancer to perform simple dance gestures
in Samba-no-pé style, which is the most recognizable and
popular sub-style of the Afro-Brazilian samba dances. After
a few trial runs without any limitation, the dancers were
instructed to dance the standard steps of the styles, without
exhibiting improvisations, turns or embellishments.

B. Representation of the Dance Style

The Topological Gesture Analysis (TGA) [8] is a method
that maps the use of space of musical gestures. It relies in
a simple projection of musical cues onto spatial trajectories,
which generates a visual representation of points in space.
If the gesture in space is organized according to the music
cues it is likely that the projection of points in space generate
clusters, or point clouds. Point clouds can be interpreted as
topologies or spatial regions equipped with musical qualities
(see [28]), which informs us about the relationships between
gesture, space and music. In the case of repetitive dances, as
exemplified in [8], the method describes the space occupied
by the dancer at the time they were synchronized with classes
of musical meter (1 beat, half-beat, 2 beats, etc.). Each of
these regions can be further parametrized by assuming cer-
tain characteristics for each point cloud. Fig. 2 describes one
of these parameterizations which assumes an homogeneous
spherical distribution of the point clouds around the average.
The implementation of the method in this paper involve the
definition of musical cues (manual annotation), projection
of these cues onto spatial trajectories and discrimination of
the point cloud regions by means of Linear Discriminant
Analysis (see [8], for more information). The description of
the TGA parameters convey one mean value (3 dimensions)
for each body part (20) and the radius of the spherical
distribution.

The process of TGA projection results in point clouds
distributed in regions in space. These regions can be treated
as topological spaces equipped with musical qualities. There
are many ways to represent and treat these points. First we
discriminated these regions by using a linear discriminant
analysis over the classes of metrical cues. From the discrim-
inated points, we opted to assumed spherical distributions
whose radius is defined by the mean of the euclidean
distances of all points to the centroid of the distribution. This
very compact description of the distributions (composed of
a centroid (x,y,z) and a radius) offer an simple and effective
representation to compare the parameters of the syntheses.
Fig. 3 illustrates the final spherical distributions for the hands
of the samba dancer.



Fig. 2. Process of projection of musical cues (metrical classes) onto the
dance trajectories. First, the metrical structure of the music synchronized
with the MoCap recording is annotated. Then these cues are projected onto
the movement vectors (in the example, right hand movements). The metrical
points are projected as different classes (e.g.: 1st beat, 2nd beat, etc.), here
described as A and B. Finally, the point clouds are discriminated using LDA
analysis. This results in distributions in space, which can be represented by
topologies or regions in space. In this study we simplified these distributions
as spheres containing

C. Synthesis of dancing sequences
Based on the former representation, the actual dancing

motion is synthesized by generating and propagating con-
strained stochastic variations of the dancing pattern described
by the TGA spatial distributions for every joint of our 20-
joints body model (see Fig. 3b)). As illustrated in Fig. 3c),
the dancing pattern described by each joint is temporally
represented by a closed-loop metrical cycle segmented in
discrete categories at a given resolution. The chosen metrical
resolution (see Fig. 2) represents the discrete classes of
the musical meter (musical cues) considered by the TGA
representation, which additionally constrain key-pose regions
in the movement (space) occurring at specific key-frames in
the music (time). Such key-poses constitute pseudo-unlimited

Fig. 3. a) Point cloud representation for quarter-beat classes within a two-
beat metrical cycle, left hand b) Point cloud after LDA analysis. Note that
classes of points are visually and linearly discriminated from each other.
c) Representation of point clouds as homogeneous spherical distributions
around the mean of the left hand gestural trajectories.

variations of the fundamental postures characteristic of the
given dancing style, which are built upon full-body joint-
positions. These joint-coordinates are stochastically gener-
ated within every metrical class distribution while satisfying
the kinematic constraints, for keeping the body morphology
and the represented spatial variability.

1) Inducing variability in the key-poses: The motion
variability was generated by a stochastic process which takes
into consideration both TGA distributions and the kinematic
constraints of the body in space. The described process was
repeated for every considered metrical classes.

Initially, the used body model was split into 5 kinematic
chains, derived from 2 anchor joints – see Fig. 4. Both anchor
joint coordinates were assigned as the mean values of their
respective TGA spherical distributions.

For the given metrical class m, each joint chain was pro-
cessed independently by stochastically calculating every of
its joint coordinates. Starting from the anchor joint pm

0 until
the chain extremity, each joint coordinates were calculated
based on the calculated former joint position pm

j−1, the length
of the body segment delimited by both joints lj−1,j , and the
TGA spherical distribution of the considered joint Dm

j . As
depicted in Fig. 4, the current joint position pm

j is therefore
generated as a random point on the surface of the spherical
cap Cm

j resultant from intersecting Dm
j with a sphere Sm

j−1

centered in pm
j−1 and radius equal to the segment length

lj−1,j :
{

pm
j = randp : p ∈ Cm

j

Cm
j = Dm

j ∩ Sm
j−1

, p, Cm
j , Dm

j , Sm
j−1 ∈ R3. (1)

Within a considered kinematic chain and metrical class,
the calculation of a joint coordinates depends on the previous
joints positions (all stochastically determined). Therefore, the



process was iteratively computed until successfully manag-
ing to calculate all joints while satisfying the propagated
kinematic constraints.

Fig. 4. Example of solution of the kinematic constrains for one section
of the kinematic chain (joints of the right arm, metrical class m). Starting
from anchor pm

0 at joint 11 to chain extremity at joint 20, the variability
is computed by stochastically calculating all joint positions pm

j inside the
intersection Cm

j between the considered joint’s TGA distribution at such
class Dm

j and a sphere Sm
j−1 centered on the last joint position pm

j−1 with
radius equal to the segment length lj−1,j .

2) Motion Interpolation between key-poses: The order of
transition between the synthesized key-poses was intrinsi-
cally defined by the TGA topology and its cross-modal incor-
poration, which implicitly assured musical synchronization.

The dancing motion trajectories were finally synthesized
by orderly interpolating key-poses constituted by full sets of
joint key-positions at each metrical class, along all metrical
cycles of the dancing sequence. The interpolation between
postures, within all metrical classes, was generated by inter-
polating each joint independently. As such, all joint coordi-
nates pj were interpolated along all k intervals [tm, tm+1] be-
tween consecutive pair of key-frames t (interpolation knots)
pointed by such classes, by means of a piecewise cubic
interpolant I(jd) over each joint coordinate dimension jd

(x, y, z) and class m, given by:

I(jd) = [I0, I1, · · · , Ik−1] : [(t0, t1), · · · , (tk−1, tk)] → R
(2)

where




Im(jd) = c0 + c1(jd − pm
jd

) + c2(jd − pm
jd

)2+
+c3(jd − pd

jd
)3 : [tm, tm+1], m = 0, · · · , k − 1

Im(jd) = Im−1(jd)
I ′m(jd) = I ′m−1(jd)
I ′′m(jd) = I ′′m−1(jd)
I ′′0 (jd) = I ′′k−1(jd) = 0

(3)

D. Visualization of dance sequences
For visualizing and animating our body model with the

captured and synthesized joint trajectories, in synchrony with
the considered musical input, we developed an interface
based on the DAS (Dance Analysis Suite) software [29] –
see Fig. 5.

Fig. 5. DAS visualization of synthesized samba dancing.

E. Temporal and Spatial Hypotheses
By considering different hypotheses of interaction between

movement and music, we assessed the flexibility of our
dancing representation towards feasibly and naturally syn-
thesizing the gestures of the original dancing style. For such
we constrained our representation model with specific param-
eters in order to evaluate the following temporal (metrical)
and spatial hypotheses:

1) Metrical Resolution: Evaluate the influence of select-
ing metrical classes at different tempo resolutions. For
such we generated dancing sequences, as a series of
periodic metrical cycles, by selecting, and interpolating,
key-poses at time-points given by distinct hierarchical
structures of the musical meter (metrical levels) – at
bar, beat, half-beat, and at all quarter-beat sub-divisions
– see Fig. 2.

2) Variability: Assess the impact of introducing spatial
variability within sequent metrical cycles. For such we
compared synthesized dancing with repetitions of the
same rhythmic pattern, by assuming the centroids of
the TGA distributions for each joint and metrical class,
against other with controlled random variations of it,
calculated as described above.

Such hypotheses were tested by constraining our represen-
tation and motion synthesis models with specific parameters
concerning the metrical resolution and consideration of spa-
tial variability. All tests were numerically and subjectively
evaluated as described below.



IV. EVALUATION AND RESULTS

This section describes our method for evaluating the relia-
bility of our model towards synthesizing dancing sequences
representative of the captured dancing style. The tests were
performed over samba dance, which was recorded and pre-
processed as described in section III-A.

A. Experimental Tests
In order to evaluate and compare the proposed hypotheses,

the evaluation was performed over a set of 6 tests considering
30s dancing sequences synthesized with different parameter-
izations. In each of the 6 tests an excerpt, with also 30s, of
the original captured dancing was compared with each of the
following dancing sequences:

• original: another excerpt of the captured dancing se-
quence, for delimiting the evaluation – theoretical best;

• randgaps+2: equal to ”variability+2” but with random
gaps between half of the considered metrical classes,
for delimiting the evaluation – theoretical worst;

• variability+1: synthesized dancing sequence with vari-
ability and lowest metrical resolution (beat);

• variability+2: synthesized dancing sequence with vari-
ability and medium metrical resolution (half-beat);

• variability+4: synthesized dancing sequence with vari-
ability and highest metrical resolution (quarter-beat);

• centroids+4: synthesized dancing sequence without
variability and highest metrical resolution (quarter-
beat);

B. Level of Similarity and Compression
In order to evaluate the level of similarity Simi between

the tested testi and the captured dancing sequences capt,
we computed the correlation at zero lag between both
joint trajectories, normalized by the autocorrelation of the
captured sequence, in relation to the dimensionality and level
of compression of the respective representation models:
{

Simi =
P

n

P
j (capt[n,j]∗testi[n,j])P
n

P
j (capt[n,j]2) ∗ 100(%)

n = [1, nFrames], j = [1, nJoints ∗ 3], i = [1, 6]
(4)

where nFrames is the number of frames (3000 for 30s
at 100fps) of the dancing sequences and nJoints is the
number of joints (20) of the considered body model.

The dimensionality was measured by the spatiotemporal
dimension of the used representation model beyond the
synthesized trajectories, in terms of all body joints (20) –
Body, the 3-dimensional coordinates of the mean (centroid)
of the TGA distributions and their radius (when considering
variability) – Space, and the number of considered metrical
classes – Time. The level of compression of every model

was measured by comparing its dimensionality with the
dimension of the captured dancing, dependent on the size (in
frames) of the synthesized sequence. All results are presented
in Table I. Fig. 6 presents a comparison of the captured
joint trajectories with the ones synthesized by “variability+4”
and“centroids+4” parametrization, for the right hand joint
(19).

Test Sim (%) Dim (BodyxSpacexTime) Compression
original 86.9 20x3xnFrames = 60xnFrames 0
randgaps+2 43.8 20x(3+1)x2 = 160 0.38xnFrames
variability+1 27.3 20x(3+1)x2 = 160 0.38xnFrames
variability+2 79.6 20x(3+1)x4 = 320 0.19xnFrames
variability+4 80.6 20x(3+1)x8 = 640 0.09xnFrames
centroids+4 81.2 20x3x8 = 480 0.13xnFrames

TABLE I
CORRELATION OF THE JOINT TRAJECTORIES BETWEEN THE TESTED

AND CAPTURED DANCING SEQUENCES, IN RELATION TO THE

SPATIOTEMPORAL DIMENSIONALITY AND LEVEL OF COMPRESSION OF

THE RESPECTIVE REPRESENTATION MODELS.

Fig. 6. Captured vs synthesized trajectories for right hand joint (19), for
different synthesis parameterizations: a)“variability+4”; b) “centroids+4”.

C. Level of Dancing Style Representation

In order to evaluate the level of samba style representa-
tion of the synthesized dances and assess every proposed
hypotheses, we run a subjective evaluation over each test.
For such we inquired 15 subjects, 7 of them Brazilian and
acculturated with samba dancing. We started by showing
each of them instructive videos about samba and previously
submitted them to two runs of the 6 tests. For each test we
showed them, on DAS, an excerpt of the captured dancing
and one of the dancing sequences described in section IV-A,
randomly ordered among the subjects to raise the level of
confidence. After each test we asked them to point which of



the two sequences they considered to be the original and to
grade, from 1 to 5, the level of dance style representation
of the considered synthesized dance over the original. For
the first question 98.33% of the answers correctly classified
the original sequence over the synthesized one. From the
3 misses, 2 erroneously chose the “centroids+4” and 1 the
“variability+4”. A box plot with the statistical results over
the level of style representation evaluation is presented in
Fig. 7.

Fig. 7. Subjective statistical results over level of style representation of
samba dancing.

D. Discussion

1) Similarity: By considering both numerical and sub-
jective evaluations, there is an overall agreement on that
“centroids+4” and “variability+4” feasibly reproduced and
synthesized the captured dancing in terms of similarity and
style representation, outperforming all other parameteriza-
tions. This result is enforced by their competitive results with
the ones achieved when comparing different excerpts of the
same captured dancing sequence (“original”). The difference
is given by 6.3% to 5.7% in terms of trajectories similarity
and 1 point in terms of dancing style representation given
by the mean of the subjects’ responses.

The results seem to suggest that the original dancing style
may be feasibly reproduced by the TGA model at quarter-
beat resolutions which conveys a compact representation
of the original dancing spatiotemporal structure. Table I
indicates that the TGA model offers a virtually unlimited
reduction of the original dancing, by allowing the synthesis
of endlessly variable dancing sequences, with a compression

in the order of 1
11 multiplied by the size of the generated

sequence.
2) Resolution: When comparing the tests’ results in terms

of their used metrical resolution, we observed that the
chosen metrical level pays a fundamental role on completely
describing and representing the original dance, which may
additionally depend on the considered style. For samba
dancing, Table I suggests that the use of all half-beat sub-
divisions (“variability+2”), assures the reproduction of the
original trajectories with a similarity of 79.6%, only sur-
passed by 1% by doubling that resolution to quarter-beat
(“variability+4”), with the trade-off of halving the level of
compression. Yet the subjective results in Fig. 7 reveal a
statistical outperformance of using a quarter-beat resolution
for reliably reproducing the original samba dancing style.
This seem to suggests that subjective reasoning may play an
important factor while evaluating similarity between dance
patterns. These factors could be related with the focus on
specific body parts in determining the style or the influence
of the non-ecological elements of the set up of the experiment
(use of stick figure, backgrounds and computer simulations).
On its hand, the strict consideration of full-beat points, at
“variability+1”, revealed the worst performance, even pro-
viding a worse trajectory description than “randgaps+2” in
terms of similarity to the original motion. It seem to suggest
a non-linear relation between resolution of the process and
the realism of sequence: when the synthesis drops to a certain
threshold of numerical resolution (in the whole process) it
may dramatically decrease the perceived similarity as a dance
sequence.

3) Variability: The effect of variability in the system was
verified by comparing the use of stochastic and fixed points
for the definition of key-poses, respectively defined by the
“variability+4” and “centroids+4” tests. The results indicate
that the variability imposed by the process is not sufficient to
impose an effect in terms of similarity with the original. The
subjective evaluation of the “centroids+4” sequence (which
displays very repeating patters, as depicted in Fig. 6b)) was
consistently less divergent than the “variability+4”, (which
was sequenced using stochastic processes – see Fig. 6a)),
suggesting a negative effect of the variability on reproducing
the original dance style. An explanation for such result may
rely on the repetitive nature of the captured dance, which may
imply that periodicity would be considered by the subjects
as a key factor for their assessment. In addition, assuming
an homogeneous spherical distribution for the stochastic
process may impose random combinations of movements
that are perceived as non-realistic. More studies in this field
are necessary in order to uncover this relationship between
variability and dance expressiveness.



V. CONCLUSIONS AND FUTURE WORK

In this study we proposed and evaluated a method for
synthesizing dance movements from a very compressed
representation of dance gestures. The process starts from
information of the original dance recorded with a motion cap-
ture system combined with musical information packed in the
TGA representation. This representation was re-synthesized
into dance sequences, and tested against the captured dance.
The results shown that quarter-beat representations offer a
proper level of similarity while offering a great compression
of the original signal. Smaller resolutions offer a decreasing
reproduction of the original dance, but keep an increasing
compression ratio. There were no significant positive effects
on inducting variability, as suggested by both evaluations.

The overall results seem to validate the TGA represen-
tation as a reversible form that may be applied for both
analysis and synthesis of periodic dancing styles in ani-
mated characters. In addition, the topological structure of the
concept offers new perspectives to further manipulation and
syntheses of these topologies. Such representation may offer
means for satisfying the kinematic constraints imposed by
using different robotic humanoid morphologies, by allowing
a flexible transformation of the dancing gestures’ geometry
while keeping the topology of the movement structure and
shape, fundamental to describe a given dancing style. More
studies are needed in order to verify the role of the variability
and importance of body parts in the perception of expression
in popular dance styles.
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