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ABSTRACT

Video content can be provided to an end user by transmitting
video data as a sequence of internet protocol (IP) packets over the
network. When the network contains a wireless link, packet era-
sures occur because of occasional deep fades. In order to maintain
a sufficient video quality at the end user, video packets must be pro-
tected against erasures by means of a suitable form of error control.

In this contribution we investigate two types of application layer
error control : (1) Forward Error Correction (FEC), and (2) the use
of an Automatic Repeat reQuest (ARQ) protocol. We point out that
FEC and ARQ considerably reduce the probability of unrecover-
able packet loss, because both error control techniques provide a
diversity gain, as compared to the case where no protection against
erasures is applied.

1. INTRODUCTION

The Internet Protocol (IP) allows to provide a mix of multimedia
services (video, audio, voice, data, gaming,...) to an end user, by
breaking up the bitstreams generated by the various services into IP
packets and sending these packets over the network. In this contri-
bution, we consider the delivery of these multimedia services via a
wireless channel, and focus on the reliability of the received video
data.

The occurrence of fading on wireless channels makes reliable
transmission a difficult task, because occasional deep fades give rise
to bursts of bit errors at the receiver. IP packets affected by bit errors
are erased at the receiver, yielding lost packets at the destination.
These lost packets are likely to cause visual distortions when view-
ing the video content at the destination. Hence, in order to obtain a
sufficient Quality of Experience (QoE) it is imperative to limit the
video packet loss rate.

In order to alleviate the damaging impact of fading, one can
reduce the probability of bit errors by means of coding on the phys-
ical (PHY) layer. Not only the video, but also the other services that
are provided via the same wireless link stand to benefit from this
coding. In this contribution, we restrict our attention to orthogonal
space-time block codes [1].

In order to provide additional protection of the video packets
against erasures, one can resort to Forward Error Correction (FEC)
coding [2] or to Automatic Repeat reQuest (ARQ) protocols [3] on
the application layer; these techniques involve the transmission of
redundant packets (in addition to the video information packets) or
sending a request for retransmitting erased video packets, respec-
tively.

We select Reed-Solomon (RS) codes for protecting packets
against erasures by means of FEC, because they are able to recover
the maximum possible number of erasures for a given transmission
overhead [2]. As far as ARQ protocols are concerned, we consider
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Selective Repeat (SR) ARQ, which yields the minimum transmis-
sion overhead [3].

In this contribution we investigate to what extent the combina-
tion of the RS code or the SR ARQ protocol with the space-time
PHY layer code improves the reliability of the video transmission
over a wireless channel subject to Rayleigh fading. The paper is or-
ganized as follows. In Section 2, we introduce some basic concepts
about video compression.We detail in Section 3 the RS erasure cod-
ing and the SR ARQ protocol.We provide in Section 4 the error per-
formance analysis for various scenarios, involving space-time cod-
ing or no coding on the PHY layer, with or without protection (RS
coding or SR ARQ) of the video packets. In Section 5 we present a
case study pertaining to HDTV transmission over a 60 GHz indoor
wireless link. Finally, in Section 6 conclusions are drawn regarding
system performance and complexity.

2. VIDEO TRANSMISSION

In this section we describe the video packet transmission. First,
the video source coding method is briefly mentioned. Next, at the
physical (PHY) layer, we consider the wireless link between the
video server to the end user.

2.1 Video source coding

The video stream is encoded (compressed) according to the MPEG-
2 standard [4], which is commonly used as the format for digital
television. The Video section of MPEG-2 (part 2) is designed to
compress the video stream through appropriate coding by exploit-
ing the existing redundancy in space and time. Uncompressed video
can be seen as a sequence of picture frames (e.g. 25 frames per sec-
ond). Typically, the scenes in successive pictures are very similar.
One can take advantage of this similarity to compress the video into
three types of frames: intra-coded frames (I-frames), predictive-
coded frames (P-frames), and bidirectional-predictive-coded frames
(B-frames). A commonly used frame pattern is IBBPBBPBBPBB,
called a Group Of Pictures (GOP), which consists of 12 compressed
frames and which is repeated. Such a GOP has a duration of 480
ms (25 frames per second).

2.2 Physical layer

On the PHY layer of the transmitter, theL bits to be sent for every
data-link-layer packet are mapped onto anM-point signal constel-
lation.

The fading gain is assumed to be piecewise constant over time;
the fading gain does not change over a time interval equal to the
channel coherence timeTcoh, and is statistically independent of the
fading gain in other intervals of durationTcoh. During an interval
Tcoh, several packets are transmitted, as indicated in Figure 1. Pack-
ets from other applications are located in between the packets with
video data.

On the PHY layer of the receiver, theM-ary data symbols are
detected, and demapped to bits. On the MAC sublayer, the recov-
ered bits are grouped into packets of sizeL, and error detection
based on the CRC is performed. When an error is detected, the
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Figure 1: Video packet stream and fading gain versus time; in this
example, 2 video packets are transmitted during the channel coherence

time, in which case a packet group consists of 2 packets.

packet is erased; otherwise, the packet is passed to the higher lay-
ers.

Because of fading, the received signal is occasionally strongly
attenuated. To alleviate the damaging impact of fading on the de-
tection of theM-ary data symbols, we consider the use of multi-
ple transmit and receive antennas. A multiple-input multiple-output
(MIMO) system withNt transmit andNr receive antennas allows
the introduction of space-time coding [1]. Whereas an uncoded
single-input single-output (SISO) system, i.e.Nt = Nr = 1, provides
only one wireless link between the transmitter and destination, the
number of wireless links provided by an Orthogonal Space-Time
Block-Coded (OSTBC) MIMO system equalsNrNt . As compared
to a SISO system, the larger number of links resulting from OSTBC
MIMO gives rise to a considerably higher robustness against fading,
and a much better error performance. Using an OSTBC MIMO sys-
tem does not require additional bandwidth as compared to the SISO
system, but comes at a substantial hardware cost that increases with
the number of antennas. Optimum decoding of OSTBC MIMO re-
duces to linear processing and simple symbol-by-symbol detection
at the receiver.

In this paper, we will consider the Alamouti space-time code
[1], which requires 2 transmit antennas (and an arbitrary numberNr
of receive antennas).

3. ADDITIONAL PROTECTION OF THE VIDEO DATA

As mentioned before, packets yielding an erroneous checksum are
discarded (erased) on the MAC layer, because they have been af-
fected by transmission errors; the other packets are assumed to be
received correctly. Because of video packet erasures, visual dis-
tortions may occur when viewing the received video content. In
order to guarantee a sufficient QoE to the end user, the rate of video
packet erasures should be limited. When the packet erasure rate
caused by transmission errors on the wireless link is too large, ad-
ditional measures are needed to recover erased video packets. In
this contribution we consider the combination of a PHY layer with
either no coding or Alamouti space-time coding with 1 or 2 receive
antennas, and additional packet protection by means of either RS
erasure coding or SR ARQ on the application layer.

3.1 RS erasure coding

The RS code is defined over the Galois Field GF(2q) (typically
q = 8). Per group ofK video information packets, we transmit
N −K parity packets. This results in a packet codeword ofN pack-
ets. The parity packets are constructed such that taking from each
packet theith block of q bits yields an RS(N,K) codeword, for all
i = 1,2, . . . ,L/q. This construction is illustrated in Figure 2. Hence,
whene packets from the packet codeword are erased, each of the
L/q RS codewords is affected by exactlye symbol erasures.

The RS(N,K) code is known to be Maximum Distance Separa-
ble (MDS), i.e. the code can recover up toN −K erasures, which
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Figure 2: Construction of a packet codeword.

cannot be outperformed by any other code with the same number
N −K of parity symbols [2]. When the number of erasures is larger
thanN −K, erasure decoding fails and unrecoverable packet loss
occurs.

The introduction of erasure coding yields an increase of both
overhead and latency:
• Using an (N,K) block code gives rise to a transmission overhead

ovh given byovh = (N−K)/K, because for eachK information
packets,N −K additional packets must be transmitted. Hence,
denoting byRpack (in packets per second) the rate of information
packets, the packet transmission rate equals(N/K)Rpack. This
indicates that because of the coding the fraction of time during
which the channel is used for video transmission is increased by
a factorN/K, leaving less room for the transmission of packets
from other applications.

• The RS decoder must wait until allN packets of the codeword
are received, before the erasure decoding can start. Hence, using
the (N,K) block code introduces an additional latencyTlat which
equals the duration of a packet codeword. Increasing the latency
gives rise to a larger zapping delay1, which might unfavorably
affect the user’s QoE.

Considering the above, the code parametersN andK should be se-
lected such that the overhead and latency are limited to reasonable
values.

3.2 Selective repeat ARQ

As far as ARQ is concerned, we consider an SR retransmission
protocol. The receiver sends a retransmission request for each of
the erased video packets, and only copies of the erased packets are
retransmitted. Retransmissions are scheduled such that the time
interval Tretr between the (re)transmission instants of copies of a
same packet is not less than the channel coherence timeTcoh. This
way, the different copies experience statistically independent fad-
ing. When one would selectTretr < Tcoh, the retransmission of a
packet that has been erased because of a deep fade is experiencing
the same deep fade, and therefore is likely to be erased as well. Such
retransmissions should be avoided, as they are not useful, but rather
contribute to the transmission overhead. Since each retransmission
gives rise to a latency ofTretr, the maximum numberNretr of al-
lowed retransmissions per packet is given byNretr = ⌊Tlat/Tretr⌋, in

1The zapping delay is the time that elapses between giving the command
to change the TV channel and the appearance of the new TV channel on the
screen [5].



order that the total latency caused by the SR ARQ protocol does not
exceedTlat .

4. SYSTEM ANALYSIS

In this section we present the analysis of the system under study. We
first investigate the PHY layer, followed by the additional packet
protection by means of RS erasure coding or SR ARQ. As a perfor-
mance measure, we consider the average number of GOPs that are
affected by irrecoverable packet loss, over a reference time interval
of 12 hours.

4.1 PHY layer

We consider the cases of uncoded SISO transmission, and Alam-
outi orthogonal space-time coding (2 transmit antennas) with 1 or
2 receive antennas. The probabilityPbit(x) that a bit is received in
error, depends on the instantaneous channel statex. The channel
statex is the sum of the squared fading gains that are involved in
the transmission of the considered bit (1 fading gain for SISO, and
2 or 4 fading gains for Alamouti with 1 or 2 receive antennas). The
probability density functionp(x) of the channel state is given by [6]

p(x) =
xD−1exp(−x)

(D−1)!
(1)

with D = 1 for uncoded SISO andD = 2 or D = 4 for Alamouti
with Nr = 1 or Nr = 2. The quantityD is the diversity provided
by the PHY layer; basically,D equals the number of physical links
between the transmitter and the receiver that are exploited by the
transmission scheme. As we will shortly demonstrate, the error
performance improves with increasingD; this is intuitively clear,
because allD links must fail for a packet erasure to occur.

The packet erasure probabilityPpack(x) conditioned onx
equals:

Ppack(x) = 1− (1−Pbit(x))
L (2)

To obtain (2) we have assumed that the packet duration is less than
the channel coherence time, so that the channel state is the same for
all L bits of a packet.

Before we consider in the next subsections the cases where RS
erasure coding or SR ARQ is used in order to recover erased pack-
ets, we now investigate the system performance under the assump-
tion that no such error control measures are taken.

We define apacket group as the set of packets that are transmit-
ted consecutively in time during an interval of durationTcoh over
which the fading is constant. We denote byNcoh the number of
packets transmitted during the intervalTcoh. For the example shown
in Figure 1, we haveNcoh = 2. The probabilityPgroup(e) thate pack-
ets are erased within a packet group of sizeNcoh, irrespective of the
channel state, is given by

Pgroup(e) =

(

Ncoh

e

) +∞
∫

0

Pe
pack(x)

(

1−Ppack(x)
)Ncoh−e

p(x)dx, (3)

e = 0, . . . ,Ncoh. We havePgroup(e) ∝ (Eb/N0)
−D for e > 0.

Let us now compute the probabilityPGOP that a GOP is affected
by unrecoverable packet loss. As no measures are taken to recover
erased packets, each erased packet is lost. Denoting byTGOP and
NGOP the duration of one GOP and the number of packet groups
that fit within the duration of one GOP, respectively, we have

PGOP = 1− (Pgroup(0))NGOP = 1−

(

1−
Ncoh

∑
e=1

Pgroup(e)

)NGOP

≈ NGOP

Ncoh

∑
e=1

Pgroup(e) = NGOP (1−Pgroup(0)) (4)

Hence, for largeEb/N0, we obtainPGOP ∝ (Eb/N0)
−D. This illus-

trates the impact of the PHY layer diversityD: the largerD, the
smaller the probability that a GOP is affected by packet erasures.

From (4), we compute the average numberE[#GOPunrec] of
GOPs that are affected by unrecoverable packet loss in a reference
intervalTre f of 12 hours. Denoting byNre f the number of GOP in-
tervals inTre f , we haveTre f = Nre f TGOP = Nre f NGOPTcoh. Hence,

E[#GOPunrec] = Nre f PGOP

≈ Nre f NGOP(1−Pgroup(0)) (5)

=
Tre f

Tcoh
(1−Pgroup(0))

The approximation in (5) holds for largeEb/N0. Note that, at high
Eb/N0, E[#GOPunrec] is independent of the GOP duration, and pro-
portional to(Eb/N0)

−D.

4.2 Packet protection by means of RS erasure coding

Now we consider the case where (N −K) parity packets are added
to K information packets, yielding a (N,K) RS packet codeword.
The numberNcoh of packets transmitted during the intervalTcoh
denotes the size of a packet group. We assume that theN packets
of the packet codeword are distributed overNgroup packet groups,
to which we associate the indices 1,2, . . . andNgroup. We denote
by en the number of erased packets in the packet group with index
n (n = 1, . . . ,Ngroup), and introduce the vectore = (e1, . . . ,eNgroup).
We define byPr(e) the probability that the number of erased packets
in the groups with indices 1,2, . . . andNgroup equalse1,e2, . . . and
eNgroup , respectively. We obtain

Pr(e) =
Ngroup

∏
n=1

Pgroup(en) (6)

From (6), the probabilityPRS(etot) that etot erasures occur in
the packet codeword is given by

PRS(etot) = ∑
e1+e2+...+eNgroup =etot

Pr(e) (7)

Finally, the probabilityPr[decoding failure] that the erasures cannot
be recovered by the RS decoder (becauseetot is larger thanN −K)
becomes

Pr[decoding failure] =
N

∑
etot=N−K+1

PRS(etot) (8)

In order to obtain at least (N −K +1) erasures in the codeword, at
leastγRS = ⌈(N −K +1)/Ncoh⌉ packet groups must contain erased
packets; this implies that the vectorse in (7) must have at least
γRS nonzero entries. Hence, for largeEb/N0, Pr[decoding failure]
is proportional to(Eb/N0)

−γRSD. Taking into account thatovh =
(N − K)/K, Tlat = K/Rpack and Ncoh =

⌈

(N/K)TcohRpack
⌉

=
⌈NTcoh/Tlat⌉ ≈ NTcoh/Tlat , γRS can be expressed as

γRS =

⌈

N −K −1
Ncoh

⌉

≈

⌈

N −K
Ncoh

⌉

≈

⌈

ovh
1+ovh

·
Tlat

Tcoh

⌉

(9)

Note thatγRS is an increasing function of bothovh andTlat .
Now we consider the probabilityPGOP that a GOP is affected by

unrecoverable packet loss. Denoting byNRS the number of packet
codewords in one GOP intervalTGOP, we have

PGOP = 1− (1−Pr[decoding failure])NRS

≈ NRSPr[decoding failure]
(10)

Similary, the average number of GOPs that are affected by unre-
coverable packet loss during a reference periodTre f of 12 hours is
given by

E[#GOPunrec] = Nre f PGOP

≈ Nre f NRSPr[decoding failure] (11)

=
Tre f

Tlat
Pr[decoding failure]



whereTre f = Nre f TGOP = Nre f NRSTlat . The approximations in (10)
and (11) are valid for largeEb/N0. We deduce from (10) and (11)
that bothPGOP andE[#GOPunrec] are proportional to(Eb/N0)

−γRSD.
Hence, as compared to the case where no erasure coding is used, the
effect of the RS(N,K) code is to increase the diversity order fromD
to γRSD: erasure coding introduces a diversity gain ofγRS.

4.3 Packet protection by means of selective repeat ARQ

With the proposed retransmission strategy, a packet will be lost
definitively when it has been erased during the first transmis-
sion and during Nretr successive retransmissions. The probability
PARQ,unrec(x) of this event is given by

PARQ,unrec(x) =
Nretr

∏
i=0

Ppack(xi) (12)

wherePpack(x) is the packet erasure probability corresponding to
a channel statex (see (2)), andx = (x0, . . . ,xNretr,max) contains the
values of the channel state at the first transmission and the subse-
quentNretr retransmissions of the considered packet. The probabil-
ity Pgroup,unrec(x) that at least one packet from a packet group of
Ncoh =

⌈

TcohRpack
⌉

packets (which all experience the same channel
state) is erased definitively is given by:

Pgroup,unrec(x) =
Ncoh

∑
j=1

(

Ncoh

j

)

(−1) j−1P j
ARQ,unrec(x)

AveragingPgroup,unrec(x) over the channel gain statistics yields the
probabilityPgroup,unrec that at least one packet in a packet group is
definitively lost, irrespective of the channel state values:

Pgroup,unrec =
Ncoh

∑
j=1

(

Ncoh

j

)

(−1) j−1(E[P j
pack(x)]

)Nretr+1

For large Eb/N0, we have E[P j
pack(x)] ∝ (Eb/N0)

−D, so that

Pgroup,unrec is proportional to(Eb/N0)
−(1+Nretr)D.

Following the same reasoning as in subsection 4.1, the quanti-
tiesPGOP andE[#GOPunrec] are given by

PGOP = 1− (1−Pgroup,unrec)
NGOP ≈ NGOPPgroup,unrec (13)

E[#GOPunrec] = Nre f PGOP

≈ Nre f NGOPPgroup,unrec (14)

=
Tre f

Tlat
Pgroup,unrec

For largeEb/N0, bothPGOP andE[#GOPunrec] are proportional to
(Eb/N0)

−(1+Nretr)D. Hence, as compared to the case of no retrans-
missions, the use of SR ARQ provides a diversity gainγARQ which
is given byγARQ = 1+Nretr = 1+ ⌊Tlat/Tretr⌋.

5. RESULTS APPLIED TO HDTV TRANSMISSION OVER
A 60 GHZ INDOOR WIRELESS LINK

Now we consider the transmission of compressed HDTV [7] ac-
cording to the configuration shown in Figure 3. The compressed
video bitrate equals 7.5 Mbit/s. The link between the HG and
the STB is a 60 GHz indoor wireless connection; assuming Non-
Line-Of-Sight (NLOS) conditions, this connection is modeled as
a Rayleigh fading channel, with a coherence timeTcoh = 20 ms
(corresponding to slow motion of about 0.4 m/s) [8]. In order to
limit the zapping delay, the latencyTlat caused by protecting the
video packets against erasures should not exceed 150 ms [9]. The
HDTV performance target is a maximum of 1 GOP with unrecov-
erable packets in 12 hours.
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Figure 3: Concatenation of DSL connection and wireless connection
(DSLAM = Digital Subscriber Line Access Multiplexer, HG = Home

Gateway, STB = Set-Top Box).

GOP = {IBBPBBPBBPBB}, 25 frames/s, 7.5 Mbit/s video bitrate

size (kbit) # MPEG-2 TS packets # IP packets

one I-frame 1080 714 102

one P-frame 360 238 34

one B-frame 180 119 17

one GOP 3600 2380 340

Table 1: Average sizes of I-frame, P-frame, B-frame and GOP

When protecting the video packets by means of a RS packet
codeword, we consider transmission overheads of 10%, 20% and
40%.

When using SR ARQ, we consider two distinct scenarios as far
as the location of the retransmission buffer is concerned.
• When the retransmission buffer is located at the HG,Tretr,min is

limited to about 5 ms. As 5 ms is less than the 20 ms chan-
nel coherence time, the transmitter will defer the retransmis-
sion of a packet until 20 ms have elapsed since the previous
(re)transmission of the considered packet; hence, this yields
Tretr = 20 ms.

• In the case of a low-cost HG, the retransmission buffer is not
located at the HG but further upstream, at the DSLAM. The
resultingTretr,min is on the order of 45 ms [8], which exceeds the
20 ms channel coherence time. In this case, we haveTretr = 45
ms.
Assuming that the average sizes of an I-frame and a P-frame are

6 times and 2 times the average size of a B-frame, Table 1 shows the
average sizes of the different types of frames and of the GOP con-
sisting of the frame sequence IBBPBBPBBPBBP. Note that each
type of frame gives rise to multiple IP packets. As the IP packet
rate is about 700 packets/s and the channel coherence time is 20 ms,
about 14 IP packets fit within the channel coherence time (assum-
ing IP packets are transmitted at constant regular intervals). Taking
into account the propagation of errors from an I- or P-frame to other
frames in the GOP, unrecoverable packet loss in an I- or P-frame is
very likely to give rise to a visual distortion. Considering that the I-
and P-frames in a GOP constitute on average 60% of the IP video
packets, and packet losses tend to occur in bursts with sizes compa-
rable to the channel coherence time (14 IP packets in our scenario),
it follows that when a GOP is affected by unrecoverable packet loss,
the probability that the packet losses occur in I- or P-frames is about
60%. Assuming that packet losses in B-frames are unnoticed but
losses in I- or P-frames yield visible distortions, the probability that
a GOP affected by unrecoverable packet loss yields a visual distor-
tion is about 60%. Moreover, some of the IP packets contain other
information (audio, data) related to the HDTV program, that is mul-
tiplexed with the video information. The loss of packets containing
a multiplex of B-frame information and other HDTV related infor-
mation reduces the QoE (because of audible clicks, ...), although
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Figure 4: Average number of GOPs affected by unrecoverable packet loss
in 12 hrs (Alamouti,Nr = 1, ARQ).
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Figure 5: Average number of GOPs affected by unrecoverable packet loss
in 12 hrs (Alamouti,Nr = 1, RS).

the errors in the B-frame do not propagate and could be concealed.
Therefore, the average number of GOPs that is affected by unre-
coverable packet loss in 12 hours is a meaningful indicator of the
QoE.

When conducting the performance analysis, we assumed that
the erasure probability on the DSL link is negligibly small as com-
pared to that on the wireless link between the HG and the STB.

Figures 4-6 show the average number of GOPs with unrecover-
able packet loss in 12 hours as a function ofEb/N0, for Alamouti
with 1 receive antenna and for the different packet protection strate-
gies (SR ARQ, RS erasure coding, none). When using SR ARQ, the
casesTretr = 45 ms andTretr = 20 ms correspond to diversity gains
γARQ of 4 (max. 3 retransmission) and 8 (max. 7 retransmissions),
respectively. In the case of RS erasure coding, overheads of 10%,
20% and 40% yield diversity gainsγRS of 1 (i.e., no diversity gain),
2 and 3, respectively.
• The highest possible diversity gain is⌈Tlat/Tcoh⌉ = 8. This

diversity gain is achieved for SR ARQ withTretr = Tcoh, i.e.
when the retransmission buffer is at the HG.

• Because of their larger diversity gain, the systems with SR
ARQ outperform the systems with RS coding. In order to
achieve a diversity gain of 4, the transmission overhead of the
systems with RS coding should be increased to about 70%. A
diversity gain of 2 is obtained for the systems with SR ARQ
whenTretr is between 50 ms and 75 ms.

• Figure 6 compares RS coding and SR ARQ in terms of
E[#GOPunrec in 12 hrs] for Alamouti with 1 receive antenna,
where the system parameters have been selected such that RS
coding and SR ARQ yield the same diversity. We observe that
the RS code performs worse than SR ARQ. This is because for
the RS code the number of dominant erasure patterns yielding
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Figure 6: Average number of GOPs affected by unrecoverable packet loss
in 12 hrs, RS versus ARQ (Alamouti,Nr = 1).

irrecoverable packet loss is larger than for SR ARQ.

6. CONCLUSIONS AND REMARKS

We have pointed out that SR ARQ and RS erasure coding on the ap-
plication layer give rise to a diversity gain yielding improved error
performance, and have presented simple analytical expressions for
this gain. For both SR ARQ and RS erasure coding, the maximum
possible diversity gain equals⌈Tlat/Tcoh⌉. However, when using
RS erasure coding this maximum diversity gain cannot be achieved
because of practical limitations on the allowed transmission over-
head. SR ARQ yields the maximum diversity gain provided that
Tretr,min < Tcoh; otherwise, the actual diversity gain is less.

The RS erasure coding gives rise to a fixed overhead and la-
tency, that are determined by the parameters of the RS code. In
the case of SR ARQ, the instantaneous overhead and latency are
random; their maximum values are determinined by the maximum
number of retransmissions, while their averages decrease with in-
creasingEb/N0 and are considerably less than the corresponding
values for RS erasure coding.
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