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Abstract 

After the abandonment of coal mining in Belgium in the 1960s–1980s, many coal tips 

have been left to themselves. Increasingly, these coal tips are regarded as socio-cultural 

heritage and protected for their environmental value. This research analyses the spatial 

distribution of the main geomorphic processes (sheet and rill erosion, landsliding, rock 

fragment movement and root throw) occurring on coal tips in Belgium, through mapping 

of the processes and their causal factors. Five spoil heaps spread over the major coal 

basins were studied in detail. The spoil heaps were subdivided in homogeneous land 

units, especially with regard to slope gradient, vegetation cover and slope aspect. 

Qualitative and quantitative observations were done on processes and potential causal 

factors. Regressions showed that generally, the expression of slope processes on the 

studied coal tips is (1) strongly dependent on westerly aspect of the slopes, (2) 

independent of slope gradient (which presents a narrow range), (3) impeded by grass 

cover, and (4) not fully predictable due to variability in type and age of dumped mine 

spoil.   
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1. Introduction 

The 19th and 20th century’s mining industry in Belgium left about 360 coal tips 

(EspaceTerrils, 2008), which determine large parts of the landscape in the provinces of 

Limburg, Liège and Hainaut. In the Wallonia region, more than half of the population 

lives within visual distance of a coal tip (EspaceTerrils, 2008). Since the abandonment of 

coal mining in Belgium in the 1960s–1980s, most coal tips were left standing without any 

major human interference; some were levelled and others have been utilised for 

recreational purposes. Currently, and increasingly, these coal tips are regarded as a part of 

Belgium’s socio-cultural heritage (Corne and De Keghel, 2006a,b; EspaceTerrils, 2008; 

Mijnerfgoed, 2008; Blègny-Mine, 2010; Maison des Terrils, 2010). 

Coal tips (“terrils” in the Belgian language forms of Dutch and French) are composed of 

various materials, primarily sterile rock but also waste such as mine wood, scrap metal, 

and scoria from surface facilities. Rocks composing Belgian coal tips belong to the 

Westphalian and Namurian (approx. 320 Ma) and include psammites, shales and coal 

residues (Renier, 1944). 
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Worldwide, the geomorphology of mine spoils (sensu lato) and their reclamation has 

been studied. Surface hydrology has been investigated (Haigh and Sansom, 1999; Evans 

et al., 2000; Nicolau, 2002; Rovis-Hermann et al., 2002), also in relation with the 

problem of transported pollutants (Loredo et al., 1999). Research on slope processes 

reported in literature includes sheet and rill erosion (Evans et al., 2000; Willgoose and 

Sharmeen, 2006; Hancock et al., 2008) and the subsequent armouring (Willgoose and 

Sharmeen, 2006), gully erosion (Evans and Willgoose, 2000) and particularly landsliding 

(Taylor and Spears, 1972; Monjoie et al., 1985; Monjoie and Schroeder, 2001; Carpentier 

et al., 2005). Surprisingly, the movement of rock fragments over the surface of mine 

spoils and the causes and effects of the widely present root throw seem not to have been 

studied. At the scale of coal-tip systems, catchment (Willgoose and Riley, 1998) and 

relief evolution (Willgoose, 1994; Paithankar et al., 2001; Hancock et al., 2003; Nicolau, 

2003) as well as total soil loss (Haigh and Sansom, 1999; Boggs et al., 2000; Rovis-

Hermann et al., 2002) have been addressed. No sediment budget studies were 

encountered in literature, and it seems that the depositional areas have been far less 

studied than the source areas. 

A certain number of studies have focused on the causal factors of the magnitude of 

geomorphic processes on mine spoils, such as type of slope material (Haigh and Sansom, 

1999), vegetation type and cover (Masson, 1950; Jochimsen, 1996; Haigh and Sansom, 

1999; Evans and Willgoose, 2000), the role of self-ignition, combustion and subsequent 

transformation of shales (Harrington and East, 1949; Carpentier et al., 2005), time 

(Taylor and Spears, 1972; Evans and Willgoose, 2000; Rovis-Hermann et al., 2002) and 

slope gradient (Hancock et al., 2008). The impacts of slope aspect, and related 

microclimate, on slope processes on spoil heaps have been touched upon (Cornwell, 

1971; Jochimsen, 1996; De Munck et al., 2009). The geographical distribution of erosion 

activity seems not to have been studied in the light of regional variations in climatic 

parameters (rainfall depth as well as spatial and temporal distribution, or frost activity for 

instance) or of material composing the mine spoils. 

Finally, a large body of studies addresses the issue of coal-tip reclamation through the 

application of various engineering techniques (Hüttl et al., 1996; Fox et al., 1998; Evans 

and Willgoose, 2000; Paithankar et al., 2001; Hancock et al., 2003), whereby studies 

analysing the role of spontaneously grown vegetation receive less attention (Jochimsen, 

1996; Hodačová and Prach, 2003). 

With regard to the 360 Belgian “terrils”, research papers including geomorphic features 

are few and far in between (Calembert and Dantinne, 1965; Monjoie et al., 1985; 

Palmers, 1995; Corexenos, 2001; Monjoie and Schroeder, 2001; Detalle, 2006). In this 

research we have identified and analysed the spatial distribution of the main geomorphic 

processes occurring on five coal tips in Belgium (Fig. 1), through mapping of the 

processes and their explanatory factors. The study links up the degree of expression of 

sheet and rill erosion, gully erosion, landsliding, root throw and deposition, with 

vegetation densities, rock fragment characteristics, slope gradient and aspect as well as 

combustion of coal residues. 

*** Figure 1 approximately here *** 

 

2. Study area: the Belgian coal tips 

2.1. Coal mining in Belgium 



 

 

3

The formation of coal layers in terrains that are now the north-west European continent 

took place during Westphalian times (300 Ma ago, part of the Late Carboniferous period). 

At the apogee of the Hercynian orogenesis, a mountain chain separated the Mediterranean 

area from the North German bight, a shallow marshy area ideal for the development of 

coal. Most coal basins in Europe are located at the position of what was then the North 

German basin (Goossens, 1984; Minten et al., 1992; Brink, 2005). Both in the north-

western Kempen region, and in the southern Belgian axis (Borinage-Centre-Charleroi-

Liège) coal layers of the same ages occur; they are however thicker and deeply buried in 

the Kempen (Goossens, 1984; Minten et al., 1992).  

Though coal had been exploited on a small scale in Belgium since the 12th century, a 

major coal extraction industry developed only in the 19th century in the Walloon 

industrial axis, concurrently with those in the adjacent northern France and German coal 

bearing regions (Rasmont and Barbier, 2000). In Limburg the exploitation started only in 

the early 20th century due to difficulties in locating and extracting the deep-seated coal 

(Lohest et al., 1904; Mijnerfgoed, 2008). Until the 1960s, coal was the most important 

source of energy in Belgium. Since then, coal mines were gradually closed, and the last 

coal mines ceased operation in Wallonia in 1984, and in the Kempen in 1992 (Monjoie 

and Schroeder, 2001; Mijnerfgoed, 2008). 

 

2.2. Coal tips 

With coal exploitation, spoil heaps were erected, and their shape and volume evolved in 

parallel with the mining technologies. The oldest coal tips, ‘fourfeyeux’ in the local 

Walloon language, appeared in the 12th century and were <10 m high due to limited 

extraction technology, and because essentially only coal, and little waste was brought to 

the surface. In the second half of the 18th and in the 19th century, extraction techniques 

improved and led to much larger flattened 10–20 m high ‘plats-terrils’ with a volume of 

around 100 000 m
3
. By the end of the 19th and during the 20th century, the ‘terrils’ 

reached heights comprised between 60 and 90 m and their volume increased to more than 

600 000 m
3
. The top of these spoil heaps was often conic, but other forms were made, 

depending on the way in which debris was dumped (Debehault, 1968) and the underlying 

shape of the original land surface that was covered by dumping. Waggons were trolleyed 

to the top over a linear slope of around 30°; the angle of respose of the debris was 35–

40°. Tracks were moved as the coal tip increased in height, and sometimes iron sheets 

were placed so that toboggans could bring debris to the desired place. Hence, the 

topography of coal tips is typically one of adjacent, diverging downslope oriented ridges 

and valleys (Debehault, 1968).  

The coal tips are composed of waste material from the underground mines, and are 

mainly (often finely crinkled) shale and sandstone. To separate coal from stony waste, 

dense medium baths were used (Sanders, 2007). This technique employed the difference 

in densities between coal (1.3–1.4 kg L
-1

) and shale (2.2–2.4 kg L
-1

). In a medium with 

intermediate density (water with magnetite), stones sank and coal floated. In time, the 

separation techniques were improved and the content of coal in mine spoil heaps 

decreased, from an average 15% in the older tips to 5% in the more recent (Debehault, 

1968).  

In the Kempen region, the coal tips have been established on thick Quaternary aeolian 

sands, while in the more southern basins, they generally lie on around 10 m of Quaternary 
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loess over Palaeozoic bedrock. In the latter areas, there is sometimes an intermediary 

gravel-rich river terrace that occurs between the loess and bedrock (Pissart and Macar, 

1976). In the regions where the coal tips have been established in Belgium, most rain 

originates from maritime south-westerly/ westerly weather systems, and there is an 

average rainfall of 700–1000 mm yr
-1

, with 170–180 rainy days per year;  

 

2.3. Establishment of vegetation on coal tips 

After exploitation, the spoil heaps have been colonised by vegetation, growing from 

seeds that were brought in by avian and aeolian dispersion. Species with light seeds 

(birch, grasses, and spore plants) have been found to dominate, followed by those with 

heavier seeds (oak, hazel, beech, sycamore, and ash). Fruit trees and shrubs such as 

buckthorn are disseminated by birds (Debehault, 1968). In a first stage, vegetation cover 

is poor and geomorphic processes are active. When the spoil heap is completely covered 

by forest, the slopes are more or less stabilised; yet, the variability in tree species has an 

impact on the magnitude of the geomorphic processes. 

The presence of Mediterranean vegetation, with species as Clematis vitalba (calciphile), 

Carlina vulgaris and Senecio inaequidens, especially on poorly forested southern slopes, 

is explained by the arid environment, linked to high permeability, absorption of sunlight 

by dark shales and to a certain extent by wind speed (Debehault, 1968; Monjoie and 

Schroeder, 2001). The northern slopes are less exposed to drought and often better 

forested (Debehault, 1968; Frankard, 2000).  

Zones that show evidence of combustion are not occupied by vegetation if the 

temperature exceeds 50°C, but if the surface temperature ranges between 20°C and 45°C, 

the characteristic vegetation (Digitaria sanguinalis, Vulpia myuros and Spergularia 

rubra) is related to a very particular microclimate, where the ground never freezes, and 

vegetation stays green throughout the winter though it will dry rapidly in summer 

(Debehault, 1968; Frankard, 2000).  

In humid temperate climate, forests colonise coal tips which are essentially not polluted. 

Such vegetation develops in another way than a planted forest, where the colonisation by 

vegetation takes place more rapidly and is deemed more efficient (Haigh and Gentcheva-

Kostadinova, 2002; Hodačová and Prach, 2003). In case of natural reforestation, shallow-

rooted birches will be dominant for a long period and are expected to poorly stabilise the 

slopes (Frankard, 2000). In reforestation there is a strong preference for Robinia 

pseudoacacia, which is deep rooting, stabilises slopes, grows rapidly even on stony soils 

and enriches the soil in Nitrogen, what in its turn enhances succession. Furthermore, it 

tolerates acidity  (Debehault, 1968; Bradshaw, 1997). Other reforestation species on coal 

tips include oak, sycamore, ash and wild cherry (Debehault, 1968).  

 

2.4. Future of coal tips 

One of the options for coal tips is the recovery of the coal fraction, at least in those heaps 

that have sufficient coal content and which do not burn. The whole coal tip is then 

excavated and the residu sometimes placed back at the same location. The materials have 

been used for railway (own observations) and highway embankments (Debehault, 1968; 

Monjoie and Schroeder, 2001). The red shales in coal tips that have burned are used for 

footpaths and tennis courts. Now that coal tips have become ‘green’, operations of their 

removal meet great resistance, as nature value would be lost, and years of dusty 
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conditions would be created by processing and transport (Charlier, 2000; Frankard, 2000; 

Raes and Bosteels, 2006). 

Semi-natural uses of coal tips are impeded by their steep topography, active settlement 

processes and the acid environment. Informal herding of sheep, goats and sometimes 

cattle takes place on several of them, and some south-oriented slopes have been used for 

the establishment of vineyards. Most commonly, reforestation takes place (Debehault, 

1968; Bradshaw, 1997, 2000; Hodačová and Prach, 2003), which leads to problems in 

areas where pollutants have been incorporated in the materials of the spoil heap (Loredo 

et al., 1999). Currently, the nature and recreation values of spoil heaps are being 

developed by local authorities (Ledent, 1993; Charlier, 2000; Corne and De Keghel, 

2006a,b; Raes and Bosteels, 2006; EspaceTerrils, 2008; Mijnerfgoed, 2008; Blègny-

Mine, 2010; Maison des Terrils, 2010).  

 

2.5. Coal tips selected for the study 

After field explorations on 14 coal tips in Belgium, five spoil heaps, spread over the 

major basins of the country were selected (Table 1, Fig. 1). To have comparable 

conditions, only coal tips that have not been reworked or reshaped were chosen, mostly 

conical ones. Fully vegetated heaps were also avoided in order to be able to study 

variability in slope processes. 

*** Table 1 approximately here *** 

 

The 75 m high terril de l’Héribus is the westernmost spoil heap that was studied. The coal 

tip is covered with trees on its northern slopes as well as on the gentler slopes (about 10°) 

which make the link from the foot to the higher parts of the tip, where slopes become 

steeper (30°). This is the only one of our five coal tips which has a formal recreation 

function: stairs and footpaths were installed, as well as some benches and an orientation 

table. Near the top, combustion occurs (Monjoie and Schroeder, 2001), which led to a 

local nickname “Mount Erebus”. In recent years, two debris slides have occurred. The 

western slide took place suddenly in summer 1992, after an intense storm; a slower 

eastern slide occurred in 1994 and blocked a road (Chemin de Bavay) (Monjoie and 

Schroeder, 2001). 

The base of the terril du Boubier in the Charleroi basin is located at 150 m a.s.l. on the 

edge of a terrace of the River Sambre. The spoil heap is only forested on the northern 

slope, on the other slopes there is steppic vegetation with only some sporadic trees (Fig. 

2). 

*** Figure 2 approximately here *** 

 

The terril de la Petite Bacnure is located near Liège; it has a conical shape, with an 

elongated top, part of which is burning. On 1 April 1999, after a heavy rain, a 1344 m³ 

debris slide (Nyssen et al., 2010) occurred on the burning side of the heap (Fig. 3). 

*** Figure 3 approximately here *** 

 

The top of the Hasard coal tip, 10 km east of Liège, at 360 m a.s.l. is the highest of 

Belgium and offers a 360° wide panorama over the main geomorphic regions of Middle 

and High Belgium. In 2002, a debris slide occurred in a burnt area, yet it was not clear 

whether the combustion was still active at the time of the slide (Detalle, 2006).  
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On the Kempen plateau, one of the three spoil heaps of Waterschei was selected. Here, a 

particular feature is that the materials were deposited within only 8 years, from 1953 to 

1961 (Palmers, 1995). One must further take into account that driving of cross motor 

cycles takes place on this spoil heap, which may particularly enhance rill and gully 

erosion. 

 

2.6. Processes that affect geomorphic activity on the studied coal tips 

2.6.1. Runoff and infiltration 

Runoff from spoil heaps, with their steep slope gradients and low vegetation cover, is 

deemed to be relatively limited due to high permeability which is related to the coarse 

material that they are composed of. On the other hand, lignite spoil heaps in Germany 

show high water repellency (Gerke et al., 2001; Buczko and Gerke, 2005; Hangen et al., 

2005), which is also assumed to exist on the Belgian coal tips, and which leads to locally 

high densities of rills. Locally gullies may occur in depressions where the water 

concentrates, but they are few, as also observed by Debehault (1968) and Corexenos 

(2001).  

Infiltrating water on the other hand enhances the oxidation of pyrite (Zodrow, 2005) and 

replenishes aquifers. High infiltration may lead to temporary saturation and ultimately to 

land sliding. 

 

2.6.2. Soil compaction 

Soil compaction related to settlement occurs within the mass of the coal tip and enhances 

runoff or may hinder root penetration. Less evidence of runoff was clearly observed in 

places with dense vegetation, not the least because the vegetation leads to better 

infiltration (Haigh and Sansom, 1999).  

 

2.6.3. Acidification 

Coal tips have often a toxic environment due to soil acidification which is related to 

oxidation of pyrite (Urrutia et al., 1992; Zodrow, 2005). This acidification is a slow 

process which may take a few decennia and lead to a pH of 3. As a solution, Bradshaw 

(2000) suggests natural leaching or liming to neutralise the soil. 

 

2.6.4. Spring development 

Springs exist at the foot of the Boubier (Fig. 4) and many other spoil heaps. Corexenos 

(2001) describes the three springs at the foot of Bernalmont near Herstal. The occurrence 

of these springs is related to the much higher hydraulic conductivity (Shepherd, 1989) of 

the spoil heap with its large and unlayered clasts, as compared to the underlying natural 

formations, in many cases Quaternary loess, which have furthermore been compacted by 

the weight of the spoil heap itself. 

 *** Figure 4 approximately here *** 

 

2.6.5. Spontaneous self-combustion 

Evidence of combustion was observed on four of the five studied coal tips, and has been 

reported on many other coal tips (Nyssen et al., 2010). Coal mine tips have variable 

contents of coal (5–15%) as well as iron sulphides (pyrite and marcassite). The coal 

content found in the tips depends on the age of the spoil heap; older spoil heaps have 
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generally a higher content of coal, and hence have a greater susceptibility to combustion. 

The exothermic reaction of pyrite with oxygen and water may ignite the coal tip, and the 

relatively easy circulation of air and water is enhanced by the poor compaction of the 

spoil heap (Harrington and East, 1949; Monjoie and Schroeder, 2001).  

The surface of a burning coal tip has a temperature between 25°C and 60°C, and this can 

reach > 100°C at a few dm depth and > 1000°C in the inner part of the tip. The areas 

where there is burning have a sparse grass vegetation (trees are absent) and are free of 

snow in winter (Debehault, 1968; Frankard, 2000; Monjoie and Schroeder, 2001; 

Carpentier et al., 2005). 

The combustion process will continue as long as coal is present to be burnt, a process that 

may take more than 50 years for a tip. Burning is observed especially near the highest 

point of the tip because the heat originating from the interior moves towards the apex of 

the spoil heap (Debehault, 1968; Frankard, 2000). Our observations from profile pits 

excavated in burnt areas show furthermore that the preferential orientation of shale debris 

in the spoil heaps is parallel to the surface, which enhances the transfer of heat from the 

inner to the tip. 

 

3. Materials and methods 

3.1. Data collection 

Fieldwork took place between August 2008 and April 2009. The five spoil heaps were 

subdivided in 10–22 homogeneous land units, especially with regard to slope gradient, 

vegetation cover and slope aspect. The land units were mapped in the field using a GPS, 

and within each land unit a qualitative description was done, as well as quantitative and 

qualitative observations of potential factors of instability (Table 2), the findings of which 

were eventually organised in pre-defined classes. On the other hand the degree of 

expression of the different slope processes observed per land unit (see section 4.2) was 

recorded on an ordinal scale (no – few – much – very much). 

 

*** Table 2 approximately here *** 

 

 

 

Digital terrain models (DTMs) with a resolution of 20 m were obtained from the Belgian 

National Geographic Institute (NGI, 2010a), and had been realised in 2007 (Petite 

Bacnure, Hasard, and Waterschei) and 2008 (Boubier and Héribus). In ArcView GIS 3.2, 

slope gradients and aspects were derived from the DTMs and contour lines developed. 

The latter corresponded well to the contour lines on the published topographical maps 

(NGI, 2010b). All GIS work was done in the Lambert ’72 Belgian Datum (BD72). 

 

3.2. Data processing 

3.2.1. Mapping 

Homogeneous land units were mapped as polygons in ArcView GIS 3.2 thematic layers. 

Thematic maps were prepared by assigning values (average of the observed class) 

recorded in the field, to each polygon. The land units were then subdivided in pixels 

corresponding to those of the DTM. In all thematic layers, weighted averages were 

calculated for pixels that were part of two or three land units. 
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3.2.2. Statistical analysis 

After preparation of thematic layers, correlations and regressions were prepared between 

the causal factors and the intensity of the geomorphic processes. Layers representing 

topographical parameters, stoniness and vegetation cover held quantitative data that could 

directly be used in statistical analyses. However, the layers that were related to soil 

texture classes and direct human impact (garbage dumping and motor sports activities) 

had nominal scales on which no mathematic calculations could be done; they were not 

used in the statistical analyses. 

Other qualitative data on slope processes and combustion had an ordinal character. In 

assigning them numeric values (0 for absence of process, 1 for slight expression, 2 for 

strong and 3 for very strong expression), and assuming equal-appearing intervals 

(Thurstone, 1928), the ordinal scale was promoted to a quantitative interval scale, 

allowing us to involve the thematic layers regarding slope processes in statistical 

analyses. 

The strength of the relations between variables was measured with the Pearson-

correlation coefficient r. The significance of these coefficients was tested at different 

probability levels (p) by F-tests (Beguin, 1979). To avoid multicollinearity in multiple 

regressions, correlation matrices were established between the independent variables.  

 

Pole diagrams allowed a visual representation of the association between aspect and slope 

processes. As relations involving slope aspect do not follow a linear but a sinusoidal 

function, these relations were fitted to the model by Nyssen et al. (2005) 

 

y = s1 + s2 (sin (x
  
- s3) )    (1) 

 

where y = expected expression of slope process (scale of 0 to 3), x = slope aspect (in 

degrees, turning right from the N), and s1 to s3 are constants: s1 = expected average 

expression of the slope process, s2 = amplitude of the sinusoidal function, and s3 = aspect 

(in degrees) where the average expression of the slope process is expected. 

 

Multiple regressions were used to explain the intensity of slope processes using several 

explanatory variables. The function had a sinusoidal component to represent the slope 

aspect and was linear for the other variables (Nyssen et al., 2005); stepwise models were 

created, at each step leaving out the least significant explanatory variable (Beguin, 1979). 

 

4. Results 

4.1. Correlations between explanatory factors 

In order to correctly carry out the analysis of the factors that influence the intensity of 

occurring slope processes, it is important to know how the explanatory factors are 

interrelated. As an example, the correlation matrix of Petite Bacnure is highlighted (Table 

3) while stressing also salient features observed on other coal tips. Full quantitative data 

of this study are presented by Vermeersch (2009). 

There is a relatively strong correlation (r = 0.60; p < 0.01, like all correlations presented 

in this section) between slope aspect and stone cover, with high stone cover on slopes 

oriented to the East. Aspect is also correlated to tree cover (r = 0.43). Overall, we found 
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(often strong) correlations between tree cover and aspect, with highest tree cover on the 

northern slopes, except at the Hasard coal tip. On the Waterschei coal tip, the only one in 

our dataset that is not affected by combustion, r = 0.69 and highest tree cover occurs on 

slopes with W, NW, N and NE aspect. 

*** Table 3 approximately here *** 

 

The combustion is correlated to slope aspect (r = 0.52; Table 3) and occurs preferentially 

on south-eastern slopes. There is a negative correlation (r = −0.41) between rock 

fragment cover and size as well as between rock fragment cover and grass cover (r = 

−0.43) and a strongly positive correlation between rock fragment size and total vegetation 

cover (r = 0.82).  

At Petite Bacnure, we found a strong negative correlation (r = −0.73) between grass and 

tree cover (Fig. 5A,C), and a positive correlation (r = 0.63) between combustion and 

grass cover (Fig. 5A,B). Finally, there is a negative correlation (r = −0.61) between tree 

cover and combustion (Table 3). Such a negative correlation is found on all coal tips that 

burn or have burnt. 

*** Figure 5 approximately here *** 

 

4.2. Slope processes observed on the coal tips and their causal factors 

Active slope processes can be observed on all spoil heaps, at densities which are 

uncommon in north-western Europe with its generally undulating landscapes, low slope 

gradients and otherwise dense vegetation cover. The correlation table (Table 4) between 

dependent variables (slope processes) and causal factors shows strong correlations 

between slope aspect and the intensity of most processes. This is a constant on all spoil 

heaps. Yet it is important to also consider the dominant slope aspects at which the 

different processes take place at the different spoil heaps. On the other hand, weak 

correlations between slope process intensity and slope gradient are found on most spoil 

heaps. Correlations with rock fragment size are weak at Petite Bacnure but not at other 

spoil heaps. Throughout this section, the case of Petite Bacnure spoil heap will be 

particularly illustrated, as well as similarities or differences with other spoil heaps.  

*** Table 4 approximately here *** 

 

4.2.1. Soil creep 

The constant, slow mass movement called soil creep is permanently present on coal tip 

slopes as a consequence of slope steepness and poor compaction. It is particularly 

recognized by the gravitropic bending of trees on many slopes of the spoil heaps. As this 

gravitropic bending of trees was used to determine the magnitude of creep, the process 

could not be observed in areas with low tree cover; a minimum of 30% tree cover was 

deemed necessary to have a sufficient sample of trees. 

At Petite Bacnure, there is a strong correlation (r = 0.78; p < 0.01, like all correlations 

presented in this section 4.2) between intensity of creep and slope aspect (Table 4). Most 

creep occurs on the northern slopes of the spoil heap. This is in parallel with the strong 

positive correlation (r = 0.64) between creep and tree cover (Table 4). The occurrence of 

creep on burnt areas is difficult to establish because burning areas have only trees at their 

margins. 
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4.2.2. Sheet erosion 

The occurrence of sheet erosion could particularly be recognised by root denudation of 

the shallow rooted birch trees. Sheet erosion depths of 5 cm are common, but there is also 

a large spatial variability in erosion depth.  

With regard to the factors of sheet erosion at Petite Bacnure, there is a correlation (r = 

0.51) between sheet erosion and slope aspect (Table 4). Sheet erosion particularly occurs 

on north-oriented slopes. At the same spoil heap, there is a strong negative correlation (r 

= −0.65) between sheet erosion and grass cover (Table 4, Fig. 5A,D). Given the strong 

negative correlation between grass and tree cover (Table 3, Fig. 5A,C), there is 

expectedly also a positive correlation (r = 0.62) between sheet erosion and tree cover 

(Table 4). Sheet erosion intensity is also negatively correlated to grass cover on most 

other spoil heaps. Last but not least, at Petite Bacnure, there is a strong negative relation 

(r = −0.62) between sheet erosion and combustion (Table 4, Fig. 5B,D), which was also 

observed at the other burning coal tips. 

*** Figure 6 approximately here *** 

 

4.2.3. Rill erosion 

Rills are linear incisions by water erosion and are distinguished from gullies by a critical 

cross-section of one square foot (930 cm²; Poesen et al., 1996). On coal tips, they occur 

frequently in areas void of vegetation, particularly in minor depressions (Fig. 6). As the 

rills are not obliterated by cultivation, spoil heaps contain areas with the most spectacular 

rill densities of the wide surroundings.  

There is a strong correlation between rill erosion and slope aspect (r = 0.75) at Petite 

Bacnure (Table 4), whereby rill erosion mainly occurs on slopes with northern to south-

eastern aspects. Further, there is a consistent negative relation of rill erosion with tree 

cover on all spoil heaps (Table 5). 

*** Table 5 approximately here *** 

 

4.2.4. Gully erosion 

Gullies have been defined as recently developed drainage lines of ephemeral streams with 

steep banks and a nearly vertical gully head (Poesen et al., 2003). At most spoil heaps 

there are strong correlations between gully erosion volumes and slope aspect. At Petite 

Bacnure (r = 0.80), gully erosion has limited dimensions and occurs especially on the 

north-eastern slopes.  

 

4.2.5. Landsliding 

We have observed landslides on all spoil heaps, and, except in Waterschei, all were 

related to areas under combustion. Landslide scars were observed at the very location of 

combustion at Petite Bacnure, Hasard and Héribus. The area affected by landsliding 

includes also the tongue which generally extends well downslope of the combustion area. 

For this reason, we found no strong correlation between landsliding and area of 

combustion. At Petite Bacnure, like on other spoil heaps, there is a correlation (r = 0.40) 

between landsliding and grass cover (Table 4), and a fairly strong negative correlation (r 

= −0.57) between landsliding and tree cover (Table 4). The latter is also the case on other 

spoil heaps, except in Waterschei. 
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4.2.6. Rock fragment movement over the slopes 

Rolling and sliding of rock fragments is common on all spoil heaps. The movement is 

evidenced by the accumulation of large rock fragments in depressions and at the foot of 

the coal tips. Particularly, if not embedded, or covered by leaves or vegetation the 

movement is deemed to have taken place at a later stage after spoil dumping. Advent of 

larger rock fragments in adjacent gardens is reported by neighbours and was studied in 

detail by Corexenos (2001). At Petite Bacnure, like on most spoil heaps, the most 

significant observed factor of instability for rock fragment movement is slope aspect (r = 

0.44), a western aspect in this case.  

 

4.2.7. Deposition and formation of debris cones 

Deposition evidences the active slope processes that take place on the spoil heaps. 

There is a strong correlation (Table 4), at Petite Bacnure, between deposition and slope 

aspect (r = 0.60), with most deposition on slopes oriented to south and south-west. This is 

particularly the case at Waterschei (r = 0.76) and to a lesser extent at the other studied 

coal tips. 

 

4.2.8. Root throw 

Toppled trees are surprisingly common in the young forests on coal tips. Root throw, i.e. 

displacement of soil attached to roots in down slope direction is a slope process that is not 

negligible on coal tips. At Petite Bacnure, with relatively high tree cover in many places, 

there are no correlations (with r > 0.40) between causal variables and root throw density 

(Table 4). Here, exceptionally, root throw occurs only at two locations which are located 

at the foot of the spoil heap. Generally, no favourable slope aspects for root throw could 

be found on the spoil heaps.  

 

5. Discussion 

The sometimes strong correlations that exist between phenomena must be critically taken 

into account. There is strong anthropogenic, but non predictable, direct impact: there are 

no data on the distribution of the different kinds of debris within the coal tips at the 

moment of dumping. Hence, the location where processes occur is more difficult to 

foresee than on natural materials. Parts with high coal content will easily be subjected to 

burning, and the variability of rock fragment content, cover and size of the top soil may 

impact the magnitude of slope processes. On the other hand, tree cover is also partly 

induced by forestation programmes of the 1950s–1960s (Masson, 1950) that took place to 

stabilize slope sections, and hence not entirely determined by natural conditions only. 

The case of the Petite Bacnure coal tip (Fig. 5B,C) illustrates such interactions. Due to 

high coal content, the southern slopes tend to burn which has led to absence of trees. Both 

phenomena are strongly correlated to slope aspect, but neither of them can be related to 

intensity of climatic factors that are generally associated with aspect. 

 

5.1. Variability in geomorphic processes on the studied coal tips 

5.1.1. Soil creep on humid slopes 

The comparison of the five studied coal tips in Belgium suggests that the intensity of 

creep is strongly correlated with slope aspect, and it occurs mostly on slopes exposed to 

the north-west. It is also often positively correlated with tree cover. Dominance of soil 
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creep on north-westerly slopes is explained by the combination of rainy winds that come 

from westerly direction and shadow effect on the northern slopes, which leads to greater 

moisture content and enhanced creep. 

 

Stepwise developed multiple regressions for creep, including the most significant 

explanatory variables, typically take either of the following formats: 

 

CR = −0.93 + 0.02 RFS + 0.03 TC   (r
2 

= 0.46; p < 0.0001; n = 309)     (2) 

 

at the spoil heap of Petite Bacnure, where CR = expression of creep movement 

(dimensionless, scale of 0 to 3), RFS = rock fragment size (in cm), and TC = tree cover 

(in %), or: 

 

CR =1.27 + 0.14 sin (0.0168 SA + 4.18) – 0.21 RFS   (r
2 
= 0.46; p < 0.0001; n = 430)   (3) 

 

at the spoil heap of Hasard, where SA = slope aspect (in degrees, turning right from the 

north). 

 

For all studied coal tips, the causal factor ‘rock fragment size’ appears most frequently in 

the multiple regression equations (mostly positively correlated), followed by ‘tree cover’ 

(positively correlated), ‘slope aspect’, ‘slope gradient’ (negatively correlated) and ‘rock 

fragment cover’ (negatively correlated).  

 

5.1.2. Sheet erosion on windward slopes 

On all studied spoil heaps, sheet erosion intensity is related to slope aspect: on northern 

slopes at Petite Bacnure, on western slopes at Boubier, on north-western at Waterschei, 

on south-western at Hasard and southern at Héribus. Besides local effects of other 

variables, the dominance of sheet erosion on westerly slopes can be directly related to the 

greater rain volumes that these slopes receive, due to dominant wind directions. 

A generally negative effect of combustion on sheet erosion intensity was found, which is 

related to several of the effects of combustion, such as winter grass growth, evaporation 

and hence less runoff, as well as greater porosity due to pseudokarst effects in which 

burnt coal is replaced by voids that enhance infiltration. 

The multiple regression equations for the various spoil heaps mostly include slope aspect 

and commonly also rock fragment cover and size as well as grass cover (all negatively 

correlated); these equations often have strong correlation coefficients (r² between 0.32 

and 0.87). 

 

5.1.3. Rill erosion: role of slope aspect and shallow roots 

Except for the Hasard spoil heap, rill erosion is strongly correlated to slope aspect (Table 

5). On the Waterschei and Héribus coal tips most rill erosion occurs on the south- and 

north-westerly slopes respectively, which may be directly explained by the dominant 

direction of rainy winds. Against expectation, most rill erosion on Petite Bacnure and 

Boubier occurs on eastern slopes. Rill erosion density is of course also directly and 

negatively related to vegetation density, to grass cover, but particularly to tree cover. The 

impeding effect of shallow birch roots on rill erosion must be stressed here. 
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In the multiple regressions for rill erosion on our five spoil heaps, a weak to moderate 

correlation (r² between 0.18 and 0.57) was found. The explanatory factor ‘total 

vegetation’ (negatively correlated) was generally part of the significant factors, as well as 

tree cover (negatively correlated) and grass cover (sometimes negatively correlated).  

 

5.1.4. Gully erosion 

Except for Héribus, gully erosion on the spoil heaps is correlated to slope aspect, 

generally a southern aspect (Petite Bacnure and Hasard: eastern aspect), which is to be 

related to the dominant direction of rainy winds and hence greater rainfall and runoff. In 

addition, trees, which commonly impede gully erosion, have less density on southern 

slopes. Gully erosion is strongly correlated to rock fragment cover (almost always 

positively) and moderately to tree cover (mostly negatively).  

The multiple regressions for gully erosion on the five coal tips (r
2
 between 0.13 and 

0.71), generally comprised rock fragment cover (mostly positively correlated), and often 

slope aspect, tree cover (negatively correlated) and combustion (negatively correlated). 

Gullies occur especially on the Héribus mine spoil which is flat-topped and hence has a 

larger catchment that provides sufficient runoff volumes to enhance gully formation, as 

also shown by Palmers (1995). Generally, gullies are related to specific topographic 

features (size and shape of drainage areas). They are located in depressions, but also 

along preferential flow paths such as footpaths or motor cross tracks. Gullies on mine 

spoils in Belgium do however not reach spectacular volumes like ephemeral gullies in the 

European loam belt (Nachtergaele and Poesen, 1999) or valley bottom gullies in Ethiopia 

(Nyssen et al., 2006b). 

 

5.1.5. Landsliding, as induced by combustion 

Landslides are the most spectacular slope processes on coal tips. The correlation between 

slope aspect and landsliding is strongest at the Waterschei spoil heap. Here, the 

occurrence of several small debris slides is not related to burning and landsliding 

expectedly occurs on the relatively humid north-western slopes which have high rainfall 

and are less exposed to sunshine. On this spoil heap, landsliding is also positively 

correlated to tree cover (r = 0.65; p < 0.01); the better growth of birches on these humid 

slopes does not impede sliding due to its shallow root depth. 

Whereas landsliding was frequent in the period of dumping and has led to catastrophes 

(McLean and Johnes, 2000), the current landsliding is part of the stabilisation process and 

is mostly correlated to combustion (Petite Bacnure, Hasard, Héribus) (see section 2.6.5). 

Besides pseudokarstic phenomena (decrease of mass and local collapse due to 

combustion), there is a major effect of rain water infiltration, subsequent evaporation and 

creation of vapour pressure (Carpentier et al., 2005; Nyssen et al., 2010), which, 

combined with humidity and slope steepness, triggers landsliding. 

 

Also the negative correlation between landsliding and tree cover on burning coal tips is 

well understood: tree vegetation cannot exist on locations subject to burning.  

These findings correspond to the results of the multiple regressions for landsliding (r
2
 

between 0.10 and 0.52). These were done for four spoil heaps, because on the Boubier 

spoil heap no landsliding was observed.  
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5.1.6. Rock fragment movement in areas where rock fragments 

are at the surface 

Generally, and logically, rock fragment movement is positively correlated to rock 

fragment cover and to rock fragment size, which in its turn is correlated to the impact of 

gravity. There is also, on all coal tips, a positive but weak correlation with slope gradient, 

which is explained by the uniform slope gradients that exist on spoil heaps (generally 

between 20° and 30°).  

Both rock fragment mass and slope gradient will contribute to overcome resistance by 

friction (Bozzolo and Pamini, 1986; Erismann and Abele, 2001; Nyssen et al., 2006a). 

Triggers may be runoff, occasional shepherding, walking and wildlife. 

The multiple regressions for rock fragment movement on the studied spoil heaps show a 

weak to moderate correlation (r
2 

between 0.10 and 0.63). Rock fragment size (almost 

always positively correlated) is an explanatory factor in all multiple regressions and rock 

fragment cover is another factor that is often part of the regression (mostly positively 

correlated). 

 

5.1.7. Sediment deposition at the foot of windward slopes 

Debris cones exist particularly at the foot of steep slopes with poor vegetation cover, at 

the outlet of the minor valleys in between ridges created at the time of shedding, and as 

local deposits at the upper side of tree trunks and metallic waste that was left behind 

during dumping. Except for Héribus, on all coal tips there is a moderate to good 

correlation between slope aspect and deposition, with most slope deposits on the south-

western slopes (Boubier: eastern slopes). As expected, overall the highest intensity of 

slope processes takes place at the same aspect where deposition occurs (Table 6). 

Preferential deposition on the south-western slopes may obviously be related with the 

dominant direction of rainy winds in Belgium; higher rain leads to intenser slope 

processes. 

Not all multiple regressions for deposition yield strong correlations (r
2 

varies between 

0.21 and 1.00). Here, rock fragment cover (mostly positively correlated) is the most 

frequently explanatory factor. Other variables that appear several times are rock fragment 

size (sometimes positively correlated) and total vegetation (negatively correlated). 

Basically, the deposition should be seen as integrating the sediment produced by the 

various slope processes. 

*** Table 6 approximately here *** 

 

5.1.8. Root throw where the debris is void of large rock fragments 

Steep slopes, shallow rooting of birches and looseness as well as poor structure of the 

materials of the spoil heaps are evident causes of tree toppling. Except at Waterschei, root 

throw is positively correlated with tree density.  Further, the negative correlation between 

root throw and rock fragment size is related to the fact that coal tip slopes composed of 

fine material provide less possibilities for root anchorage, leading to easier toppling 

(Danjon and Reubens, 2008). 

Only, at Waterschei (south slopes) and Boubier (north slopes), root throw is correlated to 

slope aspect – again these are the aspects with greatest tree densities. Similarly, the 

negative correlations of root throw with combustion are easily explained by the fact that 

on burning places no trees grow and hence no root throw can take place. 
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The multiple regression equations for root throw (r² between 0.18 and 0.54) almost 

always comprise tree cover (mostly positively correlated) and mostly grass cover 

(negatively correlated), and only once slope gradient, rock fragment cover and 

combustion (all negatively correlated). 

 

5.2. General tendencies in geomorphic activity 

The expression of erosion and deposition is strongly determined by slope aspect (Fig. 7). 

Generally, most intense slope processes take place on slopes with a western aspect (Table 

6) whereas deposition occurs on south and south-western slopes. Two major reasons are 

that some aspects are more exposed to rain and wind, especially in periods with intense 

rainfall, and the terrain is unusually steep (> 20°). The geometrical equation of Fourcade 

(1942) and Blocken et al. (2006): 

 

P* = P (1 + tanα tanβ cos(γ − δ))      (4) 

 

where: P* = hydrological rainfall actually intercepted on the ground (mm), P = 

conventionally measured rainfall (mm), α = local inclination of the ground surface 

relative to the horizontal, β = rainfall obliquity relative to the vertical, γ = slope aspect of 

the ground surface, and δ = direction from which the rain is coming, 

was used with some rain obliquities measured in Belgium (Poesen, 1986). The result 

shows for instance that on a modal spoil heap slope of 25°, for 100 mm of P with a 

westerly direction and an obliquity of 7°, 106 mm of P* is received on a slope with 

western aspect, 104 mm for south-western aspect and 94 mm for an eastern aspect. For 

rain with an obliquity of 42°, this becomes 142 mm for western, 130 mm for south-

western and 58 mm for slopes with eastern aspect, or merely 41% of what is received of 

slopes with western aspect. 

*** Figure 7 approximately here *** 

 

Vegetation, another parameter which strongly interferes with slope processes, is largely 

determined by slope aspect, as that determines intercepted rainfall and angle of 

insulation. The effect of slope aspect is also artificial as it does not purely translate bio-

physical, climate-affected characteristics; the properties of a given slope segment depend 

also on the timing and characteristics of spoil dumping and on possible reforestation 

activities. 

A second major point is that the intensity of the various slope processes on our coal tips 

shows generally a poor correlation with slope gradients. As stated earlier by Palmers 

(1995), this is explained by the uniformity of slope gradients on these loose tipped spoil 

heaps, that hold close to the angle of rest. As an example, on the Boubier spoil heap (Fig. 

8), 57% of the area is occupied by slopes with gradients between 20° and 30°. 

*** Figure 8 approximately here *** 

 

Further, as expected, the intensity of most slope processes is negatively correlated to 

grass cover, which is effective in protection from erosion. Tree cover on spoil heaps, on 

the other hand, impedes rill erosion, which may well be related to the shallow roots of the 

dominant birch trees. Whereas other stabilisation properties of birch have been studied in 
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detail (Peltola et al., 2000; Campbell and Hawkins, 2003), its impeding effect on rill 

erosion seems not to have been researched.  

On burning spots of spoil heaps, trees are absent and grass will not prevent such areas 

from sliding, rather it will enhance infiltration (Descheemaeker et al., 2009). It may thus 

contribute to steam development in the heaps’ inner as well as to temporary soil 

saturation, two conditions that favour landsliding. 

 

5.3. Potential for further use of the developed methodology  

The method we used to analyse the expression and causal factors of geomorphic 

processes on mine spoils in Belgium may be used to study the importance of geomorphic 

processes elsewhere. As stated in the introduction of this paper, mine spoils present 

various types of hazards that were studied in many countries of the world. 

Several particularities of geomorphic processes on mine spoils make the use of such 

methodology relevant: (1) mine spoils have a relatively simple topography, with 

generally straight slopes and often a conical shape, so that delineation of land units that 

take into account slope aspect is possible, (2) the materials composing mine spoils are 

relatively homogeneous, so that stratigraphical differentiation and variability in soil 

development cannot be used to explain variability in factors of instability such as slope 

gradient or poor vegetation cover, and (3) the major variability in materials, rock 

fragment size, is unpredictable and can only be known by field recording.  

 

6. Conclusions 

This study on five intact conical coal tips in Belgium allowed analysing a wide range of 

geomorphic processes. Due to absence of a predictable geophysical setting, the 

magnitude of the slope processes that occur on spoil heaps is only partly correlated to 

usually suspect biophysical factors.  Intensity of soil creep is greater on slopes with north-

western aspect which are moister since they are on the windward side and have higher 

rainfall; they further receive only the evening sun and hence are also subject to less 

evaporation. On almost all spoil heaps, sheet erosion is negatively correlated to grass 

cover and positively to slope aspect, but there is no dominant slope aspect that would 

show a stronger occurrence of sheet erosion. Rill and gully erosion are impeded by trees 

(birch roots) and occur on southern slopes but also eastern slopes (Boubier and Petite 

Bacnure).  

Within the spoil heap settlement process, debris sliding occurs, but it is not active like 

catastrophic landslides that have taken place on active dumping sites such as the Aberfan 

disaster in Wales in 1966 (McLean and Johnes, 2000) or the Jupille slide in Belgium in 

1961 (Calembert and Dantinne, 1965). Minor debris sliding as part of the settlement 

process was observed in Waterschei, where it takes place especially on slopes with a 

northern aspect. On three other coal tips larger debris slides were induced by combustion 

that affects steep slopes. At these sites of combustion, other slope processes are of lesser 

magnitude; the enhancing effect of tree absence on runoff-induced processes is most 

probably annihilated by high evaporation rates, denser grass cover, and hence less runoff. 

Root throw is correlated to tree density. Because of the rarity of individual large trees on 

spoil heaps, toppled trees are located within forested slope segments. 
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Except for the Boubier coal tip, most deposition takes place on SW-facing slopes which 

is obviously related to the dominant direction of (maritime) wind and to the preeminence 

of geomorphic processes on slopes with those aspects (Table 6). 

The expression of slope processes on the studied coal tips is (1) strongly dependent on the 

westerly aspect of the slopes, (2) independent of slope gradient (which presents a narrow 

range), (3) impeded by grass cover, and (4) not fully predictable due to variability in type 

and age of spoil dumping. 

The variety of geomorphic processes observed makes spoil heaps an interesting 

pedagogical site for both scholars and the broader public with a large interest towards 

these “archaeological” remnants of a major previous industrial activity. The methodology 

developed here may be replicated in geomorphic studies on spoil heaps in other regions 

of the world. 

 

Acknowledgements 

We wish to acknowledge Walthère Franssen (Herstal, Belgium), a former mine worker 

and coal tip conservation activist, who has risen our interest in geomorphic research on 

coal tips. Information and feedback were provided by four Belgian socio-cultural 

institutions involved in coal tip conservation: EspaceTerrils (Aiseau-Presles), 

MijnErfgoed (Genk), Blègny-Mine and Maison des Terrils (Saint-Nicolas). The 

following colleagues provided useful insights or participated in fieldwork: Miet Van den 

Eeckhaut, Amaury Frankl, Pavlos Corexenos, Jean Poesen and Stijn Diependaele. Useful 

remarks by two anonymous reviewers are gratefully acknowledged. 

 

 

References 

Beguin, H., 1979. Méthodes d’analyse géographique quantitative. Librairies Techniques, 

Paris, 283 pp. 

Blègny-Mine, 2010. Domaine touristique de Blègny-Mine. http://www.blegnymine.be/. 

Blocken, B., Poesen, J., Carmeliet, J., 2006. Impact of wind on the spatial distribution of 

rain over micro-scale topography: numerical modelling and experimental 

verification. Hydrological Processes 20, 345-368. 

Boggs, G.S., Evans, K.G., Devonport, C.C., Moliere, D.R., Saynor, M.J., 2000. Assessing 

catchment-wide mining-related impacts on sediment movement in the Swift Creek 

catchment, Northern Territory, Australia, using GIS and landform-evolution 

modelling techniques. Journal of Environmental Management 59, 321-334. 

Bozzolo, D., Pamini, R., 1986. Simulation of rock falls down a valley side. Acta 

Mechanica 63, 113-130. 

Bradshaw, A.D., 1997. Restoration of mined lands - using natural processes. Ecological 

Engineering 8, 255-269. 

Bradshaw, A.D., 2000. The use of natural processes in reclamation - advantages and 

difficulties. Landscape and Urban Planning 51, 89-100. 

Brink, H.-J., 2005. The evolution of the North German Basin and the metamorphism of 

the lower crust. International Journal of Earth Sciences 94, 1103-1116. 

Buczko, U., Gerke, H.H., 2005. Modeling two-dimensional water flow and bromide 

transport in a heterogeneous lignitic mine soil. Vadose Zone J 5, 14-26. 



 

 

18

Calembert, L., Dantinne, R., 1965. L'avalanche de cendres volantes survenue à Jupille 

(Liège) le 3 février 1961, Volume d'hommage au professeur F. Campus. Vaillant-

Carmanne, Liège, pp. 41-57. 

Campbell, K.A., Hawkins, C.D.B., 2003. Paper birch and lodgepole pine root 

reinforcement in coarse-, medium-, and fine-textured soils. Canadian Journal of 

Forest Research 33, 1580-1586. 

Carpentier, O., Defer, D., Antczak, E., Duthoit, B., 2005. The use of infrared 

thermographic and GPS topographic surveys to monitor spontaneous combustion 

of coal tips. Appl. Thermal Eng. 25, 2677-2686. 

Charlier, R.H., 2000. Land recovery: "brownfields” a viewpoint. International Journal of 

Environmental Studies 57, 283 - 292. 

Corexenos, P., 2001. Détermination des risques que présentent les terrils. Le cas du terril 

de Bernalmont. Licentiate thesis, Université de Liège, Department of Geography. 

Corne, H., De Keghel, P., 2006a. Sentier des Terrils. Topo-Guide du Sentier de Grande 

Randonnée. GR 412 Ouest. Borinage – Centre – Bassin de Charleroi. Les Sentiers 

de Grandes Randonneés ASBL. 

Corne, H., De Keghel, P., 2006b. Sentier des Terrils. Topo-Guide du Sentier de Grande 

Randonnée. GR 412 Est. Namurois – Hesbaye - Bassin liégeois. Les Sentiers de 

Grande Randonnée ASBL. 

Cornwell, S.M., 1971. Anthracite mining spoils in Pennsylvania. I. Spoil classification 

and plant cover studies. Journal of Applied Ecology 8, 401-409. 

Danjon, F., Reubens, B., 2008. Assessing and analyzing 3D architecture of woody root 

systems, a review of methods and applications in tree and soil stability, resource 

acquisition and allocation. Plant and Soil 303, 1-34. 

De Munck, C.S., Hutchings, T.R., Moffat, A.J., 2009. Impacts of climate change and 

establishing a vegetation cover on water erosion of contaminated spoils for two 

contrasting United Kingdom regional climates: A case study approach. Integrated 

Environmental Assessment and Management 4, 443-455. 

De Roeck, M., Tilmont, J., 1971. Algemene Atlas. Ad. Wesmael-Charlier, Namen. 

Debehault, C., 1968. Les terrils de charbonnage du Borinage. Etude de géographie 

régionale. Revue Belge de Géographie 92, 9-57. 

Descheemaeker, K., Raes, D., Nyssen, J., Poesen, J., Mitiku Haile, Deckers, J., 2009. 

Changes in water flows and water productivity upon vegetation regeneration on 

degraded hillslopes in northern Ethiopia: a water balance modelling exercise. The 

Rangeland Journal 31, 237-249. 

Detalle, F., 2006. Evaluation de risques que représente l'ancienne activité charbonnière; 

le cas du terril du Hasard à Retinne. Mémoire de Licence en Sciences 

géographiques. Université de Liège, Belgium. 

DGARNE, 2010. Liste des terrils 

http://environnement.wallonie.be/cgi/dgrne/terrils/liste_old.idc. Ministère de la 

Région wallonne, Direction générale Opérationnelle de l'Agriculture, des 

Ressources naturelles et de l'Environnement, Namur, Belgium. 

Erismann, T.H., Abele, G., 2001. Dynamics of Rockslides and Rockfalls. Springer, 

Berlin, 316 pp. 

EspaceTerrils, 2008. La Chaîne des Terrils. (http://www.terrils.be/index.php, accessed on 

8.1.2008). 



 

 

19

Evans, K.G., Saynor, M.J., Willgoose, G.R., Riley, S.J., 2000. Post-mining landform 

evolution modelling: 1. Derivation of sediment transport model and rainfall-

runoff model parameters. Earth Surface Processes and Landforms 25, 743-763. 

Evans, K.G., Willgoose, G.R., 2000. Post-mining landform evolution modelling: 2. 

Effects of vegetation and surface ripping. Earth Surface Processes and Landforms 

25, 803-823. 

Fourcade, H.G., 1942. Some notes on the effects of the incidence of rain on the 

distribution of rainfall over the surface of unlevel ground. Transactions of the 

Royal Society of South Africa 29, 235-254. 

Fox, H.R., Moore, H.M., McIntosh, A.D., 1998. Land Reclamation Achieving 

Sustainable Benefits. Proc. 4th  Intern. Conf. Intern. Association of Land 

Reclamationists, Nottingham, UK, 7-11 Sept 1998. Balkema, Dordrecht, 560 pp. 

Frankard, P., 2000. Aperçu de la flore et de la végétation des terrils de la région liégeoise. 

Bulletin de la Société Royale des Sciences de Liège 69, 265-287. 

Gerke, H.H., Hangen, E., Schaaf, W., Hüttl, R.F., 2001. Spatial variability of potential 

water repellency in a lignitic mine soil afforested with Pinus nigra. Geoderma 

102, 255-274. 

Goossens, D., 1984. Inleiding tot de geologie en geomorfologie van België. Geologische 

Boekhandel W.G. Witkam, Enschede. 

Haigh, M.J., Sansom, B., 1999. Soil compaction, runoff and erosion on reclaimed coal-

lands (UK). International Journal of Mining, Reclamation and Environment 13, 

135 - 146. 

Haigh, M.J., Gentcheva-Kostadinova, S., 2002. Ecological erosion control on coal-spoil 

banks: an evaluation. Ecological Engineering 18, 371-377. 

Hancock, G.R., Loch, R.J., Willgoose, G.R., 2003. The design of post-mining landscapes 

using geomorphic principles. Earth Surface Processes and Landforms 28, 1097-

1110. 

Hancock, G.R., Crawter, D., Fityus, S.G., Chandler, J., Wells, T., 2008. The 

measurement and modelling of rill erosion at angle of repose slopes in mine spoil. 

Earth Surface Processes and Landforms 33, 1006-1020  

Hangen, E., Gerke, H.H., Schaaf, W., Hüttl, R.F., 2005. Assessment of preferential flow 

processes in a forest-reclaimed lignitic mine soil by multicell sampling of 

drainage water and three tracers. Journal of Hydrology 303, 16-37. 

Harrington, D., East, J.H., 1949. Incendies des terris. Annales des Mines de Belgique 

XLVIII, 427-434. 

Heempark, 2010. Mijnterrils van Genk 

http://www.heempark.be/content/hp_content/record.php?ID=62. Heempark 

milieu- en natuurcentrum, Genk, Belgium. 

Hodačová, D., Prach, K., 2003. Spoil heaps from brown coal mining: technical 

reclamation versus spontaneous revegetation. Restoration Ecology 11, 385-391. 

Hüttl, R.F., Heinkele, T., Wisniewski, J., 1996. Minesite Recultivation. Springer, 172 pp. 

Jochimsen, M.E.A., 1996. Reclamation of colliery mine spoil founded on natural 

succession. Water, Air, & Soil Pollution 91, 99-108. 

Ledent, P., 1993. Méthode pour la télédétection satellitaire des terrils. Expérimentation 

sur la région liégeoise. Mémoire de Licence en Sciences géographiques Thesis, 

Université de Liège, Belgium, 162 pp. 



 

 

20

Lohest, M., Habets, A., Forir, H., 1904. La géologie & la reconnaissance du terrain 

houiller du nord de la Belgique. Impr. H. Vaillant-Carmanne, Liège. 

Loredo, J., Ordonez, A., Gallego, J.R., Baldo, C., Garcia-Iglesias, J., 1999. Geochemical 

characterisation of mercury mining spoil heaps in the area of Mieres (Asturias, 

northern Spain). Journal of Geochemical Exploration 67, 377-390. 

Maison des Terrils, 2010. Pays des terrils, parcs paysagers. Maison des Terrils, St.-

Nicolas (Belgium), 22 pp. 

Masson, J., 1950. Le boisement des terris houillers et autres déblais de carrières. Le 

Vieux-Liege 87. 

McLean, I., Johnes, M., 2000. Aberfan: Disasters and Government. Welsh Academic 

Press, Cardiff. 

Mijnerfgoed, 2008. Erfgoedcel Mijn-Erfgoed. http://www.erfgoedcelmijnerfgoed.be 

(Accessed 13.2.2008). 

Minten, L., Raskin, L., Soete, A., Van Doorslaer, B., Verhees, F., 1992. Een eeuw 

steenkool in Limburg. Lannoo, Tielt, 280 pp. 

Monjoie, A., Demeuldre, D., Schroeder, C., Willame, J., 1985. Problèmes de Géologie de 

l'Ingénieur intervenant dans la stabilité d'un terril en cours de remodelage. 

Colloque C.B.G.I., 82-91. 

Monjoie, A., Schroeder, C., 2001. Instabilités de versants de terrils en relation avec 

l'autocombustion des schistes et charbons résiduels. Revue française de 

Géotechnique 95-96, 91-102. 

Nachtergaele, J., Poesen, J., 1999. Assessment of soil losses by ephemeral gully erosion 

using high-altitude (stereo) aerial photographs. Earth Surface Processes and 

Landforms 24, 693-706. 

NGI, 2010a. Digital Terrain Elevation Data of Belgium, 1/10 000. 

http://www.ngi.be/NL/NL1-5-5.shtm. National Geographic Institute, Brussels. 

NGI, 2010b. Topographic maps of Belgium, 1/10 000. http://www.ngi.be/NL/NL1-1-

1.shtm. National Geographic Institute, Brussels. 

Nicolau, J.-M., 2002. Runoff generation and routing on artificial slopes in a 

Mediterranean-continental environment: the Teruel coalfield, Spain. Hydrological 

Processes 16, 631-647. 

Nicolau, J.M., 2003. Trends in relief design and construction in opencast mining 

reclamation. Land Degradation & Development 14, 215-226. 

Nyssen, J., Vandenreyken, H., Poesen, J., Moeyersons, J., Deckers, J., Haile, M., Salles, 

C., Govers, G., 2005. Rainfall erosivity and variability in the Northern Ethiopian 

Highlands. Journal of Hydrology 311, 172-187. 

Nyssen, J., Poesen, J., Moeyersons, J., Deckers, J., Haile, M., 2006a. Processes and rates 

of rock fragment displacement on cliffs and scree slopes in an amba landscape, 

Ethiopia. Geomorphology 81, 265-275. 

Nyssen, J., Poesen, J., Veyret-Picot, M., Moeyersons, J., Mitiku Haile, Deckers, J., 

Dewit, J., Naudts, J., Kassa Teka, Govers, G., 2006b. Assessment of gully erosion 

rates through interviews and measurements: a case study from northern Ethiopia. 

Earth Surface Processes and Landforms 31, 167-185. 

Nyssen, J., Diependaele, S., Goossens, R., 2010. Landslide susceptibility mapping on 

Belgium’s burning coal tips using thermographic ASTER imagery and Digital 

Terrain Models. Earth Surface Processes and Landforms submitted. 



 

 

21

Paithankar, A.G., Jha, P.K., Agarwal, R.K., 2001. Geoenvironmental Reclamation: 

International Symposium, 20-22 November. Taylor & Francis. 

Palmers, J., 1995. Studie van de geul- en ravijnerosie op de Limburgse mijnterrils. 

Licentiate thesis Geography, K.U.Leuven, 129 pp. 

Peltola, H., Kellomäki, S., Hassinen, A., Granander, M., 2000. Mechanical stability of 

Scots pine, Norway spruce and birch: an analysis of tree-pulling experiments in 

Finland. Forest Ecology and Management 135, 143-153. 

Pissart, A., Macar, P., 1976. Géomorphologie de la Belgique. Université de Liège, 223 

pp. 

Poesen, J., 1986. Field measurements of splash erosion to validate a splash transport 

model. Z. Geomorphol. 58, 81-91. 

Poesen, J.W., Vandaele, K., Van Wesemael, B., 1996. Contribution of gully erosion to 

sediment production on cultivated lands and rangelands. IAHS Publication 236, 

251-266. 

Poesen, J.W., van Wesemael, B., Bunte, K., Benet, A.S., 1998. Variation of rock 

fragment cover and size along semiarid hillslopes: a case-study from southeast 

Spain. Geomorphology 23, 323-335. 

Poesen, J., Nachtergaele, J., Verstraeten, G., Valentin, C., 2003. Gully erosion and 

environmental change: importance and research needs. Catena 50, 91-133. 

Raes, F., Bosteels, E., 2006. Terrils: De l'or noir à l'or vert Editions Racine, Bruxelles. 

Rasmont, P., Barbier, Y., 2000. La faune des terrains industriels charbonniers. Bulletin de 

la Société Royale des Sciences de Liège 69, 289-307. 

Renier, A., 1944. Quelques précisions sur la stratigraphie du terrain houiller de la 

Belgique. Mémoires du Musée royal d’Histoire naturelle de Belgique, 44, 101 pp. 

Rovis-Hermann, J., Evans, K.G., Webb, A.L., Pidgeon, R.W.J., (eds), 2002. 

Environmental Research Institute of the Supervising Scientist Research Summary 

1995-2000. Supervising Scientist Report  166. 

Sanders, G., 2007. The Principles of Coal Preparation. Australian Coal Preparation 

Society, Hamilton, xvi, 539 pp. 

Shepherd, R.G., 1989. Correlations of permeability and grain size. Ground Water 27, 

633-638. 

Taylor, R.K., Spears, D.A., 1972. The geotechnical characteristics of a spoil heap at 

Yorkshire Main Colliery. Quarterly Journal of Engineering Geology and 

Hydrogeology 5, 243-264. 

Thurstone, L., 1928. Attitudes can be measured. American Journal of Sociology 33, 529-

554. 

Urrutia, M., Garcia-Rodeja, E., Macias, F., 1992. Sulfide oxidation in coal-mine dumps: 

Laboratory measurement of acidifying potential with H2O2 and its application to 

characterize spoil materials. Environmental Management 16, 81-89. 

Vermeersch, D., 2009. Geomorfologische dynamiek van het ecosysteem ‘terril’. M.Sc. 

thesis, Department of Geography, Ghent University. 

Willgoose, G., 1994. A physical explanation for an observed area-slope-elevation 

relationship for catchments with declining relief. Water Resour. Res. 30, 151-160. 

Willgoose, G., Riley, S., 1998. Application of a catchment evolution model to the 

prediction of long-term erosion on the spoil heap at Ranger Uranium Mine, 107. 

Commonwealth of Australia, Australia. 



 

 

22

Willgoose, G., Sharmeen, S., 2006. A one-dimensional model for simulating armouring 

and erosion on hillslopes: 1. model development and event-scale dynamics. Earth 

Surface Processes and Landforms 31, 970-991. 

Zodrow, E.L., 2005. Colliery and surface hazards through coal-pyrite oxidation 

(Pennsylvanian Sydney Coalfield, Nova Scotia, Canada). International Journal of 

Coal Geology 64, 145-155. 

 

 



 

 

23

Figure captions 

 

Fig. 1. Location of the Belgian coal mines (status 1966) and of the five studied spoil 

heaps. 1) Héribus, 2) Boubier, 3) Petite Bacnure, 4) Hasard, 5) Waterschei (After De 

Roeck and Tilmont, 1971). 

 

Fig. 2. View on the Boubier mine spoil, with birch trees (around 7 m high) for scale. 

North is to the right. 

 

Fig. 3. Landslide at Petite Bacnure, as seen from the top of the spoil heap. The road 

between the circled house and the spoil heap has been obstructed by the landslide tongue 

(arrow) from 1999 till nowadays. 

 

Fig. 4. Spring at the western foot of the Boubier coal tip, which is located at the back of 

the photograph. The circle is ca. 1 m across. Occurrence of springs on the foot of spoil 

heaps is a consequence of the high hydraulic conductivity in the spoil heap and then 

encounter of a relatively less pervious layer, which forces the water to flow out. 

 

Fig. 5. Characteristics of the Petite Bacnure spoil heap, rasterised to the 20-m cells of the 

DTM (summit in the centre): (A) grass cover, (B) expression of combustion, (C) tree 

cover, (D) sheet erosion.  

 

Fig. 6. Rill erosion on the Hasard coal tip. Note the absence of vegetation cover in the 

rilled area. Around 10-m high birch trees for scale. 

 

Fig. 7. Average degree of expression (on a scale of 0 to 3) of different slope processes on 

the Waterschei spoil heap, by slope aspect. Note that the polar diagrams for gully erosion, 

landsliding and root throw bear different scales, because these slope processes were rated 

between 0 and 1 (none to few) only. 

 

Fig. 8. Slope gradients on the Boubier coal tip. 
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Figure 5 
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Figure 7 
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Tables 

Table 1 

Characteristics of studied spoil heaps 
 Terril de 

l’Héribus 

Terril du 

Boubier 

Terril de la Petite 

Bacnure 

Terril du Hasard Terril van 

Waterschei 

Location      

Lat. N 50°26’11” 50°23’40” 50°40’01” 50°37’46” 51°00’43” 

Lon. E 3°56’22” 4°29’51” 5°36’28” 5°42’29” 5°32’32” 

Physical characteristics     

Shape Conical with flat 

top 

Conical Conical with 

mountain ridge 

Conical Conical 

Area (ha) 18.24 13.50 10.66 15.78 7.91 

Height (m) 75 115  83  90  100 

Volume (m³) 6 000 000
 

3 750 000 3 231 000
 

5 300 000
 

Unknown 

Absolute 

height of top 

(m a.s.l.) 

137 265 190 360 190 

Combustion Combustion 

stopped in the 

period 2001–
2010 

Not burned Partially Partially Not burned 

Administrative characteristics
    

 

Mine 

concession 

(last 

situation) 

Produits and 

Levant de Flénu 

Boubier Grande Bacnure 

and Petite 

Bacnure 

Hasard-Cheratte Waterschei 

Begin of spoil 

deposition 

1919 1923 Unknown Unknown 1953 

End of spoil 

deposition 

1968 1966 1971 1971 1961 

Remarks Two landslides 

(at the west in 

1992 and at the 

east in 1994) 

Escarpment 

at the east 

side 

Landslide (1 April 

1999) 

Heighest coal tip 

in Belgium, 

panorama, 

landslide (2002) 

Spoil heap 

located on a 

wider 

platform, 

paragliding 

activivities 

Sources of information     

Topographic 

map sheet 

(1/10 000) 

(NGI, 2010b) 

45/7N Mons 

 

46/8S 

Charleroi 

 

42/2S Liège 

(Nord) 

 

42/7N Fléron 

 

26/1Z 

Waterschei 

 

Other sources (Monjoie and 

Schroeder, 2001; 

Corne and De 

Keghel, 2006a; 

EspaceTerrils, 

2008; DGARNE, 

2010) 

 

 

(Corne and 

De Keghel, 

2006a; 

DGARNE, 

2010) 

 

(Corexenos, 2001; 

Monjoie and 

Schroeder, 2001; 

Corne and De 

Keghel, 2006b; 

EspaceTerrils, 

2008; DGARNE, 

2010) 

 

(Corne and De 

Keghel, 2006b; 

Detalle, 2006; 

EspaceTerrils, 

2008; 

DGARNE, 

2010) 

 

(Palmers, 

1995; 

Heempark, 

2010) 
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Table 2 

Field measurements done on the spoil heaps, at the scale of land units  
Parameter Unit Measurement method Notes 

slope gradient degrees clinometer average slope and local steepest gradients 

slope aspect degrees compass recorded in the middle of the land unit 

fine earth texture qual-

itative 

‘feel’ method  

rock fragment 

cover 

% grouping of all rock 

fragments in one corner 

of a square 

estimated in a representative sample area 

rock fragment size cm median diameter rock fragments: >0.5 cm; in erosion 

processes, smaller particles behave as sand 

rather than as rock fragments (Poesen et al., 

1998) 

vegetation cover 

by grasses and 

herbs 

% visual estimate in the 

field 

 

tree canopy cover % visual estimate in the 

field 

adjustment to summer conditions done for 

observations outside of summer period 

tree species qual-

itative 

 efficiency to stabilise slopes may vary with 

species 

expression of 

combustion 

phenomena 

dimens-

ionless  

ordinal scale of 0 to 3 

(none – few – much – 

very much). 

impact on vegetation and on slope processes 

direct human 

impact  

qual-

itative 

 trampling, wood cutting, garbage disposal, 

motor cycle riding 
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Table 3 

Correlation (r) between explanatory factors of slope processes on the Petite Bacnure coal 

tip, as observed at grid cell scale (20×20 m; n = 320)  
 Slope aspect 

(degrees) 

Slope 

gradient 

(degrees) 

Rock fr. 

cover 

(%) 

Rock fr. 

size (cm) 

Grass 

cover 

(%) 

Tree 

cover 

(%) 

Total 

vegetat

ion 

cover 

(%) 

Slope gradient 

(degrees) 

0.34*** (S)       

Rock fr. cover 

(%) 

0.60*** (E) 0.21***       

Rock fr. size (cm) 0.34*** (W) -0.37***  -0.41***      

Grass cover (%) 0.38*** (SE) -0.10*  -0.43***  0.52***    

Tree cover (%) 0.43*** (NE) -0.12**  0.17*** 0.10* -0.73***   

Total vegetation 

cover (%) 

 0.22*** (W) -0.27***  -0.34*** 0.82*** 0.31*** 0.41***  

Combustion
1 

0.52*** (SE)  0.18***  -0.19*** -0.10* 0.63*** -0.61*** 0.00  
1
Combustion is expressed on an ordinal scale, promoted to a quantitative interval scale (see section 2.4.2.) 

*** Significant at 0.01 level; ** significant at 0.05 level; * significant at 0.1 level; all other coefficients are 

not significant. 

 

 

 

Table 4 

Correlation (r) between explanatory factors and slope processes
1
 on the Petite Bacnure 

coal tip, as observed at grid cell scale (20×20 m; n = 320) 

Slope 

processes  

Slope aspect 

(degrees) 

Slope 

gradient 

(degrees) 

Rock fr. 

cover 

(%) 

Rock fr. 

size 

(cm) 

Grass 

cover 

(%) 

Tree 

cover 

(%) 

Total 

vegetation 

cover (%) 

Combust

ion 

Creep 

(n=309)
2
 0.78*** (N) -0.21*** -0.15*** 0.30*** -0.29*** 0.64*** 

0.30*** 

-0.60*** 

Sheet erosion 0.51*** (N) -0.06 -0.33*** -0.14** -0.65*** 0.62*** 0.01 -0.62*** 

Rill erosion 

0.75*** 

(NE) 0.06 0.28*** 

-

0.35*** -0.05 -0.27*** 

-0.45*** 

0.20*** 

Gully erosion 0.80*** (E) 0.03 0.76*** 

-

0.18*** -0.32*** 0.24*** 

-0.10* 

-0.18*** 

Landsliding 

0.33*** 

(SW) 0.12** -0.02 -0.06 0.40*** -0.57*** 

-0.25*** 

0.20*** 

Rock fr. 

sliding 0.44*** (W) 0.09 0.32*** -0.04 -0.14** 0.10* 

-0.05 

-0.19*** 

Deposition 

0.60*** 

(SW) 0.10* -0.29*** -0.12** -0.07 -0.13** 

-0.23*** 

-0.12** 

Root throw 

0.23*** 

(NE) -0.35*** 0.11* -0.10* -0.20*** 0.14** 

-0.08 

-0.13** 
1
 The intensity of the processes, and the factor combustion are expressed on an ordinal scale, promoted to a 

quantitative interval scale (see section 2.4.2); 
2 
Creep was not analysed for tree densities < 30%.  

*** Significant at 0.01 level; ** significant at 0.05 level; * significant at 0.1 level; all other coefficients are 

not significant. 
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Table 5 

Correlation (r) between explanatory factors and rill erosion on all studied coal tips as 

observed at grid cell scale (20×20 m) 

 

n Slope 

aspect 

(degrees

) 

Slope 

gradient 

(degrees

) 

Rock fr. 

cover 

(%) 

Rock fr. 

size (cm) 

Grass 

cover (%) 

Tree 

cover (%) 

Total 

vegetation 

cover (%) Combustio

n
1 

Petite 

Bacn

ure 

320 
0.75*** 

NE 
0.06 0.28*** -0.35*** -0.05 -0.27*** -0.45*** 0.20*** 

Hasar

d 
483 

0.13*** 

E 
0.27*** 0.26*** 0.01 -0.57*** -0.40*** -0.54*** 0.14*** 

Water

schei 
233 

0.70*** 

S 
-0.17** -0.03 -0.09 0.21*** -0.59*** 0.14** N/A

2 

Boubi

er 
327 

0.44*** 

SE 
-0.05 0.12** -0.11* -0.23*** -0.36*** -0.32*** -0.10* 

Hérib

us 
730 

0.49*** 

NW 
0.26*** 0.37*** 0.27*** -0.28*** -0.22*** -0.34*** 0.19*** 

1
Combustion is expressed on an ordinal scale, promoted to a quantitative interval scale (see section 2.4.2.). 

2
No combustion was found on the Waterschei spoil heap. 

*** Significant at 0.01 level; ** significant at 0.05 level; * significant at 0.1 level; all other coefficients are 

not significant. 

 

 

 

Table 6 

Slope aspects at which the greatest process intensity occurs, per geomorphic process 

(three
1
 dominant aspects in decreasing order) 
 Petite Bacnure Hasard Waterschei Boubier Héribus Overall 

Creep N-NW-W - W - - NW 

Sheet erosion N-SW-NW SW-S-W NW-W-N 
SW-NW-S-

W 

S-SW-

SE 

SW to 

NW  

Rill erosion E-NE-N - SW-S-SE W-E-SE NW-W -  

Gully erosion E-NE S-SE S-SW-SE E-SE - - 

Landslide SW 
N-NW-

NE 
NE-N-W N/A

2
 - - 

Rock fragment 

displacement 
W-NW - NE-E-SE 

E-NE-N-

NW 
- 

NE to 

NW 

Root throw - - SW-S-SE N-NE - - 

All slope 

processes 
N to W S to W -  NW to NE - W  

Deposition SW-S-W SW-S-W SW-S-W E-SE-NE - S and SW 

1
Aspects are not represented when the process occurs at an intensity that is less than half of the intensity at 

the dominant aspect, or when the intensity of the process there cannot be clearly distinguished from that of 

several other slope aspects. 
2
Landsliding was not observed at the Boubier coal tip. 

 


