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Foreword

This book presents a selection of peer-reviewed papers which were presented
on a conference organized in Ghent, Belgium, from 27 till 29 August, 2009. The
conference was given the title Philosophical Aspects of Symbolic Reasoning in
Early modern Science and Mathematics (PASR). For this book we selected
papers which deal with the consequences for mathematics in particular, hence
the omission of ‘science’ in the title of this book. Another selection, dealing
with the understanding of nature and a broader range of topics, will appear
in the journal Foundations of Science.

The conference was sponsored by the Research Foundation Flanders (FWO)
and Ghent University, which indirectly made this book possible. We also
have to thank the other members of the programme committee Marco Panza,
Chikara Sasaki, and Erik Weber and our keynote speakers Jens Hgyrup, Doug
Jesseph, Eberhard Knobloch, Marco Panza, Mathias Schemmel and Michel
Serfati. Five of their papers are included in this volume. Most of the papers
benefited from valuable and sometimes substantive comments by our refer-
ees which must remain anonymous. Special thanks to Michael Barany who
assisted in the editorial process.






Preface

The novel use of symbolism in early modern science and mathematics poses
both philosophical and historical questions. The historical questions evi-
dently are when and how symbolism was introduced into mathematics. Often
Frangois Viete is considered to be the father of symbolic algebra. But how
we should then understand the centuries of algebraic practice before Viete?
The abbaco tradition applied algebra to the solution of merchant problems on
exchange, bartering, partnership, allegation of metals, etc., since the begin-
ning of the fourteenth century. Some sort of symbolism was emerged within
that tradition and was fully in place during the sixteenth century. Is there a
fundamental difference in mathematical practice before and after Viete?

The philosophical questions relate to the nature of such symbolism and
its impact on mathematical reasoning and early-modern understanding of
knowledge. Is the use of short-hand notations and abbreviations the same as
symbolism? Or we should understand symbolism as involving a more intri-
cate model of reasoning, different from geometrical or arithmetical reasoning?
So, what precisely do symbolic representations contribute to mathematical
reasoning?

Against this background, it is striking that at the beginning of the seven-
teenth century, the idea took ground that there might be a universal symbolic
language which facilitates the representation of all reasoning in a clear and
distinct way. In what way does the idea of a mathesis universalis or a char-
acteristica universalis depend on the symbolization of mathematics? To what
extent was the project of devising such new language ever achieved?

Of course, not all our questions could be answered over the course of a
three days conference, let alone on the limited number of pages of the current
volume. However, a representative state of the art is here provided on three
main themes:

e The development of algebraic symbolism. Our first three contribu-
tions cover a consecutive period of historical events from the beginning
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of the introduction of Arabic algebra into Europe (thirteenth century),
through the abbaco period (1300-1500), the sixteenth century, all the way
up to Leibniz. Taking up a diplomatic stance towards the precise meaning
of “symbolism”, Jens Hgyrup meticulously traces the development of no-
tations for different mathematical objects, from formal fractions over the
powers of the unknown to the confrontation sign, or what later would be-
come the equation. He attributes a distinctive role to Maghreb practices
on early European notations (e.g. the fraction bar). Despite a continuous
process in abbaco manuscripts towards more intricate symbolism, Hgyrup
concludes that this whole development was one which was neither under-
stood, nor intended by the participants in the process.

Albrecht Heeffer picks up where Hgyrup concluded his analysis — with the
German cossic tradition — and continues with the innovations by Cardano
and the French humanists. He shows how one particular representational
difficulty — an unambiguous symbolism for multiple unknowns — shaped
the very concept of an equation. The symbolic representation of condi-
tions involving multiple unknowns facilitated the process of substitution
and operations on equations. According to Heeffer, it is precisely because
operations on equations and between equations became possible that the
equation became a mathematical object and hence the corresponding con-
cept developed. Challenging the generally accepted view of Viete as the
father of symbolic algebra, he argues that the development of algebraic
symbolism was a gradual process involving many minor achievements by
several actors.

Starting by formulating six functional criteria for symbolic representations,
Michel Serfati discusses the contribution by Viete and Descartes against the
background of earlier achievements by Cardano and Stifel. He elaborates on
two of these patterns: the dialectic of indeterminacy and the representation
of compound concepts. The first contributed to the concept of an indeter-
minate, the second to one of the most essential operations in symbolic
mathematics: substitution. Where the development of symbolism in the
abbaco period was an unconscious process for the participants according
to Hgyrup and in the sixteenth century a technical struggle of representa-
tion for Heeffer, for Serfati it became no less than a symbolic revolution
in the seventeenth century: “one of the major components of the scientific
revolution”.

e The interplay between diagrams and symbolism. Diagrams and early
symbolism both added non-discursive elements to mathematical texts. Both
functioned as additional sources of epistemic justification to the argumen-
tative and rhetorical structure of the text. Four contributions deal with
the interactions between these two. Michael Barany’s paper deals with
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English translations of Euclid during the sixteenth century. But ‘translat-
ing’ here has a double meaning. Not only was Euclid made accessible to a
broad public where it previously was ‘locked up in straunge tongues”, these
translators also provided a new context which was dramatically different
from the original Euclid. Barany focuses on the variety of diagrammatic
approaches by five authors who published between 1551 and 1571: Robert
Recorde, Henry Billingsley, John Dee and Leonard and Thomas Digges. He
shows how different representational strategies and pedagogical views led
to equally different notions of what constitutes a diagram. The notion of a
point in a diagram is one such example.

Maria Rosa Massa Esteve takes up the work Cursus mathematicus by the
enigmatic author Pierre Hérigone, demonstrating how Euclid’s Elements
became rendered into a purely symbolic language. Hérigone’s ambitions
clearly show how symbolism had changed mathematics in the seventeenth
century: “I have devised a new method, brief and clear, of making demon-
strations, without the use of any language”. He devised his own set of no-
tations, including a terse format for referring to propositions, lemmas and
corollaries, with the intention of not only representing objects of mathe-
matics but the very process of axiomatic-deductive reasoning. Although
he did not find any followers in his idiosyncratic system, his whole enter-
prize is exemplary for the further development of mathematics during the
seventeenth century.

While most contributors to this book take the explicit (Heeffer and Serfati)
or less explicit position that the development of symbolism was responsi-
ble for the transformation of mathematics during the seventeenth century,
Marco Panza challenges this view. Starting from a classical construction
problem, proposition VI.30 of the Elements, he argues that a conceptual
transformation occurred, independent from developments in symbolic rep-
resentations. This transformation took place already in the Arabic works
of al-Khwarizm1 and Thabit ibn Qurra who conceived the same problem
as a configuration of pure quantities. According to Panza it was this shift
in conception that functioned as a necessary condition for the application
of the literal formalism of early modern algebra in a purely syntactic way.
Where Euclid’s solution to the proposition is entirely diagrammatic, lit-
eral formalism exploits the purely quantitative aspect of such construction
problems.

A fourth contribution to the relation of algebra and geometry, or the in-
terplay between diagrams and symbolism, is the discussion of Bombelli’s
algebra linearia by Roy Wagner. Where previous chapters deal mostly
with the symbolic interpretations of geometrical problems, Wagner ana-
lyzes Bombelli’s geometrical representation of algebra, which became a
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crucial issue for the justification of algebraic procedures. One central prob-
lem in this practice is homogeneity: to keep the constructed geometrical
objects invariant with respect to the unit of measurement. Wagner shows
how Bombelli’s strategy of regimenting representations enabled him to go
well beyond the limits of Cardano’s approach. Bombelli’s algebra linearia
explored the troublesome relations between algebra and geometry during
the sixteenth century. It was a decisive step towards rigorous practices to
impose well-regimented relations between the two, on which post-Cartesian
analytic geometry would depend.

e Mathesis universalis and charateristica universalis. The final part
of the book deals with developments and refections on symbolism in the
later half of the seventeenth century. After the initial achievement of sym-
bolic algebra — for which Descartes’ Geometry stands as a milestone —
methodological discussions arose on the all-encompassing role of a symbolic
language for all ‘scientific’ reasoning, the notion known as Mathesis uni-
versalis. Doug Jesseph distinguishes two camps, which he calls algebraic
and geometric foundationalists. The first group, consisting of Descartes,
Wallis and others, considered algebra as the foundation of all mathemat-
ics. They were met with skepticism by the geometric foundationalists, such
as Hobbes, who scorned them for representing only a “scab of symbols”,
ignoring the real contents of mathematics, such as quantity, measure and
proportion. Such a discussion is now absent in the philosophy of mathe-
matics. For Jesseph this is a nice illustration of how foundational issues
get relocated to other contexts. The opposition was replaced by one on the
different views on the new calculus at the end of the seventeenth century.

A charateristica universalis in which all problems are represented in a sym-
bolic language and resolved by calculation, is Leibniz’s version of algebraic
foundationalism. Eberhard Knobloch describes the toolbox that Leibniz
created to fulfill that aim: the ars characteristica or the art of invent-
ing suitable characters and signs, the ars combinatoria or the art of com-
bination, and the ars inveniendi for inventing new theorems and meth-
ods. He shows that it is not without reason that Cajori called him “the
master-builder of mathematical notations”. With well chosen examples,
Knobloch demonstrates how Leibniz builds layers of symbolic representa-
tions to tackle advanced problems in differential equations, power sums and
elimination theory.

Ghent, Belgium Albrecht Heeffer
15 September, 2010 Maarten Van Dyck
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Chapter 1

Hesitating progress — the slow
development toward algebraic
symbolization in abbacus-and related
manuscripts, c. 1300 to c. 1550

Jens Hgyrup

Ian Mueller in memoriam

Abstract From the early fourteenth century onward, some Italian Abbacus
manuscripts begin to use particular abbreviations for algebraic operations
and objects and, to be distinguished from that, examples of symbolic opera-
tion. The algebraic abbreviations and symbolic operations we find in German
Rechenmeister writings can further be seen to have antecedents in Italian
manuscripts. This might suggest a continuous trend or perhaps even an in-
herent logic in the process. Without negating the possibility of such a trend
or logic, the paper will show that it becomes invisible in a close-up picture,
and that it was thus not understood — nor intended — by the participants in
the process.

Key words: Abbacus school, Algebra, Symbolism

1.1 Before Italy

Ultimately, Italian abbacus algebra' descended from Arabic algebra — this is
obvious from its terminology and techniques. I shall return very briefly to
some of the details of this genealogy — not so much in order to tell what

1 The “abbacus school” was a school training merchant youth and a number of other boys,
11-12 years of age, in practical mathematics. It flourished in Italy, between Genoa-Mi-
lan-Venice to the north and Umbria to the south, from c. 1260 to c. 1550. It taught cal-
culation with Hindu numerals, the rule of three, partnership, barter, alligation, simple and
composite interest, and simple false position. Outside this curriculum, many of the abbacus
books (teachers’ handbooks and notes, etc.) deal with the double false position, and from
the fourteenth century onward also with algebra.
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happened as to point out how things did not happen; this is indeed the best
we can do for the moment.

First, however, let us have a look at Arabic algebra itself under the per-
spective of “symbolism”.?

The earliest surviving Arabic treatise on the topic was written by al-
Khwarizmi somewhere around the year 820.3 It is clear from the introduction
that al-Khwarizm1 did not invent the technique: the caliph al-Ma<un, so he
tells, had asked him to write a compendious introduction to it, so it must
have existed and been so conspicuous that the caliph knew about it; but it
may have existed as a technique, not in treatise form. If we are to believe al-
Khwarizm1’s claim that he choose to write about what was subtle and what
was noble in the art (and why not believe him?), al-Khwarizm1’s treatise is
likely not to contain everything belonging to it but to leave out elementary
matters.

It is not certain that al-Khwarizm1’s treatise was the first of its kind, but of
the rival to this title (written by the otherwise little known ibn Turk) only a
fragment survives (ed. Sayil, 1962). In any case it is clear that one of the two
roughly contemporary treatises has influenced the other, and for our purpose
we may take al-Khwarizm1’s work to represent the beginning of written Arabic
algebra well.

Al-Khwarizm1's algebra (proper) is basically a rhetorical algebra. As al-
Khwarizmi starts by saying (ed. Hughes, 1986, p. 233), the numbers that are
necessary in al-jabr wa’l-muqabalah are roots, census and simple numbers.
Census (eventually censo in Italian) translates Arabic mal, a “possession”
or “amount of money”, the root (radiz/jidhr, eventually radice) is its square
root. As al-Khwarizm1 explains, the root is something which is to be multi-
plied by itself, and the census that which results when the root is multiplied
by itself; while the fundamental second-degree problems (on which presently)
are likely to have originated as riddles concerned with a real amount of money
and its square root (similar to what one finds, for instance, in Indian prob-
lem collections),* we see that the root is on its way to take over the role as
basic unknown quantity (but only on its way), whereas “dirham” serves in

2 1 shall leave open the question of what constitutes an algebraic “symbolism”, and adopt a
fairly tolerant stance. Instead of delimiting by definition I shall describe the actual character
and use of notations.

3 The treatise is known from several Arabic manuscripts, which have now appeared in a
critical edition (Rashed, 2007), and from several Latin translations, of which the one due to
Gherardo of Cremona (ed. Hughes, 1986) is not only superior to the other translations as a
witness of the original but also a better witness of the original Arabic text than the extant
Arabic manuscripts as far as it goes (it omits the geometry and the chapter on legacies, as
well as the introduction) — both regarding the grammatical format (Hgyrup, 1998) and as
far as the contents is concerned (Rashed, 2007, p. 89).

4 Correspondingly, the “number term” is originally an amount of dirham (in Latin drag-
mata), no pure number.
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al-Khwarizm1’s exposition simply as the denomination for the number term,
similarly to Diophantos’s monds. In the first steps of a problem solution, the
basic unknown may be posited as a res or say>, “a thing” (cosa in Italian);
but in second-degree problems it eventually becomes a root, as we shall see.

As an example of this we may look at the following problem (ed. Hughes,
1986, p. 250):°

I have divided ten into two parts. Next I multiplied one of them by the other, and
twenty-one resulted. Then you now know that one of the two sections of ten is a
thing.% Therefore multiply that with ten with a thing removed, and you say: Ten
with a thing removed times a thing are ten things, with a census removed, which
are made equal to twenty-one. Therefore restore ten things by a census, and add a
census to twenty-one; and say: ten things are made equal to twenty-one and a census.
Therefore halve the roots, and they will be five, which you multiply with itself, and
twenty-five results. From this you then take away twenty-one, and four remains. Whose
root you take, which is two, and you subtract it from the half of the things. There thus
remains three, which is one of the parts.

This falls into two sections. The first is a rhetorical-algebraic reduction which
more or less explains itself.” There is not a single symbol here, not even a
Hindu-Arabic numeral. The second section, marked in sanserif, is an unex-
plained algorithm, and indeed a reference to one of six such algorithms for
the solution of reduced and normalized first- and second-degree equations
which have been presented earlier on.

Al-Khwarizm1 is perfectly able to multiply two binomials just in the way he
multiplies a monomial and a binomial here; slightly later (ed. Hughes, 1986,
p- 249) he states that “ten with a thing removed” multiplied by itself yields
“hundred and a census with twenty things removed”. He would thus have no
difficulty in finding that a “root diminished by five” multiplied by itself gives
a “census and twenty-five, diminished by ten roots”. But he cannot go the
other way, the rhetorical style and the way the powers of the unknown are
labeled makes the dissolution of a trinomial into a product of two binomials
too opaque either for al-Khwarizmi himself or for his “model reader”. In con-
sequence, when after presenting the algorithms al-Khwarizmi wants to give
proofs for these, his proofs are geometric, not algebraic — geometric proofs
not of his own making (as are his geometric illustrations of how to deal with
binomials), but that is of no importance here.

It is not uncommon that rhetorical algebra like that of al-Khwarizm1 is
translated into letter symbols, the thing becoming x and the census becoming

5 My translation, as everywhere in the following when no translator into English is identified.
6 This position was already made in the previous problem about a “divided ten”.

7 However, those who are already somewhat familiar with the technique may take note of a
detail: we are to restore ten things with a census, and then add a census to 21. “Restoring”
(al-jabr) is thus not the addition to both sides of the equation (as normally assumed, in
agreement with later usage) but a reparation of the deficiency on that side where something
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22. The above problem and its solution thereby becomes

{10—x+(10—w)

(10 —z) =21
10z — 22 =21
10z = 21 + 22

2
T = 10 <10> —-21
2 2

To the extent that this allows us to follow the steps in a medium to which
we are as accustomed as the medieval algebraic calculators were to the use
of words, it may be regarded as adequate. But only to this extent: the letter
symbolism makes it so much easier to understand the dissolution of trinomials
into products that the need for geometric proofs becomes incomprehensible —
which has to do with the theme of our meeting.

Geometric proofs recur in many later Arabic expositions of algebra — not
only in Abu Kamil but also in al-Karaji’s Fakhri (Woepcke, 1853, pp. 65-71),
even though al-KarajT’s insight in the arithmetic of polynomials® would cer-
tainly have allowed him to offer purely algebraic proofs (his Al-Badic explicitly
shows how to find the square root of a polynomial (ed. Hebeisen, 2008, p. 117—
137)). What is more: he brings not only the type of proof that goes back to
al-Khwarizmi1 but also the type based directly on Elements II (as introduced
by Thabit ibn Qurrah, ed. (Luckey, 1941)).

Some Arabic writers on algebra give no geometric proofs — for instance, ibn
Badr and ibn al-Banna-. That, however, is because they give no proofs at all;
algebraic proofs for the solution of the basic equations are absent from the
entire Arabic tradition.’

This complete absence is interesting by showing that we should expect no
direct connection between the existence of an algebraic symbolism and the cre-
ation of the kind of reasoning it seems with hindsight to make possible. It has
indeed been known to historians of mathematics since Franz Woepcke’s work

is lacking; this is followed by a corresponding addition to the other side.

8 Carried by a purely rhetorical exposition, only supplemented by use of the particle illa
(“less”) — still a word, but used contrary to the rules of grammar in the phrase wa illa,
“and less” — to mark a subtractive contribution. As pointed out by Abdeljaouad (2002, p.
38), this implies that illa has become an attribute (namely subtractivity) of the number.

9 An interesting variant is found in ibn al-Ha*im’s 3arh al-Urjazah al- Yasminya, “Commen-
tary to al-Yasamin’s Urjuza” (ed., trans. Abdeljaouad, 2004, pp. 18f). Ibn al-Ha>im explains
that the specialists have a tradition for giving geometric proofs, by lines (viz, as Thabit) or
by areas (viz, as al-Khwarizmi), which however presuppose familiarity with Euclid. He there-
fore gives an arithmetical argument, fashioned after Elements I1.4. For use of this theorem
he is likely to have had precursors, since Fibonacci also seems to model his first geometric
proof after this proposition (ed. Boncompagni, 1857, p. 408) (his second proof is “by lines”).
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Fig. 1.1: Al-Qalasadi’s explanation of how to multiply “8 things less 4” by
“6 census less 3 things” in Souissi’s edition (1988, p. Ar. 96) — symbolic
notations in frames (added here).

in (1854) that elements of algebraic symbolism were present in the Maghreb,
at least in the mid-fifteenth century (they are found in al-Qalasadi’s Kasf,'°
but also referred to by ibn Khaldun). Woepcke points to symbols for pow-
ers of the unknown and to signs for subtraction, square root and equality;

symbols for the powers!! are written above their coefficient, and the root

10 The use of the symbols can thus be seen in Mohamed Souissi’s edition of he Arabic text
(1988). His translation renders the same expressions in post-Cartesian symbols; edition as
well as translation change the format of the text (unless this change of format has already
taken place in the manuscript he uses, which is not to be excluded). Woepcke’s translation
(1859) renders the formulae more faithfully (using K for the cube, Q for the square and C
for the unknown itself), and also renders the original format better (putting the symbolic
notations outside the text). Figures 1.1 and 1.2 confront Woepcke’s translation with Souissi’s
Arabic text.

11 There are individual signs for the thing, the census and the cube. Higher powers are rep-
resented by products of these (the fifth power thus with the signs for census and cube, one
written above or in continuation of the other, corresponding to the verbal name mal ka<b.
However, the arithmetization of the sequence of “powers” (i.e., exponents) was present. Ibn
al-Banna> must have known it, since he says (he was a purist) that it is not “allowed” to
speak of the power of the mal (as 2), viz because it is an entity of its own; ibn Qunfudh
(1339-1407), in the commentary from which we know this prohibition, states that other
writers on algebra did not agree, and speaks himself of the power of the number as “noth-
ing”, that is, 0 (Djebbar, 2005, pp. 95f). The individual names for the powers should thus
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Done si I'on vous dit: multipliez huit choses moins quatre en nombre
par six careés moins trois choses, posez cela ainsi:
G
4 moins 8
C ()
3 moins 6
Ensuite multiplicz le huit par le six. Vous aurez pour résultat quarante huit
cubes , parce que le fond des deux facteurs est trois- Rdservez cela. Apris
cela multipliez de nouvean le huit par les trois choses. Vous aurez pour vé-
sultat vingt quatre carrés, ce qui est négatif, parce que cela (provient) de la
multiplication du positif par le négatif. Réservez ecela (en le plagant) apris
la particule de D'exception. Puis multiplicz le quatre par le six. Vous aurez
pour résultat vingt quatre carrds. Mais cela est de nouveau négatif. Placez-le
avee son analogue (***). Ensuite multipliez encore le quatre par le trois. Yous
aurez pour résultat douze choses positives, parce que ccla (provient) de Ia
multiplication du négatif pav le négatif. Réservez cela avee le premier (pro-
duit) réservé. Le résultat sera douze choses et quarante huit cubes moins qua-
rante huit carrés, ainsi:
() K C
48 moins 48 12

Fig. 1.2: The same in Woepckes translation (1859, p. 427)

sign above the radicand. He shows that these symbols (derived from the ini-
tial letters of the corresponding words, prolonged so as to be able to cover
composite expressions, that is, to delimit algebraic parentheses'?) are used

not have been a serious impediment to the development of algebraic proofs, had the inten-
tion been there to develop them.

12 Three points should perhaps be made here. One concerns terminology. “Parenthesis”
does not designate the bracket but the expression that is marked off, for example by a pair
of brackets; but pauses may also mark off a parenthesis in the flow of spoken words, and a
couple of dashes may do so in written prose. What characterizes an algebraic parenthesis
is that it marks off a single entity which can be submitted to operations as a whole, and
therefore has to be calculated first in the case of calculations. When division is indicated
by a fraction line, this line delimits the numerator as well as the denominator as parenthe-
ses if they happen to be composite expressions (for instance, polynomials). Similarly, the
modern root sign marks off the radicand as a parenthesis.

The remaining points are substantial, one of them general. The possibility of “embed-
ding” parentheses is fundamental for the unrestricted development of mathematical thought,
as I discuss in (Hgyrup, 2000). An algebraic language without full ability to form parenthe-
ses and manipulate them is bound to remain “close to earth”.

The last point, also substantial, is specific and concerns the Maghreb notation. It did
not use the parenthesis function to the full. The fraction line and the root sign might mark
off polynomials as parentheses; the signs for powers of the unknown, on the other hand,
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to write polynomials and equations, and even to operate on the equations.
Making the observation (p. 355) that

la condition indispensable pour donner a des signes conventionnels quelconques le
caracteére d’une notation, c’est qu’ils soient toujours employeés quand il y a lieu, et
toujours de la méme maniere

he shows that one manuscript at his disposal fulfils this condition (another
one not, probably because of “la negligence d’un copiste ou d’'une succession
de copistes”).

s
.

Y-
vl
ml-—-L

BN | 2

Fig. 1.3: Ibn al-Yasamin’s scheme for multiplying % mal less % Sai> by % Sai>

Ibn Khaldun’s description made Woepcke suspect that the notation goes back
to the twelfth century, as has now been confirmed by two isolated passages
in ibn al-Yasamin’s Talgth al-afkar reproduced by Mahdi Abdeljaouad (2002,
p. 11) after Touhami Zemmouli’s master thesis and corresponding exactly to
what al-Qalasadi was going to do — one of them is shown in Figure 1.3.
Though manuscripts differ in this respect (as observed by Woepcke), the
symbolic calculations appears to have been often made separate from the run-
ning text (as shown in Woepcke’s translation of al-Qalasadi), usually preceded
by the expression “its image is”. They illustrate and duplicate the expres-
sions used by words. They may also stand as marginal commentaries, as in
the “Jerba manuscript” (written in Istanbul in 1747) of ibn al-Ha*im’s Sarh
al-Urjuzah al-Yasminya, “Commentary to al-Yasamin’s Urjuza” (originally
written in 1387 — manuscripts preceding the one from Jerba are without these
marginalia) (ed. Abdeljaouad, 2004), of which Figure 1.4 shows a page. Ac-
cording to ibn Mun<m (11228) and al-Qalasadi, these marginal calculations
may correspond to what was to be written in a takht (a dustboard, in particu-
lar used for calculation with Hindu numerals) or a lawha (a clayboard used for

might at most mark off a composite numerical expression — see (Abdeljaouad, 2002, pp.
25-34) for a much more detailed exposition. This should not surprise us: even Descartes
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Fig. 1.4: A page from the “Jerba manuscript” of ibn al-Ha*im’s Sarh al-
Urjazah al-Yasminiya (ed. Abdeljaouad, 2004, p. Ar. 45)

eschewed general use of the parenthesis — for instance, expressions like (y — 3)2, as pointed
out by Michel Serfati (1998, p. 259).
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temporary writing) — see (Lamrabet, 1994, p. 203) and (Abdeljaouad, 2002,
pp- 14, 19f). The use of such a device would explain that the examples of sym-
bolic notation we find in manuscripts normally do not contain intermediate
calculations, nor erasures (Abdeljaouad, 2002, p. 20).

We are accustomed to consider the notation for fractions as something
quite separate from algebraic symbolism. In twelfth-century Maghreb, the
two probably belonged together,'® and from al-Hassar’s Kitab al-bayan wa’l-
tadhkar onward Maghreb mathematicians used the various fraction notations
with which we are familiar from Fibonacci’s Liber abbaci (and other works
of his): simple fractions written with the fraction line, ascending continued
fractions (;Z‘Z meaning § + 57 + ﬁ), and additively and multiplicatively
compounded fractions — see (Lamrabet, 1994, pp. 180f) and (Djebbar, 1992,
pp. 231-234).

1.2 Latin algebra: Liber mahamaleth, Liber abbact,
translations of al-Khwarizmi — and Jordanus

The earliest documents in our possession from “Christian Europe” which
speak of algebra are the Liber mahamaleth and, with a proviso, Robert of
Chester’s translations of al-Khwarizmt’s Algebra (c. 1145); slightly later is
Gherardo da Cremona’s translation of al-Khwarizm1’s treatise. All of these
are from the twelfth century. From 1228 we have the algebra chapter in Fi-
bonacci’s Liber abbaci (the first edition from 1202 was probably rather similar,
but we do not know how similar). In his De numeris datis, Jordanus de Nemore
presented an alternative to algebra, showing how its familiar results could be
based in (rather) strictly deductive manner on his Elements of Arithmetic,
but he avoided to speak about algebra (hinting only for connoisseurs at the
algebraic sub-text by using many of the familiar numerical examples) — see
the analysis in (Hgyrup, 1988, pp. 332-336). Finally, around 1300 a revised
version of al-Khwarizm1i’s Algebra of interest for our topic was produced (ed.
(Kaunzner, 1986), cf. (Kaunzner, 1985)).

The Liber mahamaleth and the Liber abbaci share certain characteristics,
and may therefore be dealt with first.

All extant manuscripts of the Liber mahamaleth'* have lost an introductory
systematic presentation of algebra, which however is regularly referred to.!®

13 Cf. the hypothesis of Mahdi Abdeljaouad (2002, pp. 16-18), that “I’algébre symbolique
est un chapitre de larithmétique indienne maghrébine”.

14 T have consulted (Sesiano, 1988) and a photocopy of the manuscript Paris, Bibliotheque
Nazionale, ms. latin 7377A.

15 Thus fol. 154, “sicut docuimus in algebra”; fol. 1617, “sicut ostensum est in algebra”.
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There are also references to Abii Kamil,'® and a number of problem solutions
make use of algebra. Fractions are written in the Maghreb way, with Hindu
numerals and fraction line;'” there are also copious marginal calculations in
rectangular frames probably rendering computation on a lawha. However, one
finds no more traces of algebraic symbolism than in al-Khwarizmi’s and Abu
Kamil’s algebraic writings.

Fibonacci uses Maghreb fraction notations to the full in the Liber abbaci
(ed. Boncompagni, 1857), writing composite fractions from right to left and
mixed numbers with the fraction to the left — all in agreement with Arabic
custom. Further, he often illustrates non-algebraic calculations in rectangular
marginal frames suggesting a lawha. That systematic presentation of the al-
gebraic technique which has been lost from the Liber mahamaleth is present
in the Liber abbaci; there is no explicit reference to Aba Kamil, but there are
unmistakeable borrowings (which could of course be indirect, mediated by one
or more of the many lost treatises). When the “thing” technique is used in the
solution of commercial or recreational first-degree problems,'® it is referred to
as requla recta, not as algebra. But in one respect their algebras are similar:
they are totally devoid of any hint of algebraic symbolism.!? Inasfar as the
Liber mahamaleth is concerned, this could hardly be otherwise — it antedates
the probable creation of the Maghreb algebraic notation.

Equally devoid of any trace of symbolism is Gherardo’s translation of al-
Khwarizmi, which is indeed very faithful to the original — to the extent indeed
that no Hindu numerals nor fraction lines occur, everything is completely
verbal.

Robert does use Hindu numerals heavily in his translation (as we know
it), but apart from that his translation is also fully verbal. It has often been
believed, on the faith of Karpinski’s edition (1915, p. 126) that his translation
describes an algebraic formalism. It is true that the manuscripts contain a final
list of Regule 6 capitulis algabre correspondentes making use of symbols for
census, thing and dragma (the “unit” for the number term, we remember);

16 Thus fol. 203", “modum agendi secundum algebra, non tamen secundum Auoqamel”;
cf. (Sesiano, 1988, pp. 73f, 95f). We may observe that the spelling “Auoqgamel” reflects an
Iberian pronunciation.

17 However, ascending continued fractions are written in a mixed system and not in Maghreb
notation — e.g., “% et % unius sue £” (fol. 1677 — 9) for % + % . é (£ means “quinte”).
18 The Liber mahamaleth contains several pseudo-commercial problems involving the square
root of an amount of money, leading to second-degree problems — see (Sesiano, 1988, pp. 80,
83). The Liber abbaci contains nothing of the kind, and no second-degree problems outside
the final chapter 15.

19 Florian Cajori (1928, I, p. 90) has observed a single appearance of R in the Pratica
geometrie (ed. Boncompagni, 1862, p. 209). Given how systematically Fibonacci uses his
notations for composite fractions we may be sure that this isolated abbreviation is a copyist’s
slip of the pen (the manuscript is from the fourteenth century, where this abbreviation began

to spread). Marginal reader’s notes in a manuscript of the Flos are no better evidence of
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they are classified as an appendix by Barnabas Hughes (1989, p. 67), but
even he appears (p. 26) to accept them as genuine. However, the symbols are
those known from the southern Germanic area of the later fifteenth century,2°
and all three manuscripts were indeed written in this area during that very
period (Hughes, 1989, p. 11-13). The appendix has clearly crept in some three
centuries after Robert made his translation.

- Wla N
W= o bo
o b=
Wi O

Fig. 1.5: From Oxford, Bodleian Library, Lyell 52, fol. 45" (Kaunzner, 1986,
pp. 64f)

Far more interesting from the point of view of symbolism is the anonymous ak-
Khwarizmi redaction from around 1300. It contains a short section Qualiter
figurentur census, radices et dragma, “How census, roots and dragmas are
represented” (ed. Kaunzner, 1986, pp. 63f).2! Here, census is written as c,
roots as 1, and dragmata (the unit for number) as d or not written at all.
If a term is subtractive, a dot is put under it. These symbols are written
below the coefficient, not above, as in the Maghreb notation. In Figure 1.5 we
see (redrawn from photo and following Wolfgang Kaunzner’s transcription)
“2 census less 3 roots”, “2 census less 4 dragmata”, “5 roots less 2 census,
and “5 roots less 4 dragmata”. Outside this section, the notation is not used,
which speaks against its being an invention of the author of the redaction; it
rather looks as if he reports something he knows from elsewhere, and which,
as he says, facilitates the teaching of algebraic computation. He refers not only

what Fibonacci did himself.

20 One of them is an abbreviation of the spelling zenso/zensus, the spelling of many
manuscripts from northern Italy (below, note 86). The spelling zensus as well as the ab-
breviation were taken over in Germany (as the north-Italian spelling cossa was taken over
as coss); the spelling was unknown in twelfth-century Spain, and the corresponding abbre-
viation could therefore never have been invented in Spain in 1145.

21 This redaction is often supposed to be identical with a translation made by Guglielmo de
Lunis. However, all references to this translation (except a false ascription of a manuscript of
the Gherardo translation) borrow from it a list of Arabic terms with vernacular explanation
which is absent from the present Latin treatise. It is a safe conclusion that Guglielmo
translated into Italian; that his translation is lost ; and that the present redaction is to be
considered anonymous.
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to additive-subtractive operations but also to multiplication, stating however
only the product of thing by thing and of thing by number. He can indeed do
nothing more, he has not yet explained the multiplication of binomials. The
notation is certainly not identical with what we find in the Maghreb texts;
the similarity to what we find in ibn al-Yasamin and al-Qalasadt is sufficiently
great, however, to suggest some kind of inspiration — very possibly indirect.
However that may be: apart from an Italian translation from c. 1400 (Vatican,
Urb. lat. 291), where ¢ is replaced by s (for senso) and r by ¢ (for cose), no
influence in later writings can be traced. A brief description of a notation
which is not used for anything was obviously not understood to be of great
importance (whether the redactor believed it to be can also be doubted, given
that he does not insist by using it in the rest of the treatise).

Jordanus de Nemore’s De numeris datis precedes this redaction of al-
Khwarizmi by a small century or so.2? It is commonly cited as an early
instance of symbolic algebra, and as a matter of fact it employs letters as
general representatives of numbers. At the same time it is claimed to be very
clumsy — which might suggest that the interpretation as symbolic algebra
could be mistaken. We may look at an example:2?

If a given number is divided into two and if the product of one with the other is
given, each of them will also be given by necessity.

Let the given number abc be divided into ab and ¢, and let the product of ab
with ¢ be given as d, and let similarly the product of abc with itself be e. Then the
quadruple of d is taken, which is f. When this is withdrawn from e, g remains, and
this will be the square on the difference between ab and c. Therefore the root of g
is extracted, and it will be b, the difference between ab and c¢. And since b will be
given, ¢ and ab will also be given.

As we see, Jordanus does not operate on his symbols, every calculation leads
to the introduction of a new letter. What Jordanus has invented here is a
symbolic representation of an algorithm, not clumsy symbolic algebra.

The same letter symbolism is used in Jordanus’s De elementis arithmetice
artis, which is presupposed by the De numeris datis and hence earlier. In the

22 As well known, the only certain date ante quem for Jordanus is that all his known works
appear in Richard de Fournival’s Biblionomina (ed. de Vleeschauwer, 1965), which was
certainly written some time before Richard’s death in 1260 (Rouse, 1973, p. 257). However,
one manuscript of Jordanus’s Demonstratio de algorismo (Oxford, Bodleian Library, Savile
21) seems to be written by Robert Grosseteste in 1215-16, and in any case at that moment
(Hunt, 1955, p. 134). This is the revised version of Jordanus’s treatise on algorism. In
consequence, Jordanus must have been beyond his first juvenile period by then. It seems
likely (but of course is not certain) that the arithmetical works (the Elements and the Data
of arithmetic) are closer in time to the beginning of his career that works on statics and on
the geometry of the astrolabe, and that they should therefore antedate 1230.

23 Translated from (Hughes, 1981, p. 58) (Hughes’ own English translation is free and
therefore unfit for the present purpose). Juxtaposition of letters is meant as aggregation,
that is, addition (in agreement with the Euclidean understanding of number and addition).
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algorithm treatises, letters are used to represent unspecified digits (Enestrom,
1907, p. 146); in the two demonstrations that are quoted by Enestrom (pp.
140f), the revised version can be seen also to use the mature notation, while
it is absent from the early version. The assumption is close at hand that
Jordanus developed the notation from the representation of digits by letters
in his earliest work; it is hard to imagine that it can have been inspired in any
way by the Maghreb notations. This representation of digits might have given
rise to an algebraic symbolism — but as we see, that was not what Jordanus
aimed at. Actually — as mentioned above — he did not characterize his De
numeris datis as algebra even though he shows that he knows it to be at least
a (theoretically better founded) alternative to algebra.

There are few echoes of this alternative in the following centuries. When
taking up algebra in the mid-fourteenth century in his Quadripartitum nu-
merorum ((ed. I'Huillier, 1990), cf. (I'Huillier, 1980)), Jean de Murs borrows
from the Liber abbaci, not from Jordanus. Somewhere around 1450, Peurbach
refers in a poem to “what algebra calculates, what Jordanus demonstrates”
(ed. GroBing, 1983, p. 210), and in his Padua lecture from 1464 (ed. Schmeid-
ler, 1972, p. 46) Regiomontanus refers in parallel to Jordanus’s “three most
beautiful books about given numbers” and to “the thirteen most subtle books
of Diophantos, in which the flower of the whole of arithmetic is hidden, namely
the art of the thing and the census, which today is called algebra by an Ara-
bic name”. Regiomontanus thus seems to have been aware of the connection
to algebra, and he also planned to print Jordanus’s work (but suddenly died
before any of his printing plans were realized).?*

Two German algebraists from the sixteenth century knew, and used, Jor-
danus’s quasi-algebra: Adam Ries and Johann Scheubel. The codex known
as Adam Ries’ Coff (ed. Kaunzner and WuBing, 1992) includes a fragment
of an originally complete redaction of the De numeris datis, containing the
statements of the propositions in Latin and in German translation, and for
each statement an alternative solution of a numerical example by cossic tech-
nique; Jordanus’s general proofs as well as his letter symbols have disappeared
(Kaunzner and Wufling, 1992, II, pp. 92-100). From Scheubel’s hand, a com-
plete manuscript has survived. It has the same character — as Barnabas Hughes
says in his description (1972, pp. 222f), “Scheubel’s revision and elucidation
[...] has all the characteristics of an original work save one: he used the state-
ments of the propositions enunciated by Jordanus”. Both thus did to Jordanus
exactly what Jordanus had done to Arabic algebra: they took over his prob-
lems and showed how their own technique (basically that of Arabic algebra)
allowed them to deal with them in what they saw as a more satisfactory man-

24 As we shall see, these prestigious representatives of Ancient and university culture had
no impact on Regiomontanus’s own algebraic practice.
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ner. Jordanus’s treatise must thus have had a certain prestige, even though
his technique appealed to nobody.?

I only know of two works where Jordanus’s letter formalism turns up after
his own times, both from France. One is Lefevre d’étaples’ edition of Jor-
danus’s De elementis arithmetice artis (Lefevre d’étaples, 1514) (first edition
1494). The other is Claude Gaspar Bachet’s Problemes plaisans et delecta-
bles, que se font par les nombres (1624) (first edition 1612), where (for the
first and only time?) Jordanus’s technique is used actively and creatively by
a later mathematician.?%

1.3 Abbacus writings before algebra

The earliest extant abbacus treatises are roughly contemporary with the al-
Khwarizmi-redaction (at least the originals — what we have are later copies).
They contain no algebra, but their use of the notations for fractions is of some
interest.

Traditionally, a Livero dell’abbecho (ed. Arrighi, 1989) conserved in the
codex Florence, Ricc. 2404, has been supposed to be the earliest extant ab-
bacus book, “internal evidence” suggesting a date in the years 1288-90. Since
closer analysis reveals this internal evidence to be copied from elsewhere, all
we can say on this foundation is that the treatise postdates 1290 (Hgyrup,
2005, p. 47 n. 57) — but not by many decades, see imminently.

The treatise claims in its incipit to be “according to the opinion” of Fi-
bonacci. Actually, it consists of two strata — see the analysis in (Hgyrup, 2005).
One corresponds to the basic abbacus school curriculum, and has nothing to
do with Fibonacci; the other contains advanced matters, translated from the
Liber abbaci but demonstrably often with scarce understanding.

The Fibonacci-stratum copies his numbers, not only his mixed numbers
with the fraction written to the left (210 where we would write 102) but
also his ascending continued fractions (written, we remember, in Maghreb
notation, and indeed from right to left, as done by al-Hassar, cf. above).
However, the compiler does not understand the notation, at one place (ed.

25 Vague evidence for prestige can also be read from the catalogue the books belonging to
a third Vienna astronomer (Andreas Stiborius, c¢. 1500). Three neighbouring items in the
list are dedomenorum euclidis. Iordanus de datis. Demonstrationes cosse (Clagett, 1978,
p.- 347). Whether it was Stiborius (in the ordering of his books) or Georg Tannstetter (who
made the list) who understood De numeris datis as belonging midway between Euclid’s
Data and algebra remains a guess.

26 In order to discover that one has to go to the seventeenth-century editions. Labosne’s
“edition” (1959) is a paraphrase in modern algebraic symbolism. Ries and Stifel were not
the last of their kind.
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Arrighi, 1989, p. 112), for instance, he changes

33 64246
53 53 53 53

standing in the Liber abbaci (ed. Boncompagni, 1857, p. 273) for

6+
53
53
into 533356345234563. It is obvious, moreover, that he has not got the faintest idea

about algebra: he mostly omits Fibonacci’s alternative solutions by means of
requla recta; on one occasion where he does not (fol. 83", ed. Arrighi 1989:
89) he skips the initial position and afterwards translates res as an ordinary,
not an algebraic cosa.?”

The basic stratum contains ordinary fractions written with a fraction line
but none of the composite fractions. Very strange is its way to speak of con-
crete mixed numbers. On the first few pages they look quite regular — e.g.
“d. 6% de denaio”, meaning “denar: 6, g—; of a denaro”. Then, suddenly
(with some slips that show the compiler to copy from material written in
the normal way) the system changes, and we find expressions like “d. %4 de
denaio”, “denari %4 of a denaro” — obviously a misshaped compromise be-
tween Fibonacci’s way to write mixed numbers with the way of the source
material, which hence can not have been produced by Fibonacci (all his ex-
tant works write simple and composite fractions as well as mixed numbers in
the same way as the Liber abbaci). All in all, the Livero dell’abbecho is thus
evidence, firstly, that the Maghreb notations adopted by Fibonacci had not
gained foothold in the early Italian abbacus environment (which it would by
necessity have, had Fibonacci’s works been the inspiration) ; secondly, that
the aspiration of the compiler to dress himself in the robes of the famous
culture hero was not accompanied by understanding of these notations (nor
of other advanced matters presented by Fibonacci).

The other early abbacus book is the Columbia Algorism (New York,
Columbia University, MS X511 AL3, ed. (Vogel, 1977)). The manuscript was
written in the fourteenth century, but a new reading of a coin list which it
contains dates this list to the years 1278-1284 (Travaini, 2003, pp. 88-92).
Since the shapes of numerals are mostly those of the thirteenth century (with
occasional slips, where the scribe uses those of his own epoch) (Vogel, 1977,
p. 12), a dating close to the coin list seems plausible — for which reason we

27 This total ignorance of everything algebraic allows us to conclude that the treatise cannot
be written many decades after 1290.
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must suppose the Columbia Algorism to be (a fairly scrupulous copy of) the
oldest extant abbacus book.

There is no trace of familiarity with algebra, neither a systematic exposition
nor an occasional algebraic cosa. A fortiori, there is no algebraic symbolism
whatsoever, not even rudiments. Another one of the Maghreb innovations is
present, however (Vogel, 1977, p. 13). Ascending continued fractions turn up
several times, sometimes in Maghreb notation, but once reversed and thus to
be read from left to right (H standing for %) Nothing else suggests any link
to Fibonacci. Moreover, the notation is used in a way never found in the Liber
abbaci, the first “denominator” being sometimes the metrological denomina-

tion — thus ;mn; being used for 1% gran (or rather, as it would be written

elsewhere in the manuscript, for 1 gran %) Next, the Columbia Algorism dif-
fers from all other Ttalian treatises (including those written in Provence by
Ttalians) in its formulation of the rule of three — but in a way which approaches
it to Ibero-Provencal writings of abbacus type — see (Hgyrup, 2008, pp. 5f).
Finally, at least one problem in the Columbia Algorism is strikingly similar
to a problem found in a Castilian manuscript written in 1393 (copied from an
earlier original) while not appearing elsewhere in sources I have inspected —
see (Hoyrup, 2005, p. 42 n. 32). In conclusion it seems reasonable to assume
that the Columbia Algorism has learned the Maghreb notation for ascending
continued fractions not from Fibonacci but from the Iberian area.

1.4 The beginning of abbacus algebra

The earliest abbacus algebra we know of was written in Montpellier in 1307
by one Jacopo da Firenze (or Jacobus de Florentia; otherwise unknown as a
person). It is contained in one of three manuscripts claiming to represent his
Tractatus algorismi (Vatican, Vat. lat. 4826; the others are Florence, Riccar-
diana 2236, and Milan, Trivulziana 90).2% As it follows from in-depth anal-
ysis of the texts (Hgyrup, 2007a, pp. 5-25 and passim), the Florence and
Milan manuscripts represent a revised and abridged version of the original,
while the Vatican manuscript is a meticulous copy of a meticulous copy of
the shared archetype for all three manuscripts (extra intermediate steps not
being excluded, but they must have been equally meticulous if they exist);

28 The Vatican manuscript can be dated by watermarks to c. 1450, the Milan manuscript
in the same way to c. 1410. The Florence manuscript is undated but slightly more removed
from the precursor it shares with the Milan manuscript (which of course does not automat-
ically make it younger but disqualifies it as a better source for the original).
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this shared archetype could be Jacopo’s original, but also a copy written well
before 1328.%°

Jacopo may have been aware of presenting something new. Whereas the
rest of the treatise (and the rest of the vocabulary in the algebra chapter)
employs the standard abbreviations of the epoch and genre, the algebraic
technical vocabulary is never abbreviated.?® Even meno, abbreviated @) in the
coin list, is written in full in the algebra section. Everything here is rhetorical,
there is not the slightest hint of any symbolism. We may probably take this as
evidence that Jacopo was aware of writing about a topic the reader would not
know about in advance (the book is stated also to be intended for independent
study), and thus perhaps that his algebra is not only the earliest extant Italian
algebra but also the first that was written. As we shall see, however, several
manuscripts certainly written later also avoid the abbreviation of algebraic
core terms — even around 1400, authors of general abbacus treatises may have
suspected their readers to possess no preliminary knowledge of algebra.

Not only symbolism but also the Maghreb notations for composite fractions
are absent from the treatise, even though they turned up in the Columbia Al-
gorism. None the less, Jacopo’s algebra must be presumed to have its direct
roots in the Ibero-Provencal area, with further ancestry in al-Andalus and
the Maghreb; there is absolutely no trace of inspiration from Fibonacci nor
of direct influence of Arabic classics like al-Khwarizmi or Aba Kamil (nor
any Arabisms suggesting direct impact of other Arabic writings or settings).
Jacopo offers no geometric proofs but only rules, and the very mixture of
commercial and algebraic mathematics is characteristic of the Maghreb—al-
Andalus tradition (as also reflected in the Liber mahamaleth). A particular
multiplicative writing for Roman numerals (for example .., used as expla-
nation of the Hindu-Arabic number 400000) could also be inspired by the
Maghreb algebraic notation (it may also have been an independent invention,
Middle Kingdom Egyptian scribes and Diophantos sometimes put the “de-

29 Comparing only lists of the equation types dealt with in various abbacus algebras and
believing in a steady progress of their number within each family, Warren Van Egmond
claims (2008, p. 313) that the algebra of the Vatican manuscript “falls entirely within
the much later and securely dated Benedetto tradition and was undoubtedly added to
a manuscript containing some sections from Jacopo’s earlier work” (actually, it contains
fewer types than the manuscript from c. 1390 which Van Egmond takes as the starting
point for this tradition). If he had looked at the words used in the manuscripts he refers
to he would have discovered that the Vatican algebra agrees verbatim with a section of an
algebra manuscript from c. 1365, which however fills out a calculational lacuna left open in
the Vatican manuscript and therefore represents a more developed form of the text (and
combines it with other material — details in (Hgyrup, 2007a, pp. 163f)). Van Egmond’s
dating can be safely dismissed.

30 There is one instance of R (fol. 44", ed. (Hgyrup, 2007a, p. 326); as the single appearance
of R in Fibonacci’s Pratica geometrie (see note 19), this is likely to be a copyist’s lapsus
calami.



20 Jens Hgyrup

nomination” above the “coefficient” in a similar way, and there is no reason
to believe that these notations were connected to the Maghreb invention).

In 1328, also in Montpellier, a certain Paolo Gherardi (as Jacopo, unknown
apart from the name) wrote a Libro di ragioni, known from a later copy (Flo-
rence, Bibl. Naz. Centr., Magl. XI, 87, ed. (Arrighi, 1987, p. 13-107)). Its final
section is another presentation of algebra.?! Part of this presentation is so close
to Jacopo’s algebra that it must descend either from that text (by reduction)
or from a close source; but whereas Jacopo only deals (correctly) with 20 (of
the possible 22) quadratic, cubic and quartic basic equations (“cases”) that
can be solved by reduction to quadratic equations or by simple root extrac-
tion,3? Gherardi (omitting all quartics) introduces false rules for the solution
of several cubics that cannot be solved in these ways (with examples that are
“solved” by means of the false rules). Comparison with later sources show
that they are unlikely to be of his own invention. A couple of the cases he
shares with Jacopo also differ from the latter in their choice of examples, one
of them agreeing at the same time with what can be found in a slightly later
Provengal treatise (see imminently).

Gherardi’s algebra is almost as rhetorical as Jacopo’s, but not fully. Firstly,
the abbreviation R is used copiously though not systematically. This may be
due to the copyist — the effort of Jacopo’s and Fibonacci’s copyists to conserve
the features of the original was no general rule; but it could also correspond
to Gherardi’s own text. More important is the reference to a diagram in one
example (100 is first divided by some number, next by five more, and the sum
of the two quotients is given); this diagram is actually missing in the copy,
but so clearly described in the text that it can be seen to correspond to the
diagram found in a parallel text:33

100\/ 1 cosa
100 /A 1 cosa piu 5

The operations performed on the diagram (“cross-multiplication” and the
other operations needed to add fractions) are described in a way that implies
underlying operations with the “formal fractions” 1162211 and 5 Como No
piub’
abbreviations being used, we may speak of what goes on as a beginning of
symbolic syntax without symbolic vocabulary.
Such formal fractions, we may observe, constitute an element of “symbolic

algebra” that does not presuppose that “cosa” itself be replaced by a sym-

31 Beyond Arrighi’s complete edition of the treatise (1987, pp. 97-107), there is an edition
of the algebra text with translation and mathematical commentary in (Van Egmond, 1978).
32 The lacking equations are the two mixed biquadratics that correspond to al-Khwarizmi’s
(and Jacopo’s) fifth and sixth case. Only the six simple cases (linear and quadratic) are
provided with examples — ten in total, half of which are dressed as commercial problems.
For the others, only rules are offered.

33 Florence, Ricc. 2252, see (Van Egmond, 1978, p. 169).
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bol — but certainly an isolated element only. It must be acknowledged, on
the other hand, that this isolated element already made possible calculations
that were impossible within a purely rhetorical framework. Jacopo, as already
al-Khwarizmi, could get rid of one division by a binomial via multiplication.
However, problems of the type where Gherardi and later abbacus algebra use
two formal fractions were either solved geometrically by al-Khwarizmi, Abu
Kamil and Fibonacci, as I discuss in a forthcoming paper,* or they were re-
placed before being expressed algebraically without explanation by a different
problem, namely the one resulting from multiplication by the denominators
(al-Khwarizmi, ed. (Hughes, 1986, p. 51)).

A third abbacus book written in Provence (this one in Avignon) is the
Trattato di tutta Uarte dell’abbacho. As shown by Jean Cassinet (2001), it
must be dated to 1334. Cassinet also shows that the traditional ascription to
Paolo dell’Abbaco is unfounded.?® Exactly how much should be counted to
the treatise is not clear. The codex Florence, Bibl. Naz. Centr., fond. princ.
IL.IX.57 (the author’s own draft according to (Van Egmond, 1980, p. 140))
contains a part that is not found in the other copies®® but which is informative
about algebra and algebraic notation; however, since this extra part is in the
same hand as the main treatise (Van Egmond, 1980, p. 140), it is unimportant
whether it went into what the author eventually decided to put into the final
version.

There is no systematic presentation of algebra nor listing of rules in this
part,3” only a number of problems solved by a rhetorical censo-cosa tech-
nique.?® The author uses no abbreviations for cosa, censo and radice — but
at one point (fol. 159") an astonishing notation turns up: C})ge, meaning “10
cose”. The idea is the same as we encountered in the Columbia Algorism when

it writes 2 ; meaning “1 gran %”: that what is written below the line is
gran

a denomination; indeed, many manuscripts write “il %” in the sense of “the

34 «Pproportions’ in the Liber abbaci”, to appear in the proceedings of the meeting “Pro-
portions: Arts — Architecture — Musique — Mathématiques — Sciences”, Centre d’études
Supérieures de la Renaissance, Tours, 30 juin au 4 juillet 2008.

Al-Khwarizmi (ed. Hughes, 1986, p. 255) does not make the geometric argument ex-
plicit, but a division by 1 betrays his use of the same diagram as Abu Kamil (ed. Sesiano,
1993, p. 370).

35 Arguments speaking against the ascription are given in (Hgyrup, 2008, p. 11 n. 29).

36 T have compared with Rome, Acc. Naz. dei Lincei, Cors. 1875, from c. 1340. For other
manuscripts, see (Cassinet, 2001) and (Van Egmond, 1980, passim).

37 The codex contains a list of four rules (fol. 1717), three of which are followed by examples,
written on paper from the same years (according to the watermark) but in a different hand
than the recto of the sheet and thus apparently added by a user of the manuscript. It
contains one of the examples which Gherardi does not share with Jacopo, confirming that
his extra examples came from what circulated in the Provencgal area. It contains no algebraic
abbreviations nor anything else suggesting symbolism.

38 Jean Cassinet (2001, pp. 124-127) gives an almost complete list.
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third” (as ordinal number as well as fraction) — that is, the notation for the
fraction was understood as an image of the spoken form, not of the division
procedure (cf. also the writing of quinte as £ in the Liber mahamaleth, see
note 17).

The compiler of the Trattato di tutta l’arte was certainly not the first to
use this algebraic notation — who introduces a new notation does not restrict
himself to using it a single time in a passage well hidden in an odd corner
of a text. He just happens to be our earliest witness of a notation which for
long was in the way of the development of one that could serve symbolic
calculation.

This compiler was, indeed, not only not the first but also not the last to use
this writing of monomials as quasi-fractions. It is used profusely in Dardi of
Pisa’s Aliabraa Argibra from 1344,39 better known for being the first Italian-
vernacular treatise dedicated exclusively to algebra and for its presentation of
rules for solving no less than 194+4 algebraic cases, 194 of which are solved
according to generally valid rules (with two slips, explained by Van Egmond
(1983, p. 417)), while the rules for the last four cases are pointed out by Dardi
to hold only under particular (unspecified) circumstances.*’

Dardi uses algebraic abbreviations systematically. Radice is always R, meno
(“less™) is 1, cosa is ¢, censo is ¢, numero/numeri are nio/nui. Cubo is
unabridged, censo de censo (the fourth power) appears not as ¢¢ but in the
expanded linguistic form ¢ de ¢, which we may take as an indication that Dardi
merely thinks in terms of abbreviation and nothing more. Roots of composite
entities are written by a partially rhetorical expression, for instance (fol. 9V)

“R de zonto % co B de 12”7 (meaning ,/% + v/12; zonto corresponds to Tuscan
gionto, “joined”).

As just mentioned, Dardi also employs the quasi-fraction notation for
monomials, and does so quite systematically in the rules and the examples
(but only here).*! When coefficients are mixed numbers Dardi also uses the

39 See (Van Egmond, 1983). The three principal manuscripts are Vatican, Chigi M.VIII.170
written in Venetian in c. 1395; Siena, Biblioteca Comunale I.VIL.17 from c. 1470 (ed. Franci,
2001); and a manuscript from Mantua written in 1429 and actually held by Arizona State
University Temple, which I am grateful to know from Van Egmond’s personal transcription.
In some of the details, the Arizona manuscript appears to be superior to the others, but at
the level of overall structure the Chigi manuscript is demonstrably better — see (Hgyrup,
2007a, pp. 169f). Considerations of consistency suggests it to be better also in its use of
abbreviations and other quasi-symbolism, for which reason I shall build my presentation on
this manuscript (cross-checking with the transcription of the Arizona-manuscript — differ-
ences on this account are minimal); for references I shall use the original foliation.

A fourth manuscript from c. 1495 (Florence, Bibl. Med.-Laur., Ash. 1199, partial ed.
(Libri, 1838, III, pp. 349-356)) appears to be very close to the Siena manuscript.

A critical edition of the treatise should be forthcoming from Van Egmond’s hand.
40 Dardi reaches this impressive number of resolvable cases by making ample use of radicals.
41 This notation appears only to be present in the Chigi and Arizona manuscripts; Franci
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formalism systematically in a way which suggests ascending continued frac-
tions, writing for instance 2%0 not quite as % but as %% (which however
could also mean simply “2 censi and %”. Often, a number term is written as
a quasi-fraction, for example as % How far this notation is from any oper-
ative symbolism is revealed by the way multiples of the censo de censo are
sometimes written — namely for example as % de ¢ (fol. 46Y).

None the less, symbolic operations are not absent from Dardi’s treatise.
They turn up when he teaches the multiplication of binomials (either algebraic

or containing numbers and square roots) — for instance, for (3—+/5)-(3—+/5),

3 m Rde5
14 mM Rde 180
3 m Rde5

Noteworthy is also Dardi’s use of a similar scheme

)
N

10
64
10

3)
N

as support for his proof of the sign rule “less times less makes plus” on fol.
5Y:

Now I want to demonstrate by number how less times less makes plus, so that every
times you have in a construction to multiply less times less you see with certainty
that it makes plus, of which I shall give you an obvious example. 8 times 8 makes 64,
and this 8 is 2 less than 10, and to multiply by the other 8, which is still 2 less than
10, it should similarly make 64. This is the proof. Multiply 10 by 10, it makes 100,
and 10 times 2 less makes 20 less, and the other 10 times 2 less makes 40 less, which
40 less detract from 100, and there remains 60. Now it is left for the completion of
the multiplication to multiply 2 less times 2 less, it amounts to 4 plus, which 4 plus
join above 60, it amounts to 64. And if 2 less times two less had been 4 less, this
4 less should have been detracted from 60, and 56 would remain, and thus it would
appear that 10 less 2 times 10 less two had been 56, which is not true. And so also if
2 less times 2 less had been nothing, then the multiplication of 10 less 2 times 10 less
2 would come to be 60, which is still false. Hence less times less by necessity comes
to be plus.

does not mention it in her edition of the much later Siena manuscript, and composite
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Such schemes were no more Dardi’s invention than the quasi-fraction notation
(even though he may well have been more systematic in the use of both than
his precursors). The clearest evidence for this is offered by an anonymous
Trattato dell’alcibra amuchabile from c. 1365 (ed. Simi, 1994), contained in
the codex Florence, Ricc. 2263. This is the treatise referred to in note 29, part
of which agrees verbatim with Jacopo’s algebra. It also has Gherardi’s false
rules. However, here the agreement is not verbatim, showing Gherardi not to
be the immediate source (a compiler who follows one source verbatim will not
use another one freely) — cf. (Hoyrup, 2007a, p. 163).

The treatise consists of several parts. The first presents the arithmetic
of monomials and binomials, the second contains rules and examples for 24
algebraic cases (mostly shared with Jacopo or Gherardi), the third a collection
of 40 algebraic problems. All are purely rhetorical in formulation, except for
using R in the schemes of the first part (see imminently). However, the first
and third part contain the same kinds of non-verbal operations as we have
encountered in Gherardi and Dardi, and throws more light on the former.

In part 3, there are indeed a number of additions of formal fractions, for
example (in problem #13) 190 4 100 _ "This is shown as

1 cosa 1 cosa+5"
100 100
per una cosa per una cosa e 5

and explained with reference to the parallel % + 26—4 (cross-multiplication of
denominators with numerators followed by addition, multiplication of the de-
nominators, etc.). Gherardi’s small scheme (see just after note 33) must build
on the same insights (whether shared by Gherardi or not).

Part 1 explains the multiplication of binomials with schemes similar to
those used by Dardi — for example

5 e piu R di 20
via
5 e meno R di 20

As we see, the scheme is very similar to those of Dardi but more rudimentary.
It also differs from Dardi in its use of the ungrammatical expressions e pit
and e meno, where Dardi uses the grammatical e for addition and the ab-
breviation m for subtraction.*? There is thus no reason to suppose it should

expressions where their presence might be revealed show no trace of them. They are also
absent from Guglielmo Libri’s extract of the Florence manuscript.

42 The expression e meno n, as we remember, corresponds to what was done by al-Karajt,
see note 8. The appearance of the parallel expression e pit n shows that the attribute
“subtractivity” was seen to ask for the existence of a corresponding attribute “addivity” —
another instance of “symbolic syntax” without “symbolic vocabulary” (or, in a different
terminology but with the same meaning, the incipient shaping of the language of algebra
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be borrowed from Dardi’s earlier treatise — influence from which is on the
whole totally absent. Schemes of this kind must hence have been around in
the environment or in the source area for early abbacus algebra before 1340,
just as the calculation with formal fractions must have been around before
1328, and the quasi-fractions for monomials before 1334.43 On the whole, this
tells us how far the development of algebraic symbolic operations had gone in
abbacus algebra in the early fourteenth century — and that all that was taken
over from the Maghreb symbolism was the calculation with formal fractions; a
very dubious use of the ascending continued fractions; and possibly the idea of
presenting radice, cosa and censo by single-letter abbreviations (implemented
consistently by Dardi but not broadly, and not necessarily a borrowing).

1.5 The decades around 1400

The Venetian manuscript Vatican, Vat. lat. 10488 (Alchune ragione), written
in 1424, connects the early phase of abbacus algebra with its own times. The
manuscript is written by several hands, but clearly as a single project (hands
may change in the middle of a page; we should perhaps think of an abbacus
master and his assistants). From fol. 29" to fol. 32" it contains a short intro-
duction to algebra, taken from a text written in 1339 by Giovanni di Davizzo,
a member of a well-known Florentine abbacist family, see (Ulivi, 2002, pp. 39,
197, 200). At first come sign rules and rules for the multiplication of algebraic
powers, next a strange section with rules for the division of algebraic powers
where “roots” take the place of negative powers;** then a short section about
the arithmetic of roots (including binomials containing roots)*® somehow but
indirectly pointing back to al-Karajt; and finally 20 rules for algebraic cases
without examples, of which one is false and the rest parallel to those of Jacopo
(not borrowed from him but sharing the same source tradition). Everywhere,
radice is B, but “less”, cosa and censo all appear unabbreviated (censo mostly
as zenso, which cannot have been the Florentine Giovanni’s spelling).

as an artificial language).

In the proof that “less times less makes plus” (see above), Dardi speaks of subtractive
numbere, e.g., as “2 meno” /“2 less”, etc., whereas additive numbers are not characterized
explicitly as such.

43 This latter presence leads naturally to the question whether the notation in the
al-Khwarizmi-redaction from c. 1300 should belong to the same family. This cannot be
completely excluded, but the absence of a fraction line from the notation of the redaction
speaks against it. It remains more plausible that the latter notation is inspired from the
Maghreb, or an independent invention.

44 An edition, English translation and analysis of this initial part of the introduction can
be found in (Hgyrup, 2007b, pp. 479-484).

45 Translation in (Hgyrup, 2009, pp. 56f).
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Fig. 1.6: The “equations” from VAT 10488 fol. 37" (top) and fol. 39” (bottom)

This introduction comes in the middle of a long section containing number
problems mostly solved by means of algebra (many of them about numbers
in continued proportion).*8 Here, abbreviations abound. Radice is always R,

meno is often @, 1, or me (different shapes may occur in the same line). More
interesting, however, is the frequent use of co, O, (occasionally ce) and no
written above the coefficient, precisely as in the Maghreb notation (and quite
likely inspired by it). However, these notations are not used systematically,
and only used once for formal calculation, namely in a marginal “equation”
without equation sign®” on fol. 39¥ — see Figure 1.6, bottom.*® In another place
(fol. 37", Figure 1.6 top) the running text formulates a genuine equation, but
this is merely an abbreviation for 100 é 1 censo meno 20 cose. It serves within
the rhetorical argument without being operated upon.

Later in the text comes another extensive collection of problems solved by
means of algebra (some of them number problems, others dressed as business
problems), and inside it another collection of rules for algebraic cases (17 in
total, only 2 overlapping the first collection). In its use of abbreviations, this
second cluster of problems and rules is quite similar to the first cluster, the
only exception being a problem (fols. 95r-96v) where the use of coefficients

46 Even these are borrowed en bloc, as revealed by a commentary within the running text
on fol. 36", where the compiler tells how a certain problem should be made al parere mio,
“in my opinion”. The several hands of the manuscripts are thus not professional scribes
copying without following the argument.

47 Two formal fractions are indicated to be equal; the hand seems to be the same as that
of the main text and of marginal notes adding words that were omitted during copying.
48 The treatment of the problem is quite interesting. The problem asks for a number
which, when divided into 10 yields 5 times the same number and 1 more. Instead of writing
C5D el piu

1

«10 __ co

zo = 5 e 1 piu” it expresses the right-hand side as a fraction , thus opening

1
the way to the usual cross-multiplication.

As in several cases below, I have had to redraw the extract from the manuscript in order
to get clear contours, my scanned microfilm being too much grey in grey.
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with superscript power is so dense (without being fully systematic) that it
may possibly have facilitated understanding of the argument by making most
of the multiples of cosa and censo stand out visually.

In the whole manuscript, addition is normally indicated by a simple e,
“and”. I have located three occurrences of pit,*® none of them abbreviated.
The expressions e pit and e meno appear to be wholly absent.

It is fairly obvious that this casual use of what could be a symbolism was
not invented by the compilers of the manuscript, and certainly not something
they were experimenting with. They used for convenience something which
was familiar, without probing its possibilities. If anybody else in the abbacus
environment had used the notation as a symbolism and not merely as a set
of abbreviations (and the single case of an equation between formal fractions
suggests that this may well have been the case), then the compilers of the
present manuscript have not really discovered — or they reveal, which would
be more significant, that the contents of abbacus algebra did not call for and
justify the effort needed to implement a symbolism to which its practitioners
were not accustomed.?® They might almost as well have used Dardi’s quasi-
fractions — only in the equation between formal fractions would the left-hand
side have collided with it by meaning simply “10 cose”.

Though not using the notation as a symbolism, the compilers of Vat. lat.
10488 at least show that they knew it. However, this should not make us
believe that every abbacus writer on algebra from the same period was familiar
with the notation, or at least not that everybody adopted it. As an example
we may look at two closely related manuscripts coming from Bologna, one
(Palermo, Biblioteca Comunale 2 Qq E 13, Libro merchatantesche) written
in 1398, the other (Vatican, Vat. lat. 4825, Tomaso de Jachomo Lione, Libro
da razioni) in 1429.51 They both contain a list of 27 algebraic cases with
examples followed by a brief section about the arithmetic of roots (definition,
multiplication, division, addition and subtraction). The former has a very
fanciful abbreviation for meno, namely g@, which corresponds, however, to
the way che and various other non-algebraic words are abbreviated, and is
thus merely a personal style of the scribe; the other writes meno in full,
and none of the two manuscripts have any other abbreviation whatsoever of
algebraic terms — not even R for radice which they are unlikely not to have
known, which suggests but does not prove that the other abbreviations were
also avoided consciously.

49 In a marginal scheme and the running text of a problem about combined works (fol.
90"), and once in an algebra problem (fol. 94™). There may be more instances, but they
will be rare.

50 The latter proviso is needed. For us, accustomed as we are to symbolic algebra, it is often
much easier to follow a complex abbacus texts if we make symbolic notes on a sheet of paper.
51 More precisely, 7 March 1429 — which with year change at Easter means 1430 according
to our calendar, the date given in (Van Egmond, 1980, p. 223).
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Fig. 1.7: Schemes for the multiplication of polynomials, from (Franci and
Pancanti, 1988, pp. 812), and from the manuscript, fol. 146

Maybe we should not be surprised not to find any daring development in
these two manuscripts. In general, they offer no evidence of deep mathemat-
ical insight. In this perspective, the manuscript Florence, Bibl. Naz. Centr.,
fondo princ. I1.V.152 ( Tratato sopra larte della arismetricha) is more illumi-
nating. Its algebraic section was edited by Franci and Pancanti (1988).°2 Tt

52 1 have controlled on a scan of a microfilm, but since it is almost illegible my principal
basis for discussing the treatise is this edition.
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was written in Florence in c¢. 1390, and offers both a clear discussion of the
sequence of algebraic powers as a geometric progression and sophisticated use
of polynomial algebra in the transformation of equation types — see (Hgyrup,
2008, pp. 30-34).

In the running text, there are no abbreviations nor anything else which
foreshadows symbolism. However, inserted to the left we find a number of
schemes explained by the text and showing multiplication of polynomials with
two or three terms (numbers, roots and/or algebraic powers), of which Figure
1.7 shows some examples — four as rendered by Franci and Pancanti, the last
of these also as appearing in the manuscript (redrawn for clarity).

Those involving only binomials are easily seen to be related to what we find
in the Trattato dell’alcibra amuchabile and in Dardi’s Aliabraa Argibra — but
also to schemes used in non-algebraic sections of other treatises, for instance
the Palermo-treatise discussed above, see Figure 1.8, which should warn us
against seeing any direct connection.

TIR <160 —4:1«; 6ol ) §217 (Pfﬂmh(:-;{eqmﬂ-u B rhton ftva.'
ga| me nay 166 I¥e fra (@ q- 6 / /ﬁ lf‘:/""‘ew;z,

1166 "esfudqt‘i-‘?"fr&t la| 41 13F [ <G ‘I"%L

=

Fig. 1.8: Non-algebraic scheme from Palermo, Biblioteca Comunale 2 Qq E
13, fol. 38"

The schemes for the multiplication of three-term polynomials are different.
They emulate the scheme for multiplying multi-digit numbers, and the text
itself justly refers to multiplication a chasella (ed. Franci and Pancanti, 1988,
p- 9). The a casella version of the algorithm uses vertical columns, while
the scheme for multiplying polynomials used in the Jerba manuscript (ed.
Abdeljaouad, 2002, p. 47) follows the older algorithm a scacchiera with slanted
columns; none the less inspiration from the Maghreb is plausible, in particular
because another odd feature of the manuscript suggests a pipeline to the
Arabic world. In a wage problem, an unknown amount of money is posited
to be a censo, whereas Biagio il vecchio (ed. Pieraccini, 1983, p. 89f) posits
it to be a cosa in the same problem in a treatise written at least 50 years
earlier. But the present author does not understand that a censo can be an
amount of money, and therefore feels obliged to find its square root — only
to square it again to find the amount of money asked for. He thus uses the
terminology without understanding it, and therefore cannot have shaped the
solution himself; nor can the source be anything of what we have discussed so
far.
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Schemes of this kind (and other schemes for calculating with polynomials)
turn up not only in later abbacus writings (for instance, in Raffaello Canacci,
see below) but also in Stifel’s Arithmetica integra (1544, fols. 238" —2397), in
Jacques Peletier’s L’Algébre (1554, pp. 15-22) and in Petrus Ramus’s Algebra
(1560, fol. Adii").

Returning to the schemes of the present treatise we observe that the cosa is
represented (within the calculations, not in the statement lines) by a symbol
looking like p, and the censo by c. Radice is B in statement as well as calcu-
lation. The writing of meno is not quite systematic — whether it is written in
full, abbreviated me or as @ (rendered “m.” by Franci and Pancanti) seems
mostly to depend on the space available in the line. Addition may be e or
pit (piv being mostly but not always nor exclusively used before R); when
space is insufficient, and only then, pit may be abbreviated p.>® All in all, the
writer can be seen to have taken advantage of this incipient symbolism but
not to have felt any need to use it systematically — it stays on the watershed,
between facultative abbreviation and symbolic notation.

1.6 The mid-15th-century abbacus encyclopedize

Around 1460, three extensive “abbacus encyclopediae” were written in Flo-
rence. Most famous among these is, and was, Benedetto da Firenze’s Trattato
de praticha d’arismetrica — it is the only one of them which is known from
several manuscripts.®*

Earliest of these is Siena, Biblioteca Comunale degli Intronati, L.IV.21,
which I have used together with the editions of some of its books.?® According
to the colophon (fol. 17) it was “conpilato da B. a uno suo charo amicho
negl’anni di Christo MCCCCLXIII”. It comnsists of 495 folios, 106 of which
deal with algebra.

The algebra part consists of the following books:

e XIII: Benedetto’s own introduction to the field, starting with a 23-lines’ ex-
cerpt from Guglielmo de Lunis’s lost translation of al-Khwarizm1 (cf. note
21). Then follows a presentation of the six fundamental cases with geomet-

53 The phrases e pit and e meno occur each around half a dozen times, but apparently in
a processual meaning, “and (then) added” respectively “and (then) subtracted”. Nothing
suggest a use of pit and meno as attributes of numbers, even though the author does operate
with negative (not merely subtractive) numbers in his transformation of cubic equations —
see (Hgyrup, 2008, p. 33).

54 On Benedetto and his historical setting, see the exhaustive study in (Ulivi, 2002).

55 (Salomone, 1982); (Pieraccini, 1983); (Pancanti, 1982); (Arrighi, 1967). All of these
editions were made from the same Siena manuscript, which is also described in detail with
extensive extracts in (Arrighi, 2004/1965).
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ric proofs, built on al-Khwarizmt; a second chapter on the multiplication
and division of algebraic powers (nomi, “names”) and the multiplication of
binomials; and a third chapter containing rules and examples for 36 cases
(none of them false);

e XIV: a problem collection going back to Biagio il vecchio (1 c¢. 1340 accord-
ing to Benedetto);

e XV: containing a translation of the algebra chapter from the Liber abbaci,
provided with “some clarifications, specification of the rules in relation
to the cases presented in book XIII, and the completion of calculations,
which the ancient master had often neglected, indicating only the result”
(Franci and Toti Rigatelli, 1983, p. 309); a problem collection going back
to Giovanni di Bartolo (fl. 1390-1430, a disciple of Antonio de’ Mazzinghi);
and Antonio de’ Mazzinghi’s Fioretti from 1373 or earlier (Ulivi, 1998, p.
122).

The basic problem in using this manuscript is to which extent we can rely on
Benedetto as a faithful witness of the notations and possible symbolism of the
earlier authors he cites. A secondary problem is whether we should ascribe
to Benedetto himself or to a later user a number of marginal quasi-symbolic
calculations.

/ —_—<—
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Fig. 1.9: A marginal calculation accompanying the same problem from Anto-
nio’s Fioretti in Siena L.IV.21, fol. 456" and Ottobon. lat. 3307, fol. 338"

Regarding the first problem we may observe that there are no abbreviations
or any other hints of incipient symbolism in the chapters borrowed from Fi-
bonacci and al-Khwarizmi. This suggests that Benedetto is a fairly faithful
witness, at least as far as the presence or absence of such things is concerned.
On the other hand it is striking that the symbols he uses are the same through-
out;°% this could mean that he employed his own notation when rendering the

56 One partial exception to this rule is pointed out below, note 59.
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notations of others, but could also be explained by the fact that all the ab-
bacists he cites from Biagio onward belong to his own school tradition — as
observed by Raffaella Franci and Laura Toti Rigatelli (1983, p. 307), the Trat-
tato is not without “a certain parochialism”.

Fig. 1.10: The structure of Siena, L.IV.21, fol. 263". To the right, the orderly
lines of the text proper. Left a variety of numerical calculations, separated by
Benedetto by curved lines drawn ad hoc.

Marginal calculations along borrowed problems can obviously not be sup-
posed a priori to be borrowed, and not even to have been written by the
compiler. However, the marginal calculations in the algebraic chapters appear
to be made in the same hand as marginal calculations and diagrams for which
partial space is made in indentions in book XIII, chapter 2 as well as in earlier
books of the treatise. Often, the irregular shape of the insertions shows these
earlier calculations and diagrams to have been written before the main text,
cf. fol. 263" as shown in Figure 1.10.>” This order of writing shows that the
manuscript is Benedetto’s original, and that he worked out the calculations

57 This page presents a particularly striking case, and contains calculations for a very
complicated problem dealing with two unknowns, a borsa, “[the unknown contents of] a
purse”, and a quantita, the share received by the first of those who divide its contents.
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while making it — in particular because the marginal calculations are never
indented in the algebra chapters copied from earlier authors.

Comparison of the marginal calculations accompanying a problem in the
excerpt from Antonio’s Fioretti and the same problem as contained in the
manuscript Vatican, Ottobon. lat. 3307 from c. 1465 (on which below) show
astonishing agreement, proving that these calculations were neither made
by a later user nor invented by Benedetto and the compiler of the Vati-
can manuscript — see Figure 1.9. In principle, the calculations in the two
manuscripts could have been added in a manuscript drawn from the Fioretti
that had been written after Antonio’s time and on which both encyclopedias
build; given that the encyclopedias do not contain the same selection it seems
reasonable, however, to assume that they reflect Antonio’s own style — not
least, as we shall see, because we are not far from what can be found in the
equally Florentine Tratato sopra l'arte della arismetricha c. 1390, discussed
around note 52.

What Benedetto does when he approaches symbolism can be summed up
as follows: He uses p (often a shape more or less like ) and (much less often)
¢ and ¢? for cosa respectively censo (and their plurals), but almost exclusively
within formal fractions.?® Even in formal fractions, censo may also be written

in full. Meno is mostly abbreviated e in formal fractions.”® Radice may
be abbreviated R in the running text, but often, and without system, it is
left unabridged; within formal fractions, where there is little space for the
usual abbreviation, it may become r or ra. Both when written in full and
when appearing as R, it may be encircled if it is to be taken of a composite
expression. In later times (e.g., in Pacioli’s Summa, see below) this root was
to be called radice legata or radice universale; the use of the circle to indicate
it goes back at least to Gilio of Siena’s Questioni d’algebra from 1384 (Franci,
1983, p. xxiii), and presumably to Antonio, since Gilio’s is likely to have been
taught by him or at least to have known his works well (ibid. pp. ivf). The
concept itself, we remember, was expressed by Dardi as “R de zonto ... con
.7, close in meaning to radice legata.

All of this suggests that the “symbolism” is only a set of facultative ab-
breviations, and not really an incipient symbolism. However, in a number of

58 Qutside such fractions, I have noticed p three times in the main text of the Fioretti,
viz on fols. 453r, 469r and 469v (of which the first occurrence seems to be explained by an
initial omission of the word chosa leaving hardly space for the abbreviation), and ¢° once,
on fol. 458". Arrighi (1967, p. 22) claims another ¢® on fol. 453", but the manuscript writes
chosa in the corresponding place.

59 Additively composite symbolic expressions are mostly constructed by juxtaposition (in
running text as well as marginal computations); in rhetorical exposition, e or (when a root
and a number are added) an unabbreviated piu is used. A few marginal diagrams in the
section copied from Bartolo mark additive contributions to a sum by p, and all subtractive
contributions by m.
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marginal calculations it does serve as carrier of the reasoning. One example
was shown in Figure 1.9, another one (fol. 455", see Figure 1.11) performs a
multiplication which, in slightly mixed notation, looks as follows:

(1{%@1&[13%@1 c]) x (1p pliv] R[li%”vﬁél c])

-
& 4 mﬁ@r'\l{.m{cr-
‘-f ¥ @ !ﬁ-{:—‘wﬁu‘

5 3
e 1

c Ll | 2
- 1,_ x
Fig. 1.11: The multiplication of 1p — /133 — 1c by 1p+ /133 — 1c

Formal fractions without abbreviation are used in the presentation of the
arithmetic of algebraic powers in Book XIIT (fols. 372r-373r). At first in this
piece of text we find

Partendo chose per censi ne viene rotto nominato da chose chome partendo 48 chose

per 8 censi ne viene T chosa”

in translation

Dividing things by censi results in a fraction denominated by things, as dividing 48

) ) : 6
things by 8 censi results in 3.

Afterwards we find denominators “1 censo”, “1 cubo”, “1 cubo di censo”, etc.
When addition of such expressions and the division by a binomial are taught,
we also find denominators like “3 cubi and 2 cose” .50

Long before we come to the algebra, namely on fols. 259v—260v, there is an
interesting appearance of formal fractions in problems of combined works,

involving not a cosa or a censo but a quantita — such as 8 and
1 quantita

60 This whole section looks as if it was inspired by al-KarajT or the tradition he inaugurated;
but more or less independent invention is not to be excluded: once the notation for fractions
is combined with interest in the arithmetic of algebraic monomials and binomials things
should go by themselves.
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W.m These fractions are written without any abbreviation.®

Together with the explanation of the division of algebraic powers they demon-
strate (as we already saw it in the Trattato dell’alcibra amuchabile) that the
use of and the argumentation based on formal fractions do not depend on
the presence of standard abbreviations for the unknown (even though cal-
culations involving products of unknown quantities become heavy without
standard abbreviations).

The manuscript Vatican, Ottobon. lat. 3307, was already mentioned above.®
Like Benedetto’s Trattato, it was written in Florence; it dates from c. 1465, and
is also encyclopedic in character but somewhat less extensive than Benedetto’s
treatise, of which it is probably independent in substance.5* It presents itself
(fol. 1™) as Libro di praticha d’arismetrica, cioé fioretti tracti di pit libri facti
da Lionardo pisano — which is to be taken cum grano salis, Fibonacci is cer-
tainly not the main source.

Judged as a mathematician (and as a Humanist digging in his historical
tradition), the present compiler does not reach Benedetto’s shoulders. How-
ever, from our present point of view he is very similar, and the manuscript
even presents us with a couple of innovations (which are certainly not of the
compiler’s own invention).

Even in this text, margin calculations are often indented into the text in a
way that shows them to have been written first, indicating that it is the com-
piler’s autograph.%® Already in an intricate problem about combined works
(not the same as Benedetto’s, but closely related) use is made of formal frac-
tions involving an unknown (unabbreviated) guantitd. Now, even the square
of the quantita turns up, as quantita di quantita.

2

3

61 Benedetto would probably see these solutions not as applications of algebra but of the
regula recta — which he speaks of as modo retto/repto/recto in the Tractato d’abbaco, ed.
(Arrighi, 1974, pp. 153, 168, 181), everywhere using quantita for the unknown.

62 However, in the slightly later problem about a borsa and a quantita mentioned in note
57, these are abbreviated in the marginal computations — perhaps not only in order to save
space (already a valid consideration given how full the page is) but also because it makes
it easier to schematize the calculations.

63 Description with extracts in (Arrighi, 2004/1968).

64 The idea of producing an encyclopedic presentation of abbacus mathematics may of
course have been inspired by Benedetto’s Trattato from 1463 — unless the inspiration goes
the other way, the dating “c. 1465” is based on watermarks (Van Egmond, 1980, p. 213)
and is therefore only approximate. If the present compiler had emulated Benedetto, one
might perhaps expect that he would have indicated it in a heading, as does Benedetto when
bringing a whole sequence of problems borrowed from Antonio. In consequence, I tend to
suspect that the Ottoboniano manuscript precedes Benedetto’s Trattato.

65 This happens seven times from fol. 48V to fol. 54”. On fols. 176" and 2117 there are
empty indentions, but these are quite different in character, wedge-shaped and made in the
beginning of problems, and thus expressions of visual artistry and not evidence that the
earlier indentions were made as empty space while the text was written and then filled out
afterwards by the compiler or a user.
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When presenting the quotients between powers, the compiler writes the
names of powers in full within the formal fractions, just as done by Benedetto.
The details of the exposition show beyond doubt, however, that the compiler
does not copy Benedetto but that both draw on a common background; it
seems likely that the present author makes an attempt to be creative, with
little success. In the present treatise, the first fractional power is introduced
like this (fol. 304Y):

Partendo dramme per chose ne viene un rocto denominato da chose, chome partendo

48 dramme per 6 chose ne viene questo rotto cio¢ %

The second example makes the same numerical error. From the third example
onward, it has disappeared. The fourth one looks as follows (fol. 305"):

Partendo chose per chubi ne viene rotto nominato da chubi, come partendo 48 chose

. . s s 8 chose
per 6 chubi, ne viene questo rotto, cioe {527

Only afterwards is the reduction of the ratio between powers (schifare) intro-
duced, for instance, that fzzgi‘; is Sfrc‘énmge.

Abbreviations for the powers are absent not only from this discussion but
also from the presentation of the rules. When we come to the examples, how-
ever, marginal calculations with binomials expressed by means of abbrevia-
tions abound. That for cosa changes between p and ¢, that for censo between
¢ (written ©) and o (actually O); in both cases the difference is simply the
length of the initial stroke; since all intermediate shapes are present, a single
grapheme is certainly meant for cosa as well as censo. ¢® appears to be absent.
In the marginal computations, pit. may appear as p, whereas meno may be
may be m or mé.%¢ However, addition may also indicated by mere juxtapo-
sition. The marginal calculations mostly have the same character as those of
Benedetto, cf. Figure 1.9; in the running text abbreviations are reserved for
formal fractions and otherwise as absent as from Benedetto’s Trattato.

2
4 o ‘h

A

e

Fig. 1.12: The marginal note from Ottobon. lat. 3307 fol. 309"

On two points the present manuscript goes slightly beyond Benedetto. Along-
side a passage in the main text which introduces cases involving cubi and
censi di censi (fol. 309"), the margin contains the note shown in Figure 1.12.

66 1m and mé appear in the same calculation on fol. 31¥ — by the way together with p.
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n° being numero and the superscript square being known (for instance from
Vat. lat. 10488, cf. above) to be a possible representative for censo, it is a
reasonable assumption (which we shall find fully confirmed below) that the
triangle stands for the cube and the double square for censo di censi, the whole
diagram thus being a pointer to the equation types “cubi and censi di censi
equal number” and “censi and cubi equal number”. We observe that equality
is indicated by a double line.5” As we shall see imminently, the compiler and
several other fifteenth-century writers indicate equality by a single line. This,
as well as the deviating symbols for the powers, suggests that this particular
note was made by a later user of the manuscript.

The other innovation can be safely ascribed to the hand of the compiler if
not (as an innovation) to his mind. It is a marginal calculation found on fol.
331", alongside a problem % + 1;0_87 = 40 (these formal fractions, without
+ and =, stand in the text). The solution follows from a transformation

100p 4100 (p+7) _ 100p + (100p+700) _
(1p)-(1p+7) lo+7p B

whence 200p + 700 = 400 + 280p. In the margin, the same solution is given
schematically:

100p
100p 700
200p 700
1o Tp
40
200p 700 400 (280p)

(the omitted (280p) in the last line is present within the main text). The
strokes before 40 and 400 appear to be meant as equation signs. It might be
better, however, to understand them as all-purpose “confrontation signs” —

in the margin of fol. 338", ——— means that one commercial partner has
3000 4000 . 68
155000 the other T7aaes (see Figure 1.13).

67 The double line is also used for equality in a Bologna manuscript from the mid-sixteenth
century reproduced in (Cajori, 1928, I, p. 129); whether Recorde’s introduction of the same
symbol in 1557 was independent of this little known Italian tradition is difficult to decide.
In any case, the combination with the geometric symbols indicates that the present example
(and thus the Italian tradition) predates Recorde by at least half a century or so.

68 As we shall see, Raffaello Canacci also uses the line both for equality and for confronta-
tion. Even Widmann (1489) uses the long stroke for confrontation: fols. 12r, 21r-v, 23r,
27r, 38v when confronting the numbers 9 and 7 with the schemes for casting out nines and
sevens, fol. 193V (and elsewhere) when stakes and profits in a partnership are confronted.
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This is one of Antonio’s problems. In Benedetto’s manuscript, we find the
same problem and the same diagram on fol. 456" — with the only difference
that the line is replaced by an X indicating the cross-multiplication that is to
be performed — see Figure 1.9. The “confrontation line” is thus not part of
the inheritance from Antonio (nor, in general, of the inheritance shared with
Benedetto). Though hardly due to the present compiler, it is an innovation.

The reason to doubt the innovative role of our compiler is one of Regiomon-
tanus’s notes for the Bianchini correspondence from c. 1460 (ed. Curtze, 1902,
p. 278). For the problem % + %, he uses exactly the same scheme, includ-
ing the “confrontation line”:

100 100
1p 1p+8

100p et 800

100p

200p et 800

Tpet8c ——40
40 o et 320p 200p et 800
40 o et 120p 800

loet3p—— 20

Fig. 1.13: The confrontation sign of Ottobon. lat. 3307 fol. 338"

(Regiomontanus extends the initial stroke of p even more than our compiler,
to P; his variant of o, census, is &€, possibly a different extension of ¢)%.

A third Florentine encyclopedic abbacus treatise is Florence, Bibl. Naz.
Centr., Palat. 573.7% Van Egmond (1980, p. 124) dates it to c. 1460 on the

69 Curtze does not show these shapes in his edition, but see (Cajori, 1928, 1, p. 95).
70 Described with sometimes extensive extracts from the beginnings of all chapters in
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basis of dates contained in problems, but since the compiler refers (fol. 1) to
Benedetto’s Trattato (from 1463) as having been made “already some time
ago” (gia é piu tenpo), a date around 1470 seems more plausible. This is con-
firmed by the watermarks referred to by Van Egmond — even this manuscript
can be seen from marginal calculations made before the writing of the main
text to be the compiler’s original, whose date must therefore fit the water-
marks.

Asregards algebraic notations and incipient symbolism, this treatise teaches
us nothing new. It does not copy Benedetto (in the passages I checked) but
does not go beyond him in any respect; it uses the same abbreviations for
algebraic powers, in marginal calculations and (sparingly) in formal fractions
within the main text — including the encircled radice and R. In the chapter
copying Fibonacci’s algebra it has no marginal calculations (only indications
of forgotten words), which confirms that the compilers of the three encyclo-
pedic treatises copied the marginal calculations and did not add on their own
when copying — at least not when copying venerated predecessors mentioned
by name.

1.7 Late fifteenth-century Italy

The three encyclopediae confirm that no systematic effort to develop nota-
tions or to extend the range of symbolic calculation characterizes the mid-
century Italian abbacus environment — not even among those masters who,
like Benedetto and the compiler of Palat. 573, reveal scholarly and Humanist
ambitions by including such matters as the Boethian names for ratios in their
treatises and by basing their introduction of algebra on its oldest author (al-
Khwarizmi).”! The experiments and innovations of the fourteenth century —
mostly, so it seems, vague reflections of Maghreb practices — had not been
developed further.”? In that respect, their attitude is not too far from that of
mid-fifteenth—century mainstream Humanism.

(Arrighi, 2004/1967).

71 Benedetto (ed. Salomone, 1982, p. 20) gives this argument explicitly; the compiler of
Palat. 573 speaks of his wish that “the work of Maumetto the Arab which has been almost
lost be renovated” (Arrighi, 2004/1967, p. 191).

72 Tt is true that we have not seen the quotients between powers expressed as formal frac-
tions in earlier manuscripts; however, the way they turn up independently in all three en-
cyclopaedize shows that they were already part of the heritage — perhaps from Antonio. The
interest in such quotients is already documented in Giovanni di Davizzo in 1339, who how-
ever makes the unlucky choice to identify negative powers with roots — see (Hgyrup, 2007c,
pp. 478-484) (and cf. above, before note 44).
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Fig. 1.14: The two presentations of the algebraic powers in Bibl. Estense, ital.
578

Towards the end of the century we have evidence of more conscious ex-
ploration of the potentialities of symbolic notations. A first manuscript to be
mentioned here is Modena, Bibl. Estense, ital. 578 from c. 1485 (according to
the orthography written in northern Italy — e.g., zonzi and mazore where Tus-
can normal orthography would have giongi and magiore).”™ It contains (fols.
5r-20r) an algebra, starting with a presentation of symbols for the powers
with a double explanation, first with symbols and corresponding “degrees”,
gradi (fol. 57), next by symbols and signification (fol. 5) — see Figure 1.14.

As we see, the symbol for the cosa is the habitual c. For the censo, z is
used, in agreement with the usual northern orthography zenso — however, in
a writing which is quite different from the z used in full writing of zenso (z
respectively 3, see also Figure 1.15); the cubo is @, the fourth power is z di
z. The fifth power is ¢ di zz, obviously meant as a multiplicative composition
(as the traditional cubo di censo), the sixth instead z di @, that is, composed
by embedding. The seventh degree is ¢ di z di @), mixing the two principles,
the eight again made with embedding as z di zz. So is the ninth, QQ.

227

Fig. 1.15: Three graphemes from Bibl. Estense, ital. 578. Left, z abbreviating
zenso in the initial overview; centre, z as written as part of the running text;
right, the digit 3

Then follow the significations. ¢ is “that which you find”, z “the root of that”,
@ “the cube root of that”, and z di z “the root of the root of that”. Already
now we may wonder — why “roots”? I have no answer, but discuss possible

73 (Van Egmond, 1986) is an edition of the manuscript. It has some discussion of its sym-

bolism but does not go into details with the written shapes, for which reason I base my
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hints in (Hgyrup, 2008, p. 31), in connection with the Tratato sopra l'arte
della arismetricha (see just before note 52), from where these “root-names”
are known for the first time.” It is reasonable to assume a connection —
this Tratato has the same mixture of multiplicative and embedding-based
formation of the names for powers, though calling the fifth degree cubo di
censo, and the sixth (like here) censo di cubo.”™

The root names go on with “root of this” for the fifth power — which is
probably meant as “5th root of this”, since the seventh power is “the 7th
root of this”. The names for the sixth, eighth and ninth degree are made by
embedding.

After explaining algebraic operations and the arithmetic of monomials and
binomials the manuscript offers a list of algebraic cases followed by examples
illustrating them. Here the same symbols are used within the text (there are no
marginal calculations) — with one exception, instead of z a sign is used which
is a transformed version of Dardi’s ¢ — §, with variations that sometimes make
it look like a z provided with an initial and a final curlicue.”

The problems are grouped in capitoli asking for the same procedure in spite
of involving different powers — chapter 14, for instance, combines “zz and z di
zz equal to n°” and “c di zz and QQ equal to ¢”. The orderly presentation
of the powers in a scheme and the concept of numerical gradi, “degrees”,
(our exponents) has facilitated this further ordering. This is clear from the
presentation — in chapter 14, “When you find three names of which one is 4
degrees more than the other ...”. Beyond this, the abbreviations seem to serve
as nothing but abbreviations, though used consistently.

discussion on the manuscript.

7 Van Egmond (1986, 20) “explains” them Z = R, 2 = n — z+/n etc., which however,
while being an impeccable piece of mathematics, is completely at odds with the words of
the text.

75 This difference may tell us something about the spontaneous psychology of embedding:
it seems to be easier to embed within a single than within a repeated multiplication — that
is, to grasp censo of P as (P)2 than to understand cubo of R as (R)3.

76 There are a few slips. In the initial list, a full zenso is once written ¢enso (written with
i), and § itself appears once; within the list of cases and the examples a few instances of
zenso abbreviated z (written 3, not Z) occur. Van Egmond (1986, p. 23) reads these as
“3”, and takes this as evidence that the manuscript was made by a copyist who did not
really understand but had a tendency to replace a z used in the original by ¢. However, even
though the writings of z and 3 are similar, magnification shows them quite clearly to be
different, and makes it clear that the copyist did not write 3 where he should have written z
(see Figure 1.15). Other errors pointed out by Van Egmond demonstrate beyond doubt that
the beautifully written manuscript is a copy. However, the almost systematic distinction
between the abbreviations Z and 9;, as well as the general idea of applying stylized shapes
of letters when used as symbols, is likely to reflect the ways of the original — an unskilled
copyist would hardly introduce them.
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[30,:] Numero sissi scrive a [30.2] ! |
q.esto modo coe n* i1 T

|2 Chosa sissiscrive a (.esto modo {*) ¢ hovvero chosi § 2 ¢!
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[+ Chubo sissi scrive 711 hocchosi q° 8 A
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[11 Relato di censo si scrive =i 1 hovvero R°¢® | 1024
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Fig. 1.16: Canaccis scheme with the naming of powers, after (Procissi, 1954,
p. 432)

Raffaello Canacci’s use of schemes for the calculation with polynomials (in-
cluding multiplication a casella) in the Ragionamenti d’algebra™ from c. 1495
(ed. Procissi 1954, pp. 316-323) was mentioned above. In a couple of these
he employs geometric signs for the powers, but mostly he writes s for cosa
and censo in full. Addition may be indicated by juxtaposition, by e, by piu or
by p, subtraction by 7 or me.”® Later he presents an ordered list, with three
different systems alongside each other — see Figure 1.16. To the right we find
an extension of a different “geometric” system — namely the one which was
found in a (secondary) marginal note in the Ottoboniano encyclopaedia. Next
toward the left we find powers of 2 corresponding to the algebraic powers
(an explanatory stratagem also used by Pacioli in the Summa); then letter
abbreviations; and then finally, just to the right of the column with Canacci’s
full names, his own “geometric” system (not necessarily invented by him, cf.
imminently, but the one he uses in the schemes) — better planned for the
economy of drawing than as a support for operations or algebraic thought.
According to Cajori (1928, I, pp. 112f) the system turns up again in Ghali-
gai’s Pratica d’arithmetica from 1552 (and probably in the first edition from
1521, entitled Summa de arithmetica), where their use is ascribed to Ghali-
gai’s teacher Giovanni del Sodo.

77 Florence, Bibl. Naz. Centr., Palat. 567. I have not seen the manuscript but only Angiolo
Procissi’s diplomatic transcriptions.

78 However, p n and p n° stand for “per numero”. In schemes showing the stepwise calcu-
lation of products (pp. 313f), m stands for multiplication. In one scheme p. 318), a first p
stands for pitu, a second in this way for per.
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Canacci uses these last geometric signs immediately afterwards in a brief
exposition of the rules for multiplying powers — and then no more. In a couple
of marginal notes to the long collection of problems (ed. Procissi, 1983, pp.
58, 62-64) he uses the letter abbreviations (only s and ¢°) — but also the line
as an indication, once of equality, twice of confrontation or correspondence
not involving equality. The running text, including formal fractions, writes
the powers unabridged (except numero, which once is n°); even piu, and meno
are mostly written in full, but meno sometimes (pp. 21-23) with a brief stroke
“” _ the earliest occurrence of the minus sign in Italy I know of.”

Three works by Luca Pacioli are of interest: the Perugia manuscript from
1478, the Summa de arithmetica from 1494, and his translation of Piero della
Francesca’s Libellus de quinque corporibus reqularibus as printed in (Pacioli,
1509).

Since there is only one brief observation to make on the latter work, I
shall start by that. According to the manuscript Vatican, Urb. lat. 632 as
edited by G. Mancini (1916, pp. 499-501), Piero uses the familiar superscript
square for censo when performing algebraic calculations, or he writes words;
for res he uses a horizontal stroke over the coefficient, but mostly also keeps
the word.®° Pacioli (1509, fols. 3v—26r, passim) instead uses a sign o for the
cosa and O for the censo (or, in the old unsystematic way, words). Censo di
censt is OO on fol. 4" and O de O on fols. 4r and 11v. These geometric signs
are absent from Pacioli’s other works, and they must rather be considered
a typographic experiment — given that their use is not systematic, they can
hardly be understood as an instance of mathematical exploration beyond what
Pacioli had done before. It is difficult to agree with Paola Manni (2001, p. 146)
that they should represent “progress of mathematical symbolism” with respect
to the more systematic use of letter abbreviations in the Perugia manuscript
and the Summa (see imminently; and cf. the quotation from Woepcke after
note 12). Indeed, the Libellus is an appendix to Pacioli’s Divina proportione,
in which Pacioli (1509, fol. 3V) explains that various professions, among whom
le mathematici per algebra, use specific caratheri e abreviature “in order to
avoid prolixity in writing and also of reading”.8!

The 1478 Perugia manuscript Suis carissimis disciplis ... (Vatican, Vat.
lat. 3129) has lost the systematic algebra chapters listed in the initial table

7 As well known, “~” is already used in the Deutsche algebra from 1481 (ed. Vogel, 1981,
p- 20). Whether this is part of the very mixed Italian heritage of this manuscript (see below,
note 88 and surrounding text) or a German innovation eventually borrowed by Ghaligai is
undecidable unless supplementary evidence should turn up.

80 The same (lack of) system is found in his abbacus treatise, see (Arrighi, 1970, p. 12).
81 That Pacioli really thinks in terms of abbreviations is confirmed by a list of examples
given in the manuscript of the treatise (Milano, Biblioteca Ambrosiana, Ms. 170 Sup.,
written in 1498), see (Maia Bertato, 2008, 13): it mixes the abbreviations for radice, pii,
meno, quadrato (cosa and censo are absent) with others for, inter alia, linea, geometria
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of contents,®? but it does contain a large amount of algebraic calculation.
Everywhere here — in the main text as well as in the margin, and in the
neat original prepared in 1478 as well as in fols. 350r-360v, added at a later
moment and obviously very private notes — we find the signs from Canacci’s
right-hand column (Figure 1.16) written superscript and to the right — on fol.
360" extended until &, censi di censi di censi. Meno is @ and piu (both
signifying addition and as a normal word) a corresponding encircled p. This
is thus the system which Pacioli used when calculating for himself, at least
at that moment.® He uses the equality line in the margin (but also the same
line indicating confrontation/correspondence, e.g., fol. 130").

Most important (in the sense that it was immensely influential and the
other two works not) is of course the Summa (Pacioli, 1494). Typographic
constraints are likely to have caused Pacioli to give up his usual notation.
In ordinary algebraic explanation and computation, he now uses .co. and .ce.
written on the line, and piu and meno have become p and m (meno sometimes
me) — both as operators and as indicators of positivity and negativity (not
only additivity and subtractivity).®* However, he also has more systematic
presentations. The first, in the margin of fol. 67", shows how the sequence
.co.-.ce. is to be continued, namely (third power) cubo, (4th) censo de censo,
(5th) primo relato, (6th) censo de cubo/cubo de senso, (Tth) secundo relato,
(8th) censo de censo de censo, (9th) cubo de cubo, (10th) censo de primo
relato, (11th) terzo relato, etc. until the 29th power. As we see, the embed-
ding principle has taken over completely, creating problems for the naming of
prime-number powers. For each power the “root name” is indicated, number
being “R prima”, cosa “R 2a”, censo “R 3a”, etc.®® As we see, the “root
number” is not the exponent, but the exponent augmented by 1. This dimin-
ishes the heuristic value of the concept: it still permits to see directly that
“6th roots and 4th roots equal 2nd roots” must be equivalent to “5th roots
and 3rd roots equal 1st roots”, but it requires as much thinking as in Jacopo’s
days almost 200 years earlier to see that this is a biquadratic problem that
must be solved in the same way as “3rd roots and 2nd roots equals 1st roots”.

and arithmetica).

82 See the meticulous description in (Derenzini, 1998), here p. 173. Since all abbreviations
except the superscript symbols are expanded in the edition (Calzoni and Gavalzoni, 1996),
I have used a scan of the manuscript.

83 This restriction is probably unnecessary. At least the encircled p and m and the square
are in the list offered by the 1498 manuscript, cf. note 81.

84 B.g., on see fol. 114", “a partir ..16.p.m.2. ne vene .p.8”, and the proof that “meno via
meno fa pitt” on fol. 1137, which is characterized as “absurda” and referred to the concept
of a debt — if only subtractive numbers were involved, as in Dardi’s corresponding proof,
nothing would be absurd.

85 Pacioli believes (or at least asserts) that these names go back to “the practice of algebra
according to the Arabs, first inventors of this art”. Could he have been led to this belief by
the equivalence of “root” and thing/cosa in al-KhwarizmT’s algebra?
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After this list comes a list of symbols for “normal” roots: R meaning radici;
RR meaning radici de radici; Ru. meaning radici universale or radici legata,
that is, root of a composite expression following the root sign (encircled in

Benedetto’s Trattato and spoken of as “R de zonzo” by Dardi, we remember);
and R cu., cube root.
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Fig. 1.17: Paciolis scheme (1494, fol. 143") showing the powers with root
names

On fol. 143" follows a scheme that deals with the first 30 powers (dignita),
and with how they are brought forth as products (i nascimenti pratici o li
30 gradi de li caratteri algebratici). It runs in four tangled columns and 30
rows. The first column has the numbered “root name” of the power, the sec-
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ond formulates in Pacioli’s normal language or in abbreviations that number
times this power gives the same power. The third, written inside the second,
indicates the corresponding power of 2. The fourth, finally, repeats the second
column, now translated into root names — see Figure 1.17.

On the next page follow further schemes, expressed in roots names, for the
products of the nth root with all roots from the nth to the (31-n)th (meaning
that all products remain within the range defined by the 30th root), 2<n<15.

All in all, we may say that Pacioli explored existing symbolic notations to a
greater extent (and used them more consistently) than for example Benedetto,
thus offering those of his readers who wanted it matters to chew; but he
hardly gave them many solutions they could build on (and as we have seen,
he thought of his notations as mere abbreviations serving to avoid prolixity).
Even in this respect, subsequent authors could easily have found reasons to
criticize him while standing on his shoulders (as they did regularly), if only
their own understanding of the real progress they offered had been sufficient
for that. Tartaglia, for instance, gives the list of dignitates until the 29th in La
sesta parte del general trattato (Tartaglia, 1560, fol. 2"), with names agreeing
with Pacioli’s .co.-.ce.-list and indication of the corresponding exponents (now
segni), alongside a text that explains how multiplication of dignitates corre-
sponds to addition of segni; that, however, was well after Stifel’s Arithmetica
integra, which Tartaglia knew well.

1.8 Summary observations about the German and
French adoption

Regiomontanus shows familiarity with algebraic practice, not only in the notes
for the Bianchini-correspondence (cf. above) but also elsewhere — several arti-
cles in (Folkerts, 2006) elucidate the topic in detail. Not only the calculation
before note 69 but also some of his abbreviations (and the variability of these)
are evident borrowings from Italian models (Hgyrup, 2007c, p. 134). It might
seem a not impossible assumption that Regiomontanus was the main channel
for the adoption of Italian abbacus algebra into German areas, in spite of
his purely ideological ascription of the algebraic domain to Diophantos and
Jordanus (above, text before note 24).

An influence cannot be excluded, even though those of Regiomontanus’
algebraic notes we know about may not have circulated widely. However,
those of his symbolic notations or abbreviations which are not to be iden-
tified as Italian are already present in a section of a manuscript possessed
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by Regiomontanus but not written by him (Folkerts, 2006, V, pp. 201f), cf.
(Hgyrup, 2007c, pp. 136f).5¢.

That Regiomontanus was at most one of several channels can also be seen
from the so-called Deutsche Algebra from 1481 (ed. Vogel, 1981). Its symbols®7
for number (denarius, replaces earlier dragma), thing and census coincide with
those of the Robert-Appendix,?® that for the cube with the one Regiomontanus
employs for census — hardly evidence for inspiration from the latter. A token of
Italian inspiration certainly not passing through Regiomontanus is occasional
use of the quasi-fraction notation for powers and of 1c for cosa (Vogel, 1981,
p. 10) — all in all, as Kurt Vogel observes, evidence that a number of sources
flow together in this manuscript.

I shall not consider in detail German algebraic writings from the sixteenth
century (Rudolff, Ries, Stifel, Scheubel), only sum up that with time German
algebra tends to be more systematic and coherent in its use of symbolism
(for notation as well as calculation) than any single Italian treatise.®Y But
what the German authors do is to combine and put into system ideas that
are all present in some Italian work. They never really go beyond the Italian
inspiration seen as a whole, and never attain the coherence which appears to
have been reached by the Maghreb algebraists of the twelfth century.”°

I shall also be brief on what happened in French area. Scrutiny of Nicolas
Chuquet’s daring exploration of the possibilities of symbolism in the Triparty
from 1484 (ed. Marre, 1880) would be a task of its own; his parenthesis (an
underlining®') and his complete arithmetization of the notation for powers

86 The thing symbol in the appendix to Robert of Chester’s translation of al-Khwarizmf is
the same as Regiomontanus’s transformation of p ; the census symbol is a z provided with a
final curlicue and which could be derived from the § which we find in the Modena-manuscript
but is much more likely to correspond to its initial use of z in this function.

87 Listed in (Vogel, 1981, p. 11).

88 With 9 as an alternative for thing, standing probably for dingk.

89 The use of schemes for polynomial arithmetical calculation by Stifel (1544) and Scheubel
(1551) was mentioned above. They also appear in Rudolff’s Coss (1525).

90 Quite new, as far as I know, and awkwardly related to the drive toward more systematic
use of notations (but maybe more closely to the teaching of Aristotelian logic), is the idea to
represent persons appearing in commercial problems by letters A, B, C, .... I have noticed it
in Magister Wolack’s Erfurt lecture from 1467, apparently the earliest public presentation of
abbacus mathematics in German land (ed. Wappler, 1900, pp. 53f), and again in Christoff
Rudolff’s Behend und hiibsch Rechnung durch die kunstreichen Regeln Algebra #128 (1525,
fol. No™—v).

91 The only parentheses Italian symbolic notation had made use of were those marked off
by the fraction line and the R de zonzo/legata/universale. The latter, furthermore, was
ambiguous — how far does the expression go that it is meant to include? (Actually, I have
not seen it go beyond two terms, which may indeed have been part of the concept.) A
parenthesis as good and universal as that of Chuquet had to await Bombelli (1572), even
though Pacioli (1494) uses brackets containing textual parentheses (e.g., on fol. 37). As we
remember from note 12, even Descartes eschews general use of the parenthesis.
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as well as roots certainly goes beyond what can be found in anything Italian
until Bombelli, and (as far as the symbols for powers and roots are concerned)
even beyond the Maghreb notation. However, his innovations were historical
dead ends; Etienne de la Roche, while transmitting other aspects of Chu-
quet’s mathematics in his Larismetique from 1520, returned to more familiar
notations (Moss, 1988, pp. 120f). What later authors learned (or, like Bu-
teo, refused to learn, ibid., p. 123) from de la Roche could as well have been
Italian.??

As a representative of the French mid-sixteenth century I shall choose
Jacques Peletier’s L’algebre from (1554) — interesting not least because his
orthographic reform proposal (1555; 1554, final unpaged note) shows him to
have reflected on notation. Peletier knows Stifel’s Arithmetica integra, cites it
often and learns from it. But he must be acquainted with the Italian abbacus
tradition, and not only through Pacioli and Cardano, both of whom he cites
on p. 2: he speaks of the powers as nombres radicaus (p. 5), and uses R for the
first power (this, as well as the nombres radicaus, could at a pinch be inspired
by Pacioli) and the stylized ¢ () which we know from the Modena-manuscript
for the second power (following Stifel for higher powers). That certainly does
not help him go beyond the combination of the most developed elements of
Ttalian symbolism we know from the German authors — and like Stifel he does
not, get beyond.

1.9 Why should they?

As we have seen, Italian abbacus algebra makes use of a variety of elements
that might have been (and in the main probably were) borrowed from the
Maghreb, most of them already present in one or the other manuscript from
the fourteenth century. But the abbacus masters do not seem to have been
eager to use them consistently, to learn from each other or to surpass each
other in this domain (to which extent they wanted to avoid to teach symbolism
is difficult to know — it will not have had the same value in the competition for
jobs and pupils as the ability to solve intricate questions); Benedetto and the
compilers of the Ottoboniano and Palatino encyclopaediae were quite satisfied
with repeating a heritage that may reach back to Antonio, and did not care
about the schemes for polynomial arithmetic that had been in circulation at
least since Dardi’s times. Only with the Modena manuscript, with Canacci

92 The question to which extent the Provengal tradition which Chuquet draws upon was
independent of the Italian tradition (to some extent it certainly was) is immaterial for the
present discussion; no surviving earlier or near-contemporary Provencal writings offer as
much incipient symbolism as the Italian abbacus writers.
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and with Pacioli’s Summa do we find some effort to be encyclopedic (if not
systematic) also in the presentation of notations.

Our meeting is about the “philosophical aspects of symbolic reasoning”,
and about “early modern science and mathematics”. The philosophical ques-
tion to raise to the material presented above is whether the abbacus masters
of the fourteenth and fifteenth century, and even the algebraic writers of the
early and mid-sixteenth century, had any reason to develop a coherent sym-
bolic approach. The answer seems to be that they had none (cf. also note 50
and preceding text). The kind of mathematics they were engaged in (even
when they applied their art to Elements X, as do for instance Fibonacci and
Stifel) did not ask for that. They might sometimes extrapolate their technique
further than their mathematical practice asked for — 29 algebraic powers is
an example of that, as is of course the creation of never-used symbols for
these powers. But without a genuine practice there was nothing which could
force these extrapolations to merge into a consistent conceptual and opera-
tional framework. Even those abbacus authors that had scholarly ambitions —
as Benedetto and his contemporary encyclopedists, Pacioli and Tartaglia —
did not encounter anything within the practice of university or Humanist
mathematics which asked for much more than they did. To the contrary, the
aspiration to connect their mathematics to the Euclidean ideal made them
re-attach geometric proofs to a tradition from which these had mostly been
absent, barring thereby the insight that purely arithmetical reasoning could
be made as rigorous as geometric proofs — barring it indeed to such an extent
that Ries and Scheubel rejected Jordanus’ arithmetical rigor and borrowed
only his problems, as we have seen.

That changed in the outgoing sixteenth century. By then (if I may be
allowed some concluding sweeping statements), Apollonios, Archimedes and
Pappos were no longer mere names (or at most authors of difficult texts to
be assimilated) but providers of problems to be worked on, and trigonometry
had become an advanced topic. This was probably what created the pull on
the development of symbolic reasoning and of those notations that symbolic
reasoning presupposed if it was to go beyond simple formal fractions;”® the
reaction to this pull (which at first created a complex of new mathematical
developments) was what ultimately transformed symbolic mathematics into

93 It may perhaps be allowed to give a frivolous illustration of a sweeping statement: the
problems which the 16—17 years old Huygens investigated by means of Cartesian algebra
under the guidance of Frans van Schooten. Quite a few of them deal with matters from
Archimedes or Apollonios (Huygens, 1908, 27-60). The problems he dealt with 4-5 years
later (pp. 217-275 in the same volume) are derived from Pappos, and even they make
extensive use of Descartes’ technique. This is thus what a young but brilliant mathematical
mind was training itself at a decade after the appearance of Descartes’ Geometrie.

It is difficult to imagine that these problems could have been well served by cossic
algebra, with or without the abbreviations that had been standardized in the mid-sixteenth
century.
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a factor that could (eventually) push the development of (some constituents
of) early modern science.
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Chapter 2

From the second unknown to the
symbolic equation

Albrecht Heeffer

Abstract The symbolic equation slowly emerged during the course of the
sixteenth century as a new mathematical concept as well as a mathematical
object on which new operations were made possible. Where historians have of-
ten pointed at Frangois Viete as the father of symbolic algebra, we would like
to emphasize the foundations on which Viete could base his logistica speciosa.
The period between Cardano’s Practica Arithmeticae of 1539 and Gosselin’s
De arte magna of 1577 has been crucial in providing the necessary build-
ing blocks for the transformation of algebra from rules for problem solving
to the study of equations. In this paper we argue that the so-called “second
unknown” or the Regula quantitates steered the development of an adequate
symbolism to deal with multiple unknowns and aggregates of equations. Dur-
ing this process the very concept of a symbolic equation emerged separate
from previous notions of what we call “co-equal polynomials”.

Key words: Symbolic equation, linear algebra, Cardano, Stifel, regula quan-
titates.

L’histoire de la résolution des équations a plusieurs inconnues n’a pas encore donné
lieu & un travail d’ensemble satisfaisant, qui donnerait d’ailleurs lieu a d’assez longues
recherches. Il est intimement lié aux progres des notations algébriques. J’ai appelé
Pattention sur le probleme de la resolution des equations simultanées, chaque fois que
je lai rencontré, chez les auteurs de la fin du XVIe et du commencement du XVIle
siecle. (Bosmans, 1926, 150, footnote 16).

Centre for History of Science, Ghent University, Belgium.
Fellow of the Research Foundation Flanders (FWO Vlaanderen).

57



58 Albrecht Heeffer

2.1 Introduction

This footnote, together with many similar remarks by the Belgian historian
Father Henri Bosmans (S.J.), initiated our interest in the role of the second
unknown or regula quantitates on the development of symbolism during the
sixteenth century.! Indeed, the importance of the use of multiple unknowns in
the process leading to the concept of an equation cannot be overestimated. We
have traced the use and the development of the second unknown in algebraic
problem solving from early Arabic algebra and its introduction in Europe
until its last appearance in Jesuit works on algebra during the late seventeenth
century. The first important step in abbaco algebra can be attributed to the
Florentine abbaco master Antonio de’ Mazzinghi, who wrote an algebraic
treatise around 1380 (Arrighi 1967). Luca Pacioli almost literally copied the
solution method in his Summa of 1494, and Cardano used the second unknown
both in his Arithmetica and the Ars Magna. A second thread of influence is
to be distinguished through the Triparty by Chuquet and the printed works
of de la Roche and Christoff Rudolff. The Rule of Quantity finally culminates
in the full recognition of a system of linear equation by Buteo and Gosselin.
The importance of the use of letters to represent several unknowns goes much
further than the introduction of a useful system of notation. It contributed to
the development of the modern concept of unknown and that of a symbolic
equation. These developments formed the basis on which Viete could build
his theory of equations.

It is impossible to treat this whole development within the scope of a single
chapter. The use of the second unknown by Chuquet (1489) and de la Roche
(1520) and its spread in early sixteenth-century Europe is already treated in
Heeffer (2010a). Its reception and development on the Iberian peninsula has
recently be studied by Romero (2010). In this paper we will concentrate on
one specific aspect of the second unknown — the way it shaped the emergence
of the symbolic equation.

2.2 Methodological considerations

As argued in Heeffer (2008), the correct characterization of the Arabic concept
of an equation is the act of keeping related polynomials equal. Two of the
three translators of al-Khwarizmi’s algebra, Guglielmo de Lunis and Robert
of Chester use the specific term coaequare. In the geometrical demonstration

I References to the second unknown are found in Bosmans (1925-6) on Stifel, Bosmans
(1906) on Gosselin, Bosmans (1907) on Peletier, Bosmans (1908a) on Nunez and Bosmans
(1926) on Girard.
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of the fifth case, de Lunis proves the validity of the solution for the “equation”
2% + 21 = 10z. The binomial 22 4 21 is coequal with the monomial 10z, as
both are represented by the surface of a rectangle (Kaunzner, 1989, 60):

Ponam censum tetragonum abgd, cuius radicem ab multiplicabo in 10 dragmas, quae
sunt latus be, unde proveniat superficies ae; ex quo igitur 10 radices censui, una cum
dragmis 21, coequantur.

Once two polynomials are connected because it is found that their arithmeti-
cal value is equal, or, in the case of the geometrical demonstration, because
they have the same area, the continuation of the derivation requires them to
be kept equal. Every operation that is performed on one of them should be
followed by a corresponding operation to keep the coequal polynomial arith-
metical equivalent. Instead of operating on equations, Arabic algebra and the
abbaco tradition operate on the coequal polynomials, always keeping in mind
their relation and arithmetical equivalence. Such a notion is intimately re-
lated with the al-jabr operation in early Arabic algebra. As is now generally
acknowledged (Oaks and Alkhateeb, 2007; Heeffer 2008; Hoyrup 2010, note 7),
the restoration operation should not be interpreted as adding a term to both
sides of an equation, but as the repair of a deficiency in a polynomial. Once
this polynomial is restored — and as a second step — the coequal polynomial
should have the same term added.

At some point in the history of algebra, coequal polynomials will transform
into symbolic equations. This transformation was facilitated by many small
innovations and gradual changes in permissable operations. An analysis of
this process therefore poses certain methodological difficulties. A concept as
elusive as the symbolic equation, which before the sixteenth century did not
exist in its current sense, and which gradually transformed into its present
meaning, evades a full understanding if we only use our current symbolic
language. To tackle the problem we present the original sources in a rather
uncommon format, by tables. The purpose is to split up the historical text
in segments which we consider as significant reasoning steps from our current
perspective. Each of these steps is numbered. Next, a symbolic representation
is given which conveys how the reasoning step would look like in symbolic
algebra, not necessarily being a faithful translation of the original source.
Finally, a meta-description is added to explain the reasoning and to verify its
validity. So, we have two levels of description: the original text in the original
language and notations, and a meta-level description which explains how the
reasoning would be in symbolic algebra. Only by drawing the distinction, we
will be able to discern and understand important conceptual transformations.
Our central argument is that once the original text is directly translatable into
the meta-description we are dealing with the modern concept of a symbolic
equation.
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2.3 The second unknown

Before discussing the examples, it is appropriate to emphasize the difference
between the rhetorical unknown and unknowns used in modern translitera-
tions. Firstly, the method of using a second unknown is an exception in al-
gebraic practice before 1560. In general, algebraic problem solving before the
seventeenth century uses a single unknown. This unknown is easily identified
in Latin text by its name res (or sometimes radiz), cosa in Italian and coss or
ding in German. The unknown should be interpreted as a single hypothetical
value used within the analytic method. Modern interpretations such as an
indeterminate value or a variable, referring to eighteenth century notions of
function and continuity, do not fit the historical context. In solving problems
by means of algebra, abbacus masters often use the term ‘quantity’ or ‘share’
or ‘value’ apart from the cosa. The rhetoric of abacus algebra requires that the
quantities given in the problem text are formulated in terms of the hypotheti-
cal unknown. The problem solving process typically starts with “suppose that
the first value sought is one cosa”. These values or unknown quantities can-
not be considered algebraic unknowns by themselves. The solution depends
on the expression of all unknown quantities in terms of the cosa. Once a value
has been determined for the cosa, the unknown quantities can then easily be
determined.

However, several authors, even in recent publications, confuse the unknown
quantities of a problem, with algebraic unknowns. As a result, they consider
the rhetorical unknown as an auxiliary one. For example, in his commentary on
Leonardo of Pisa’s Flos, Ettore Picutti (1983) consistently uses the unknowns
x, y, z for the sought quantities and regards the cosa in the linear problems
solved by Leonardo to be an auxiliary unknown. The “method of auxiliary
variable” as a characterization by Barnabas Hughes (2001) for a problem-
solving method by ben-Ezra also follows that interpretation. We believe this
to be a misrepresentation of the original text and problem-solving method.

The more sophisticated problems sometimes require a division into sub-
problems or subsequent reasoning steps. These derived problems are also for-
mulated using an unknown but one which is different from the unknown in the
main problem. For example, in the anonymous manuscript 2263 of the Bib-
lioteca Riccardiana in Florence (c. 1365; Simi, 1994), the author solves the
classic problem of finding three numbers in geometric proportion given their
sum and the sum of their squares. He first uses the middle term as unknown,
arriving at the value of 3. Then the problem of finding the two extremes is
treated as a new problem, for which he selects the lower extreme as unknown.
We will not consider such cases as the use of two unknowns, but the use of
a single one at two subsequent occasions. We have given some examples of
what should not be comprehended as a second unknown, but let us turn to a
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positive definition. The best characterization of the use of several unknowns
is operational. We will consider a problem solved by several unknowns if all
of the following conditions apply in algebraic problem solving:

1. The reasoning process should involve more than one rhetorical unknown
which is named or symbolized consistently throughout the text. One of the
unknowns is usually the traditional cosa. The other can be named quantita,
but can also be a name of an abstract entity representing a share or value
of the problem.

2. The named entities should be used as unknowns in the sense that they are
operated upon algebraically by arithmetical operators, by squaring or root
extraction. If no operation is performed on the entity, it has no operational
function as unknown in solving the problem

3. The determination of the value of the unknowns should lead to the solution
or partial solution of the problem. In some cases the value of the second
unknown is not determined but its elimination contributes to the solution
of the problem. This will also be considered as an instance of multiple
unknowns.

4. The entities should be used together at some point of the reasoning process
and connected by operators or by a substitution step. If the unknowns are
not connected in this way the problem is considered to be solved by a single
unknown.

In all the examples discussed below, these four conditions apply.

2.4 Constructing the equation: Cardano and Stifel

2.4.1 Cardano introducing operation on equations

As far as we know from extant abbaco manuscripts Antonio de’ Mazzinghi
was the first to use the second unknown (Arrighi, 1967). Surprisingly, this was
not for the solution of a linear problem but for a series of problems on three
numbers in continuous proportion (or geometric progression, further GP). The
same problems and the method of the second unknown are discussed by Pacioli
in his Summa, without acknowledging de’ Mazzinghi (Heeffer, 2010b). Before
turning to Cardano’s use of the second unknown, it is instructive to review
his commentary on the way Pacioli treats these — and hence, Mazzinghi’s —
problems. In the Questionibus Arithmeticis, the problem is listed as number
28 (Cardano, 1539, f. DDIiii"). Not convinced of the usefullness of the second
unknown, he shows little consideration for this novel solution as it uses too
many unnecessary steps (“Frater autem Lucas posuit ean et soluit cum maga
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difficultate et pluribus operationibus superfluis”). He presents the problem
(2.1) with a = 25 instead of 36, as used by Pacioli.

SES

+z=ua (2.1)
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The solution is rather typical for Cardano’s approach to problem solving.
The path of the least effort is the reduction of the problem to a form in which
theoretical principles apply. Using his previously formulated rule,?

ol ma iyt ay=va

r Yy z
he immediately finds 5 for the mean term. As the product of the three, xyz =
y3 = 125, is also equal to the sum of the three, the sum of the two extremes
is 120. Applying his rule for dividing a number «a into two parts in continuous
progression® with b as mean proportional

a a\?
o
2 2

he immediately arrives at

(60+ V3575, 5,60 — \/ﬁ)

ita soluta est.

This approach is interesting from a rhetorical point of view. Abbaco trea-
tises are primarily intended to show off the skills of the master, often involving
the excessive use of irrationals while an example with integral values would
have illustrated the demonstration with the same persuasion. These trea-
tises are, with the exception of some preliminaries, limited to problem solving
only. With Pacioli, some recurring themes are extracted from his sources and
treated in separate sections. Cardano extends this evolution to a full body of
theory, titled De proprietatibus numerorum mirisicis, including 136 articles
(Cardano 1539, Chapter 42). The problem is easily solved because it is an
application of two principles expounded in this chapter.

2 Cardano 1539, Chapter 42, art. 91, f. IiiV: “Omnium trium quantitatum continuae pro-
portionalium ex quarum divisione alicuius numeri proventus congregati ipsarum aggregato
aequari debeat, media illius numeri radix erit nam est eaedem necessarioeveniunt quantum
aggregatum est idem ex supposito”.

3 Cardano 1539, Chapter 42, art. 116, f. Tvi": “Si sint duo numeri utpote 24 et 10 et velis
dividere 24 in duas partes in quarum medio cadat 10 in continua proportionalitate, quadra
dimidium maioris quod est 12 sit 144. Detrahe quadratum minoris quod est 100 remanet
44, cuius R addita ad 12 et diminuta faciet duos numeros inet quos 10 cadit in medio in
contuna proportionalitate, et erunt 12 p R 44 et 10 et 12 m R 44.”
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Using such solution method, he completely ignores Pacioli’'s use of two
unknowns for this problem. However Cardano adopts two unknowns for the
solution of linear problems in the Arithmetica Practicae of 1539. Six years
later he even dedicates two chapters of the Ars Magna (Cardano, 1545) to
the use of the second unknown. The last problem he solved with two unknowns
is again a division problem with numbers in continuous proportion.

Cardano used the second unknown first in chapter 51 in a linear prob-
lem (Opera Omnia, IV, 73-4). He does not use the name regula quantitates
but operandi per quantitatem surda, showing the terminology of Pacioli. He
uses cosa and quantita for the unknowns but will later shift to positio and
quantitates in the Ars Magna.*

Let us look at problem 91 from the Questionibus, as this fragment embodies
a conceptual breakthrough towards a symbolic algebra. The problem is a com-
plex version of the classic problem of doubling other’s money to make equal
shares (Tropfke 1980, 647-8; Singmaster 2004, 7.H.4). In Cardano’s problem,
three men have different sums of money. The first has to give 10 plus one
third of the rest to the second. The second has to give 7 plus one fourth of
the rest to the third. The third had 5 to start with. The result should be so
that the total is divided into the proportion 3 : 2 : 1 (Cardano 1539, Chap.
66, article 91, ff. GGviii¥ — HHiY):

Tres ludebant irati rapverunt peccunias suas & alienas cum autem pro amicum

quievissent primus dedit secundo 10 p 1/3 residui. Secundus dedit tertio 7 p residui

& tertio iam remanserant 5 nummi & primus habuit 1/2 secundus 1/3 tertius 1/6
quaeritur summa omnium, & quantum habuit quilibet.

The meta-description in symbolic form is as follows:

a—10—1(a—10)=1(a+b+c)

2
b+10+§(a—10)—7—i(b+10+§(a—10)—7):é(a+b+c)
c+i(d+10+3(a—10)-7)=%(a+b+c)
c=95

Cardano uses the first unknown for a and the second for b (“Pone quod primus
habuerit 1 co. secundus 1 quan.”). He solves the problem, in the standard way,
by constructing the polynomial expressions, corresponding with the procedure
of exchanging the shares. Doing so he arrives at two expressions. The first one
is

i 6
— 9212 432
r=2lg oy

(“igitur detrae 1/8 co. ex 5/12 co remanent 7/24 co. et hoc aequivalet 6 7/24
p. 1 1/8 quan. quare 7 co. aequivalent 151 p. 27 quan. quare 1 co. aequalet

4 The same problem is solved slightly different in the Ars Magna and is discussed below.
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21 4/7 p. 3 6/7 quan.”). This expression for z would allow us to arrive at a
value for the second unknown. Instead, Cardano derives a second expression
inz

4 4
r=101-+1-
557
(“et quia 5/12 co. aequivalent etiam 42 5/12 p. quan. igitur 5 co. aequivale-
bunt 509 p. 9 quan. quare 1 co. aequivalent 101 4/5 p. 1 4/5 quan.”). As these
two expression are equal he constructs an equation in the second unknown:

4 6 4 4
217 +37y = 1015 + 15y
(“igitur cum etiam aequivaleat 21 4/7 p. 3 6/7 quan. erunt 21 4/7 p. 3 6/7
quan. aequalia 101 4/5 p. 1 4/5 quan. ). The text continues with: “Therefore,
subtracting the second unknowns from each other and the numbers from each
other this leads to a value of 39 for the second unknown. And this is the share
of the second one.” (“igitur tandem detrahendo quan. ex quan. et numerum
ex numero fiet valor quantitatis 39 et tantum habuit secundus®). However,
the added illustration shows us something very interesting (see Figure 2.1).

= co.zquales151,p.27.qud,
1o co.zquales1018.p. 18. qui:
1 co. zqualis21 3 p3£ qua,
I co.zqualisiol 2 b, 14 quis
go g-ga:qua!;a 2} qud
¥
zoo8.xqualia 72.qua,
;9.%3!0:7 (;‘li.

Fig. 2.1: Cardano’s construction of equations from (Cardano, 1539, f. 917)

The illustration is remarkable in several ways. Firstly, it shows equations
where other illustrations or marginal notes by Cardano and previous authors
only show polynomial expressions. As far as I know, this is the first unam-
biguous occurrence of an equation in print. This important fact seems to have
gone completely unnoticed. Secondly, and supporting the previous claim, the
illustration shows for the first time in history an operation on an equation.
Cardano here multiplies the equation
8 2
035 = 2359
by 35 to arrive at
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2808 = 72y

The last line gives 39 = y and not ‘y equals 39’ which designates the implicit
division of the previous equation by 72. The illustration appears both in the
1539 edition and the Opera Omnia (with the same misprint for 2808). As
we discussed before, the term ‘equation’ should be used with caution in the
context of early sixteenth-century practices. This case however, constitutes the
construction of an equation in the historical as well as the conceptual sense.
We have previously used an operational definition for the second unknown.
Similarly, operations on an equation, as witnessed in this problem, support
an operational definition of an equation. We can consider an equation, in this
historical context, as a mathematical entity because it is directly operated
upon by multiplication and division operators.

2.4.2 Michael Stifel introducing multiple unknowns

As a university professor in mathematics, Stifel marks a change in the typical
profile of abbaco masters writing on algebra. In that respect, Cardano was a
transitional figure. Cardano was taught mathematics by his father Fazio “who
was well acquainted with the works of Euclid” (Cardano, 2002, 8). Although
he was teaching mathematics in Milan, his professorship from 1543 was in
medicine. His choice of subjects and problems fit very well within the abacus
tradition. However, he did change from the vernacular of the abbaco masters
to the Latin used for university textbooks. Stifel is more part of the university
tradition studying Boethius and Euclid, but believed that the new art of
algebra should be an integral part of arithmetic. That is why his Complete
Arithmetic includes a large part on algebra (Stifel, 1544). Most of his problems
and discussions on the cossic numbers, as he calls algebra, refer to Cardano. He
concludes his systematic introduction with the chapter De secundis radicibus,
devoted to the second unknown (ff. 251V — 255Y).

Several authors seem to have overlooked Cardano’s use of the second un-
known in the Practica Arithmeticae. Bosmans (1906, 66) refers to the ninth
chapter of the Ars Magna as the source of Stifel’s reference, but this must be
wrong as the foreword of the Arithmetica Integra is dated 1543 and the Ars
Magna was published in 1545. In fact, the influence might be in the reverse
direction. Cifoletti (1993, 108) writes that “reading Stifel one wonders why the
German author is so certain of having found most of his matter on the second
unknown precisely in Cardano, i.e. in the Practica Arithmeticae. For, the Ars
Magna would be more explicit on this topic”. She gives the example of the
requla de medio treated in chapter 51 of the Practica Arithmeticae (Opera,
87) and more extensively in the Ars Magna (Witmer, 92). She writes: “In
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fact, the rule Cardano gives for this case is not quite a rule for using several
unknowns, but rather a special case, arising as a way to solve problems by
‘iteration’ of the process of assigning the unknown”. However, Stifel’s appli-
cation of the secundis radicibus to linear problems unveils that he drew his
inspiration from the problems in Cardano’s Questionibus of Chapter 66, as
the one discussed above. He makes no effort to conceal that:®

Christoff Rudolff and Cardano treat the second unknown using the term quantitatis,
and therefore they designate it as 1q. This is at greater length discussed by Car-
dano. While Christoff Rudolff does not mention the relation of the second [unknown]
with the first. On the other hand, Cardano made us acquainted with it by beautiful
examples, so that I could learn them with ease.

Graciously acknowledging his sources, he adds an important innovation for
the notation of the second an other unknowns. Keeping the cossic symbol Ze
for the first unknown, the second is represented as 14, the third by 1B, and so
on, which he explains, is a shorthand notation for 14% and 1B%e, the square
of 1A% being 1A%. The use of the letters A, B and C in linear problems is
common in German cossist manuscripts since the fifteenth century.® Although
these letters are not used as unknowns, the phrasing comes very close to the
full notation given by Stifel. For example, Widman writes as follows: “Do as
follows, pose that C has 1z, therefore having A 2%, because he has double
of C, and B 3%, because he has triple”.” Using Stifel’s symbolism this would
read as 1z, 2Ax and 3Bz. Although conceptually very different, the notation
is practically the same. The familiarity with such use of letters made it an
obvious choice for Stifel. Later, in his commentary on the Coss from Rudolff,
he writes on Rudolff’s use of 1% and 1q., “However, I prefer to use 14 for 1q.

5 Stifel (1544) f. 2527: “Christophorus et Hieronymus Cardanus tractant radices secundas
sub vocabulo Quantitatis ideo eas sic signant 1 q. Latius vero eas tractavit Cardanus.
Christophorus enim nihil habet de commissionibus radicum sedundarum cum primis. Eas
autem Cardanus pulchris exemplis notificavit, ita ut ipsas facile didicerim”, (translation
AH). In the edition of Rudolff’s Coss, he adds: “Bye dem 188 exempl lehret Christoff die
Regul Quantitatis aber auss vil oben gehandelten exemplen tanstu yetzt schon wissen wie
das es teyn sonderliche regel sey... Das aber Christoff und auch Cardanus in sollichen fal
setzen 1 q. Das ist 1 quantitet. Daher sie diser sach den nahmen haben gegeben und nennens
Regulam Quantitatis” (Stifel 1553, 307).

6 For example, the marginal notes of the C80 manuscript written by Johannes Widman
in 1481, give the following problem (C80 f. 359", Wappler 1899, 549): “Item sunt tres
socij, scilicet A, B, C, quorum quilibet certam pecuniarum habet summam. Dicit C: A
quidem duplo plus habet quam ego, B vero triplum est ad me, et cum quilibet eorum
partem abiecerit, puta A 2 et B 3, et residuum vnius si ductum fuerit in residuum alterius,
proveniunt 24. Queritur ergo, quod quilibet eorum habuit, scilicet A et B, et quot ego”.
Hgyrup (2010) describes an even earlier example by Magister Wolack of 1467, note 90.

7 Ibid.: “Fac sic et pone, quod C habet 1 x, habebit ergo A 2x, quia duplum ad C, et B 3x,
quia triplum”.
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because sometimes we have examples with three (or more) numbers. I then
use 1%, 14, 1B, etc.” .8

Distinguishing between a second and third unknown is a major step for-
ward from Chuquet and de la Roche who used one and the same symbol for
both.? Before Stifel, there has always been an ambiguity in the meaning of the
‘second’ unknown. From now on, the second and the third unknown can be
used together as in yz, which becomes 14 B. However, Stifel’s notation system
is not free from ambiguities. For the square of A, he uses 14%, while %B
should be read as the product of 2 and B. The product of 223 and 4y?, an
example given by Stifel, becomes 8¢ € A%. A potential problem of ambiguity
arises when we multiply 322 and 4z, also given as an example. This leads to
12%B and thus it becomes very confusing that 1222z being the product of
1222 and =z is written as 12%B while 1222 would be 12B%. Given the com-
mutativity of multiplying cossic terms, both expressions should designate the
same. The problem becomes especially manifest when multiplying more than
two terms together using the extended notation. Stifel seems not be aware of
the problem at the time of writing the Arithmetica integra.

Volo multiplicare 2 22.in 2 a,fluntea multiplicatione 4,4,
hoceft (quod ad reprafentationem & pronunciationem huius
Algorithmi pertiner) 4 2 multiplicatz in 1 A.

Volo multiplicare 3 A in 9 B,flunt 27 & B,hoceft,27 4 multi
plicataein 1 B,

Volomultiplicare 3 B infe cubice, facit 27 Bee,

Volo multiplicare 3 3in 4 B,flunt 12% B,

Volo multiplicare 2 c2 in 4 A%,funt 8¢2 a%, hoc eft,$ 2 mul
tiplicatiin 1 A%.

Volo multiplicare 1 A quadrate, fit 1 A%,

Volo multiplicare 6 in 3 ¢,funt 18 C.

Volo multiplicare 1 A in 1 A%t 1 Ace.

Volo multiplicare 2 A%in s 4c2,funt 1o Af.

olo multiplicare 1c2 in 12 A%, facit, quantum 1y A in @
quadrate,hoceft, 1 33 A%,

Volo multiplicare 1ac2 in 134, facit,quan i
huceﬁ,reaﬁf zA, facit,quaneam 1243 infe,

Fig. 2.2: The rules for multiplying terms from Stifel (1545, f. 2527)

The chapter on the secundis radicibus concludes with some examples of prob-
lems. Other problems, solved by several unknowns are given in de exemplis of
the following chapters. Here we find solutions to many problems taken from
Christoff Rudolff, Adam Ries and Cardano, usually including the correct ref-

8 Stifel, 1553, f. 186": “Ich pfleg aber fiir 1q zusetzen 1A auss der ursach das zu zeyten ein
exemplum wol drey (oder mehr) zalen fiirgibt zu finden. Da setze ich sye also 1x, 1A, 1B etc”.
9 For an extensive discussion of the second unknown in Chuquet, de la Roche and Rudolff
and their interdependence see Heeffer (2010a).
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erence. In the original sources, these problems are not necessarily treated
algebraically, or by a second unknown. Let us look at one problem which he
attributes to Adam Ries:'°

Three are in company, of which the first tells the second: if you give me half of your
share, I have 100 fl. The second tells the third: if you give me one third of your share,
then I have 100 fl. And the third tells the first: if you give me your sum divided by
four, I have 100 fl. The question is how much each has.

The problem is slightly different from the example discussed above, in that
the shares refer to the next one in the cycle and not to the sum of the others.
The direct source of Stifel appears to be the unpublished manuscript Die
Coss by Adam Riese, dated 1524 (Berlet 1860, 19-20). The problem is treated
twice by Riese (problem 31, and repeated as problem 120). Although he uses
the letters a, b and ¢, the problem is solved with a single unknown. Riese
in turn might have learned about the problem from Fredericus Amann, who
treated the problem in a manuscript of 1461, with the same values (Cod. Lat.
Monacensis 14908, 155" — 155Y; transcription by Curtze, 1895, 70-1).
Stifel’s version in modern notation is as follows:

a+ % =100
b+ £ =100
c+ 2 =100

The solution is shown in Table 2.1. As a pedagogue, Stifel takes more steps
than Cardano or the abacus masters before him. Line 8 is a misprint. Probably,
the intention was to bring the polynomial to the same denominator as is done
in step 13. This ostensibly redundant step shows the arithmetical foundation
of the performed operations. Our meta-description gives the multiplication of
equation (12) by 4 which makes line (13) superfluous. Stifel however, treats
the polynomials as cossic numbers which he brings to the same denominator.
Ten years later he will omit such operations as he acts directly on equations.
The solution method is structurally not different from the one used by previous
authors for similar linear problems. Note that Stifel does not use the second
and third unknown in the same expression. The problem could as well be
solved by two unknowns in which the second unknown is reused as by de
la Roche. However, the fact that more than two unknowns are used opens
up new possibilities and solution methods. How simply it may seem to the
modern eye, the extension of the second unknown to multiple unknowns by
Stifel was an important conceptual innovation.

10 Stifel 1553, f. 296r: “Exemplum quartum capitis huius, et est Adami. Tres sunt socij,
quorum primus dicit ad secundum, Si mihi dares dimidium summae tua, tunc haberem 100
fl. Et secundus dicit ad tertium: Si mihi dares summae tuae partem tertiam, tunc haberem
100 flo. Et tertius ad primum dicit: Si tu mihi dares summae tuae partem quartam, tunc
haberem 100 fl. Quaestio est, quantum quisque eorum habeat”.
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|Symb01ic Meta descriptionlOriginal text
1lla + % =100 premise Quod autem primus petit & secundo dimid-
ium summae, quam ipse secundus habet, ut
ipse primus habeat 100 fl.,
2|x + % =100 choice of first and|fatis mihi indicat, aequationemen esse in-
second unknown  |ter 1z + 1/2A et 100 florenos. Sic afit soleo
ponere fracta huiusmodi (1z + 1A)/2 ae-
quatae 100 fl.
3|2z 4+ y = 200 multiply (2) by 2 |Ergo 2x + 1A aequantur 200 fl.
4|y = 200 — 2z subtract 2x from|Et 1A aequantur 200 fl — 2x. Facit ergo 1A,
(3) 200fl. — 2x id quod mihi reservo loco unius
A. Habuit igitur primus 1x florenorum. Et
secundus 200 fl. — 2x.
5lz=c choice of third un-|Et tertius 1B flor.
known
6|y + % = 100 premise Petit autem secundus tertiam partem sum-
mae terti socij, ut sicispe secundus habeat
100 fl.
7200 — 2z + £ = 100|substitute (4) in (6)|Itaque iam 200 fl. — 2x fl + 1/3 B, aequan-

tur 100 florenis.

600 — Sz + 2 = 100

illegal

Sic ego soleo ponere huiusmodi fractiones,
ut denominator respiciat totum numera-
torem. Ut 600 — 6/3 x + B aequata 100.

600 — 6z + z = 300

multiply (7) by 3

Aequantur itaque 600 — 6x + B cum 300.

10|z = 6z — 300 add 6z 4 600 to (9)[Atque hac aequatione vides fatis, ut 1B re-
solvatur in 6x — 300. Et sic primus habuit
1x florenorum. Secundus 200 fl — 2x. Tertius
6x — 300.

11{z + % =100 premise Petit autem tertius partem quartam sum-

mae, quam habet primus, ut sic ipse tertius
etiam habeat centum florenos.

12

65 — 300 = 100

substitute (10) in

(11)

Itaque 6 x — 300 aequantur 100.

13]222=1200 — 100 [from (12) Item (25x — 1200)/4 aequantur 100 fl.

14|25z — 1200 = 400 |multiply (12) by 4 |Et sic 25x — 1200 aequantur 400.

15(25x = 1600 add 1200 to (12) |Item 25x aequantur 1600 fl.

16|z = 64 divide (13) by 25 |Facit 1x 64 fl.

17|y = 200 — 128 substitute (16) in|Habuit igitur primus 1x, id est, 64 fl. Se-
(4) cundus habuit 200 — 2x.

18|y =72 from (15) i. 72 fl.

19|z = 384 — 300 substitute (18) in|Et tertius habuit 6x — 300,
(10)

20|z = 84 from (19) hoc est 84 fl.

Table 2.1: Stifel’s exposition of the second unknown.
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2.5 Cardano revisted: The first operation on two
equations.

Cardano envisaged an Opus perfectum covering the whole of mathematics in
fourteen volumes, published in stages (Cardano 1554). Soon after the pub-
lication of the Practica arithmeticae, he started working on the Ars Magna,
which was to become the tenth volume in the series.!' It was published by
Johann Petreius in Niirnberg in 1545, who printed Stifel’s Arithmetica Integra
the year before as well as several other books by Cardano. We know that Car-
dano has seen this work and it would be interesting to determine the influence
of Stifel.!? The Ars Magna shows an evolution from the Practica Arithmeti-
cae in several aspects. Three points are relevant for our story of the second
unknown. Having learned that Tartaglia arrived at a solution to the cubic by
geometrical reasoning, Cardano puts much more effort than before in deliver-
ing geometrical proofs, and this not only for the cubic equation. He also tries
to be more systematical in his approach by listing all possible primitive and
derivative cases of rules (which we call equations), and then by treating them
separately. One of these primitive cases deals with two unknowns which he
discusses in two chapters. Chapter IX is on De secunda incognita quantitate
non multiplicata or the use of the second unknown for linear problems. Rules
for solving quadratic cases are treated in Chapter X. Let us look at the first
linear problem:!?

Three men had some money. The first man with half the other’ would have had 32
auret; the second with one-third the other’, 28 aurei; and the third with one-fourth
the others’, 31 aurei. How much has each?

In modern notation the problem would be:

a+;§(b+c) 32
b+§(a+c) =28 (2.2)
c—+ Z(a’+b):31

In solving the problem Cardano introduces the two unknowns for the share
of the first and the second person (“Statuemus primo rem ignotam primam,

11 The dating can be deduced from the closing sentence of the Ars Magna: “Written in five
years, may it last as many thousands” from Witmer (1968, 261).

12 Cardano mentions in his biography that he is cited by Stifel in what must be the first
citation index (2002, 220).

13 Translation from Witmer (1968, 71). Witmer conscientiously uses p and ¢ for positio
and quatitates which preserves the contextual meaning. Unfortunately he leaves out most
of the tables added by Cardano for clarifying the text, and replaces some of the sentences
by formulas. As the illustrations and precise wording are essential for our discussion, I will
use the Latin text from the Opera Omnia when necessary, correcting several misprints in
the numerical values.
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Symbolic Meta de-|Original text

scription

lla==x choice of first|Statuemus primo rem ignotam pri-
unknown mam,

2lb=1y choice of second [secundo secundam rem ignotam
unknown

3lc =31 — i(w + ) substituting tertio igitur 31 aurei, minus quarta
(1) and (2) in|parte rei, ac quarta parte quanti-
(2.2)c tatis relicti sunt

4la + %(b +c¢) =32 premise iam igitur vide, quantum habet

primus, equidem si illi dimididium
secundi et terti addicias, habiturus
est aureos 32.

5la =32 — %y — 15% + %z + %y substitute (2)|habet igitur per se aureos 32 m. 1/2
and (3) in (4) |quan.m.151/2 p. 1/8 positionis p.

1/8 quant.
6la = 16% — %y + éx from (5) quare habebit 16 m. 3/8 quanti-
tatis p. 1/8 pos.
Tlx = 16% — %y + %a} substitute (1)|hoc autem sit aequale uni positioni
in (6)
8 %az + %y = 16% from (7) erit 7/8 pos. et 3/8 quant. aequale
16 1/2
9|7x + 3y = 132 multiply (8)|quare deducendo ad integra 7 pos.
with 8 et 3 quant. aequabuntur 132.
10(b + %(a +c)=28 premise Rursus videamus, quantum habeat

secundus, habet hic 28 si ei tertia
pars primi ac tertij addatur
11 %(a-{-c) = %:c—&- 10% — ﬁ:c - ﬁy from (3) and|ea est 1/3 pos. p. 10 2/3 m. 1/12

(6) pos. m. 1/12 quant.
12 %(aJrc) =T+ 10% — 11—2y from (11) hoc est igitur pos. p. 10 1/3 m.
1/12 quant.
13|b = 17% + %y - % substitute (12)|abbice ex 28 relinquitur 17 2/3 p.
in (11) 1/12 quant. m. pos. et tantum ha-
bet secundus.
14|y = 17% —+ %y — % substitute (2)|suppositum est autem habere il-

in (14) lum quantitatem, quantitas igitur
secunda, aequivalet 1/12 suimet, et
17 2/3 p. m. pos.

secundo secundam rem ignotam”) (Opera III, 241). In the rest of the book
the two unknowns are called positio and quantitates, abreviated as pos. and
quan. They appear regularly throughout the later chapters, and in some cases
Cardano uses pos. for problems solved with a single unknown.

Note how strictly Cardano switches between the role of two unknowns and
the share of the first and second person by making the substitution steps of
lines (7) and (14) explicit.
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15 %y + ix = 17% subtract %y from|abiectis communiter 1/12 quantitatis,
(14) and add %r et restituto m. alteri parti, sient 11/12
quan. p. pos aequalia 17 2/3,
16{11y + 3z = 212 |multiply (15) by 12|quare 11 quant. p. 3 pos. aequalia erunt
212 multiplicatis partibus omnibus per
12 denominatorem.

The next part in the solution is the most significant with respect to the emerg-
ing concept of a symbolic equation. Historians have given a lot of attention
to the Ars magna for the first published solution to the cubic equation, while
this mostly is a technical achievement. We believe Cardano’s work is equally
important for its conceptual innovations such as the one discussed here.

The first occurrence of the second unknown for a linear problem is by an
anonymous fifteenth-century abbaco master, author of Fond. prin. V.152.14
The problem about four men buying an ox is by means of the second unknown
reduced to two “linear equations”, 7y = 13z +4 and 4y = 22+ 167. Expressed
in symbolic algebra it is obvious to us that by multiplying the two equations
with the coefficients of y, we can eliminate the second unknown which leads
to a direct solution. However, the author was not ready to do that, because
he did not conceive the structures as equations. They are subsequently solved
by the standard tool at that time, the rule of double false position. Cardano
here marks a turning point in this respect. Having arrived at two equations
in two unknowns Cardano gives a general method:

Now raise whichever of these you like to equality with the other with respect to the
number of either z or y “(in positionum aut quantitatum numero”). Thus you may
decide that you wish, by some method, that in 3z + 11y = 212, there should be 7x.
Then, by using the rule of three, there will be
7 25 2 494 2
x + 3 Yy = 3

You will therefore have, as you see,

2 2
Tr + 3y = 132 and Tz + 25§y = 494§

Hence, since 7z is the same in both, in both the difference between the quantities of
y, namely 22 2/3, will equal the difference between the numbers, which is 362 2/3.

14 Franci and Pancanti, 1988, 144, ms. f. 177": “che tra tutti e tre gli uomeni avevano 3 oche
meno 2 chose e sopra a questo agiugnero 1’ocha la quale si vole chonperare, chos aremo che
tra tutti e tre gli uomeni e I’ocha saranno 4 oche meno 2 chose, dove detto fu nella quistione
che tra danari ch’anno tutti e tre gli uomeni e ’l chosto del’ocha erano 176. Adunque,
posiamo dire che lle 4 oche meno 2 chose si vagliano 176, chosi ai due aguagliamenti”. In
Heeffer (2010b) it is argued that this text is by Antonio de’ Mazzinghi or based on a text
by his hand.

15 Cardano 1663, Opera IV, 241. I have adapted Witmer’s translation to avoid the use of
the terms coefficient and equation, not used by Cardano (Witmer 1968, 72).
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Divide therefore, as in the simple unknown, according to the third chapter, 362 2/3
by 22 2/3; 16 results as the value of y and this is the second.

Using modern terms, this comes down to the following: given two linear equa-
tions in two unknowns, you can eliminate any of the unknowns by making
their coefficients equal and adapting the other values in the equation. The
difference between the coefficient of the remaining unknown will be equal to
the difference of the numbers. Although the result is the same, the text does
not phrase the procedure as a subtraction of equations. However, the table
added by Cardano, which is omitted in Witmer’s translation, tells a different
story:

Tz + 3y = 132
T+ 252y = 4942

2, _ 2
222y = 3622

The table shows a horizontal line which designates a derivation: “from the first
and the second, you may conclude the third”. This table goes well beyond the
description of the text and thus reads: “the first expression subtracted from
the second results in the third”. He previously used the same representation
for the subtraction of two polynomials, also subtracting the upper line from
the lower one (Cardano 1663, IV, 20). Cardano never describes the explicit
subtraction of two equations in the text. Even if he did not intend to represent
it that way, his peers studying the Ars magna will most aptly have read
it as an operation on equations. As such, this is the first occurrence of an
operation involving two equations, a very important step into the development
of simultaneous equations and the very concept of an equation.

A second point of interest for the story of the second unknown is an addition
in a later edition of the Ars Magna (Cardano, 1570; 1663; Witmer p. 75
note 13). Cardano added the problem of finding three so that the following

conditions hold (in modern notation):'6

a+b= lé(a +c)

a+c=15(b+c)
He offers two algebraic solutions for this indeterminate problem. The second
one is the most modern one, since he only manipulates equations and not
polynomials. But the first solution has an interesting aspect, because we could

16 Cardano, Opera IV, 242: “Exemplum tertium fatis accommodatum. Invenias tres quan-
titates quarum prima cum secunda sit sequialtera primae cum tertia et prima cum tertia
sit sequialtera 2 cum tertia”.
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call it a derivation with two and a half unknowns. Cardano uses positio for
the third number and quantitates for the second, for which we will use z and
y. The sum of the first and third thus is

1
1§(m+y).

Subtracting the third gives the value of the first as
1 1

- 1-y.
2:r+ 2y

Multiplying the sum of the first and third with 1% gives the sum of first and
second as

1 1
2= 2=y.
4x + 4y
Subtracting the second gives a second expression for the first as

oy i1l
- —1Y.
1 1Y

As these two are equal

1
1191: =qyory is equal to Tx

Only then, Cardano removes the indeterminism by posing that z = 1 lead-
ing to the solution (11, 7, 1). The interesting aspect of this fragment is that
Cardano tacitly uses a third unknown which gets eliminated. As a demonstra-
tion, the reasoning can be reformulated in modern notation, with z as third
unknown as follows:

z+y:1%(z+x) (2.3)
1
z+x:1§(x+y) (2.4)

If we subtract z from (2.4) it follows that

!
z=—-x+1-
2 2Y

Substituting (2.4) in (2.3) gives
1 1
=2-z+2°
zZ+y 17 + 1Y

Subtracting y from this equation gives
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1 1
z = 21.%' + 1Zy
Therefore
1 1 1 1
5.%' + 1§y = 2195 + lzy
or

y="Tx

There is only a small difference between Cardano’s solution and our refor-
mulation. If only he had a symbol or alternative name for the first unknown
quantity, it would have constituted an operational unknown. He seems to be
aware from the implicit use of three unknowns as he concludes: “And this is a
nice method because we are working with three quantities” (“Et est pulchrior
modus quia operamur per tres quantitates”) (Opera, IV, 242). It is not clear
why this problem was not included in the 1545 edition. It could have been
added by Cardano as a revision to the Basel edition of 1570.

A third aspect from the Ars magna, which reveals some evolution in Car-
dano’s use of multiple unknowns is one of the later chapters, describing several
rules, previously discussed in the Practica aritmeticae. Chapter 31 deals with
the Regula magna, probably one of the most obscure chapters in the book.
The rule is not described, only some examples are given. Nor does it con-
tain any explanation why it is called The Great Rule. Most of these problems
concern proportions which are represented by letters. Remarkably, Cardano
performs operations on these letters and constructs equations using the letters
such as “igitur 49 b, aequalia sunt quadrato quadrati a” (see Table 2.2). Only
in the final step, as a demonstration that this solves the problem, does he
switch back to regular unknown called res. Let us look in detail at problem
10 (Witmer 190, Opera IV, 276). A modern formulation of the problem is:

a+b=38
@ _
7 ab

The text is probably the best illustration that the straightforward interpre-
tation of the letters as unknowns is an oversimplification. If the letters would
be unknowns then substituting b = 8 — a in a*h = 496 would immediately
lead to the equation. Instead, Cardano takes a detour by introducing ¢, d and
e and then applying the magical step 5. No explanation is given, though the
inference

g—giscorrect becauseg—ﬁ—g orﬁ—a—b
7T ¢ ’ a7 a3 b
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|Symbolic Meta description |Origina1 text
1le = a3 choice of unknown Sit a minor, eius cubus ¢, b autem maior,
2lab=¢e¢ choice of unknown et productum b in a sit e,
3[7b=d choice of unknown et septuplum b sit d,
42 =5 divide (2) by (3) quia igitur ex b in a, sit e et ex b in 7 sit d,
erit a ad 7,
5%:% ut e ad d quare a ad 7 ut d ad ¢
6lac = 7d multiply (5) by 7c Igitur ex a in c, sit septuplum d
7]a* = 49b subtitute (1) & (3) in (6)|sed est septuplum b, igitur 49 b aequalia
sunt quadrato quadrati a
8[b = j5a* divide (7) by 49 igitur b est aequale 1/49 quad. quadrati a
9la+b=38 premise quia igitur a cum b est 8
10{a + %ga‘l =8 |substitute (8) in (9) et b est 1/49 quad. quadrati a, igitur a cum
1/49 quad. quadrati sui, aequatur 8.
11|z + im‘l =8 [substitute a by z in (10) |quare res et 1/49 [quad. quadratum ae-
quatur 8]
12[z% + 492 = 392|multiply (11) by 49 [Igitur] quad. quadratum p. 49 rebus, ae-
quatur 392

Table 2.2: Cardano’s Regula magna for solving linear problems

which is the reciprocal of what was given. Apparently, the fact that e is to d
as d is to ¢, is evident to Cardano, shows how his reasoning here is inspired
by proportion theory, rather than being symbolic algebra.
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2.6 The improved symbolism by Stifel

From the last part of Stifel’s Coss (1553, f. 480") we know that he has read
the Ars magna. He cites Cardano on the discovery of Scipio del Ferro (f. 482")
and adds a chapter on the cubic equation. The influence between Cardano and
Stifel is therefore bidirectional. At several instances he discusses the second
unknown from a methodological standpoint, as Cardano did in the Ars magna.
Although Rudolff does use the second unknown in the original 1525 edition
for several problems, in other examples Stifel recommends the regula quanti-
tatis as a superior method to the ones given by Rudolff (“Christoff setzet vier
operation oder practicirung auff diss exemplum. Ich will eine setzen ist besser
und richtiger zu lernen und zu behalten denn seyne vier practicirung”, 223v).
He notes that there is nothing magical about the second unknown. For him,
it is basically not different from the traditional coss: “Den im grund ist regula
Quantitatis nichts anders denn Regula von 1%e.” (Stifel 1553, ff. 223V — —224").
While we can only wonder why it has not been done before, for Stifel it seems
natural to use multiple unknowns for the typical shares or values expressed in
linear problems: “Man kan auch die Regulam (welche sye nennen) Quantitatis
nicht besser verstehn den durch sollische exempla [i.e. linear problems] Weyl
sye doch nichts anders ist denn da man 1 % setzt under einem andern zey-
chen” (Stifel 1553, f. 277¥). He considers arithmetical operations on shares not
fundamentally different from algebraic operations on unknowns: “Der Cossis-
chen zeychen halb darffest du dich auch nicht hart bekumern. Denn wie 3 fl.
un 4 fl. machen 7 fl., also auch 3% und 4% machen 72" (1553, f. 489").

After treating over 400 problems from Rudolff; Stifel adds a chapter with
some examples of his own. Half of the 24 problems added are solved by two
unknowns. Interestingly, he silently switches to another notation system for
quadratic problems involving multiple unknowns, thus avoiding the ambigu-
ities of his original system. The improved symbolism is well illustrated with
the following example:1”

Find two numbers, so that the sum of both multiplied by the sum of their squares
equals 539200. However, when the difference of the same two numbers is multiplied
by the difference of their squares this results in 78400. What are these numbers?

This is a paraphrase of Stifel’s solution: Using 1% and 14 for the two numbers,
their sum is 142 + 1A. Their difference is 122 — 1A4. Their squares 1% and
1AA. The sum of the squares 1% + 1AA. The difference between the squares
1% — 1AA. So multiplying 1% + 1A with 1% + 1AA gives € + 1%A +
122AA + 1AAA which equals 539200. Then I multiply also 1% — 1A. with
1% — 1AA. This gives € — 1%A4 - Z2AA + 1AAA and that product equals
539200.

17 Stifel 1553, ff. 469" — 4707, translation mine.
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So Stifel now uses A A for the square and AAA for the third power of A. He
thus eliminates the ambiguities discussed before. Now that A% becomes AA,
the product of the square of A with 1% can be expressed as AAZ% and the
product of the square of 1% with A as A% or %A — thus also removing the
ambiguity of multiplying cossic terms together. As such, algebraic symbolism
is functionally complete with respect to to the representation of multiple un-
knowns and powers of unknowns. What is still missing, as keenly observed by
Serfati (2010), is that this does not allow to represent the square of a polyno-
mial. In order to represent the square of 1%+ 1% + 2, for example, Stifel has
to perform the calculation. Also, the lack of symbols for the coefficients does
not yet allow that every expression of seventeenth-century Cartesian algebra
can be written unambiguously in Stifel’s symbolism. This was later introduced
by Viete. However, the important improvement by Stifel in his Coss, was an
important step necessary for the development of algebraic symbolism, and has
been overlooked by many historians.'® Having shown that Stifel resolved the
ambiguities in the interpretation of multiplied cossic terms, we will further
replace the cossic signs for coss, census and cube by z, 2 and z>.

Volo multiplicare 2 2¢ in 2 4,flunt ea multiplicatione 42 4,
hoceft (quod ad reprafentationem & pronunciationem huius
Algorithmi pertinet) 4 2o multiplicatz in 1 A

Volo multiplicare 3 4 in 9 B,flunt 27 A B.hocelt,27 4 multi
plicatz in 1 B,

Volomultiplicare 3 B infe cubice, facit 27 Be2,

Volo multiplicare 3 %in 4 B,flunt 123 B,

Volo multiplicare 2 c2 in 4 A%,fiunt $c2 A%, hoc eft,$ 2 mul
tiplicatiin 1 A%.

Volo mulciplicare 1 A quadrate, fit 1 4%,

Volo multiplicare 6in 3 ¢,funt s s c.

Volo multiplicare 1 A in1 43,8t 1 ace,

Volo multiplicare 2 ayin 5 Ace.flune 10 4R,

olo multiplicare 1¢e in 12 A%, facit, quantum 34 in @
quadrate,hoceft, 123 4%,

olomultiplicare 142 in 134, facit,quantum 1%z in (e,
hD’Ceﬂ‘”%A%' %A, | AR 0l

Fig. 2.3: The improved symbolism by Stifel (1553, f. 469")
Next, Stifel eliminates terms from the equation by systematically adding,

subtracting, multiplying and dividing the equations, not seen before in his
Arithmetica Integra of 1544 (Stifel 1553, 4697):

18 The symbolism introduced by Stifel in the Arithmetica integra is discussed by Bosmans
(1905-6), Russo (1959), Tropfke (1980, 285, 377), Gericke (1992, 249-50), Cifoletti (1993)
chapter 3, appendix 1 and 2. With the exception of Cajori (1928-9, I, 144-146) who mentions
Stifel’s innovation as “another notation”, none of these authors discuss the significance of the
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Multiply the two equations in a cross as you can see below:

23 4+ 122A + 12AA + 1AAA = 539200

3 — 122A — 12 AA + 1AAA = 78400
But dividing these numbers by their GCD (“yhre kleynste zalen”) gives 337 and 49
and so we arrive at the two sums:

4923 4 4922 A + 497 AA + 49AAA

33723 — 33722 A — 3372 AA + 337TAAA

and these two sums are equal to each other. If we now add 33722 A+ 337z AA to each
side so, this result in

3372 + 337TAAA = 492° + 3862° A + 38624 A + 49AAA
Now subtract 4923 + 49AAA from each side, this will give

38622 A + 3860 AA = 2882 + 288444
Divide each side by 2z + 2A, this results in

1932A = 14422 — 144zA + 144AA (2.5)

Next (as you can extract the square root from each side) subtract from each side
144zA

497A = 1442° — 288z A + 144AA

Extract from each side the square root, which becomes vV49zA = 122 — 12A . This
we keep for a moment.

Here, operations on equations are remarkably extended to root extraction.
Although not fully correct, this can be considered a ‘natural’ step from previ-
ous extensions. Because the alternative solutions are imaginary they are not
recognized as such. Only in the seventeenth century we will see the full ap-
preciation of double solutions to quadratic equations. Now Stifel returns to
the equation (2.5) (“Ich widerhole yetzt die obgesetzte vergleychung”).

Add to each side [of this equation] as much as is needed to extract the root of each
side. This is 3 times 144zA, namely 432zA. So becomes
14422 + 2887A + 144A% = 62524

Extract again from each side the square root, so will be

V625 A =12z + 12A

And before I have found that v49zA = 12z — 12A. From these two equations I will
make one through addition. Hence

improvements of 1553. Enestrom (1906-7, 55) spends one page on the improved symbolism
discussing Cantor’s Vorlesungen (1892, 441, 445).
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24x = V1024z A

Next I will square each side, which results in 57622 = 1024z A and then I divide each
side with 576x. Thus

lz = le or 1A = g:1:
9 16

Having formulated both unknowns in terms of the other, one of them can
be eliminated, or in Stifel’s wording resolved. He reformulates the original
problem in z and 9/16 z, which leads to a cubic expression with solution 64.

We have previously shown that Cardano’s operations on equations are im-
plicit in the illustrations but are not rhetorically phrased as such. In this
text by Stifel we have a very explicit reference to the construction from one
equation by the addition of two others: “From these two equations I make
one equation by addition” (“Aufs desen zweyen vergleychungen mach ich ein
einige vergleychung mit addiren”). This is certainly an important step forward
from the Arithmetica Integra, and from then on, operations on equations will
be more common during the sixteenth century.

We have here an unique opportunity to compare two works, separated
by a decade of development in Stifel’s conceptions of algebra. It gives us
a privileged insight into subtle changes of the basic concepts of algebra, in
particular that of a symbolic equation. As an illustration, let us look at one
problem with three numbers in geometric progression. The same problem is
presented in Latin in the Arithmetica Integra and in German in the Stifel
edition of Rudolff’s Coss, though with different values. The problem is solved
using two unknowns in essentially the same way, but there are some delicate
differences which are very important from a conceptual point of view. As Stifel
presents the problem in a section with “additional problems by his own”, we
can assume that he constructed the problem himself. In any case, it does
not appear in previous writings. In modern formulation the problem has the
following structure:

a:b="b:c
(a+c)a+c—b)=d
(a+c—Db)latb+c)=e

with respectively (4335, 6069) and (90720, 117936) for d and e. The start of
the solution is identical in the Latin and German text, except that the choice
of the first and second unknowns are reversed (see Table 2.3).

In both cases Stifel arrives at two equations in two unknowns. These com-
pares very well with those from Fond. prin. V.152 and the example of Car-
dano’s Ars Magna, except that we now have a quadratic expression. If we
swap back the two unknowns in the German text, the equations compare as
follows:
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2 From the second unknown to the symbolic equation

Problem 24, Stifel 1553, f. 474r

Quaeritur tres numeri continue propor-
tionales, ita ut multiplicatio duorum
extremorum, per differentiam, quam
habent extremi simul, ultra numerum
medium, faciant 4335. Et multiplicatio
eiusdem differentiae, in summam, om-
nium trium faciat 6069.

Es sind drey zalen continue propor-
tionales so ich das aggregat der ersten,
und dritten, multiplicir mit der differ-
entz dess selbigen aggregatis uber die
mittel zal, so kommen 90720. Und so
ich die selbige differentz multiplicir in
die summa aller dreyer zalen, so kom-
men 117936. Welche zalen sinds?

1A + 1x est summa extremorum 1A
— 1x est summa medij 2A est summa
omnium trium 2z est differentia quam
habent extremi ultra medium.

Die drey zalen seyen in einer summa 2x.
Die zurlege ich also in zwo summ

lz + 1A, 1z — 14

Nu last ich 1z — 1A die mittel zal seyn
so muss lz + 1A die summa seyn der
ersten und dritten zalen. Und also sind
2A die differentz dess selbigen aggre-
gats uber die mittel zal.

Itaque 2z multiplicatae in summam ex-
tremorum, id est, in 1A + 1x faciunt
2zA + 2x2 aequata 4335.

Drumb multiplicir ich 24 in 1z + 14
facit 224 + 2AA gleych 90720.

Deinde 2z multiplicatae in 2A seu in
summam omnium, faciunt 4zA aequata
6096.

So ich aber 2A multiplicir in die summ
aller dreyer zalen, nemlich in 2z, so
kommen 4zA die sind gleych 117936.

81

Table 2.3: Two ways how Stifel solves structurally the same problem.

2y + 222 = 4335
4xy = 6096

22y + 222 = 90720
4y = 117936

The next step is to eliminate one unknown from the two equations. We have
seen that Cardano was the first to do this by multiplying one equation to
equal the coefficients of one term in both equations and then to subtract the
equations, albeit implicitly. In this respect, the later text deviates from the
former (see Table 2.4).

The method in the Latin text articulates the value of xy from the two
expressions and compares the resulting values. The text only states that their
values are equal. Although Stifel writes “Confer iam duas aequationes illas”,
this should be understood as “now match those two equal terms”, aequationes
being the acts of comparing. So from the first expression we can infer that the
value of zy is (4335 — 222)/2. From the second we can know that the value
is 6069/4. Thus, (4335 — 222)/2 must be equal to 6069/4, from which we can
deduce the value of z. The reasoning here is typical for the abacus and early
cossist tradition were the solution is based on the manipulation and equation
of polynomials expressions. In the German text, a decade later, Stifel distinctly
moves to the manipulation of equations. He literally says: “Now double the
equation above” and “from this [equation] I will now subtract the numbers
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|Problem 24, Stifel 1553, f. 474v

Confer iam duas aequationes illas. Nam
ex priore sequitur quod 1zA faciat
(4335 — 222) /2.

So duplir ich nu die obern vergleychung,
fa. 4z A 4+ 4AA gleych 181440.

Ex posteriore autem sequitur quod
1zA faciat 6069/4. Sequitur ergo quod
(4335 — 222)/2 et 6069/4 inter se ae-
quentur. Quia quae uni et eidem sunt

Da von subtrahir ich yetzt die zalen
diser yetzt gefundnen vergelychung.
Nemlich 4zA gleych 117936 so bleyben
4AA gleych 63504.

aequalia, etiam sibi invicem sunt ae-
qualia. Ergo (per reductionem) 17340 —
8x2 aequantur 12138 facit 1z2 -650%.

Et 1z facit 25%. Also extrahir ich auff yeder seyten die
quadrat wurzel, so werden 2A gleych
252 und ist die differentz dess aggregats
uber die mittel zal. So in nu 14 gleych

126.

Table 2.4: Two ways how Stifel solves structurally the same problem.

of the newly found equation”, thus eliminating the second unknown. The last
step also shows a clear evolution. In the Latin text he reduces the expression
to the square of the unknown 122 and then extracts the root. In the later text
he “extracts the square root of each side [of the equation]”. The rest of the
problem is to reformulate the original problem using the value of the second
unknown. This is done in similar ways.

The example shows how the road to the concept of a symbolic equation
is completed in a crucial decade of algebraic practice of the mid-sixteenth
century. We have witnessed this evolution within a single author. The French
algebraists from the second half of the sixteenth century will extend this
evolution to a system of simultaneous linear equations.

2.7 Towards an aggregate of equations by Peletier

Stifel’s edition of the Coss was published in Kéningsberg in 1553, his foreword
is dated 1552. Peletier’s postscript ends the Algébre with the date July 28,
1554. The printer’s permit allows him to print and sell the book for three years
from June 15, 1554. So, while Peletier might have seen Stifel’s edition of the
Coss, it does not show in his book. He certainly has studied the Arithmetica
Integra well.

Jacques Peletier spends one quarter of the first book on the second unknown
which he calls les racines secondes (pp. 95-117), a direct translation of Stifel’s
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de secundis radicibus (Stifel 1544, f. 251v). He introduces Stifel’s notation by
way of the problem of finding two numbers, such that, in modern formulation
(Peletier 1554, 96):

22 + y? = 340

Ty = g:ﬁ
If we would use the same name for the unknown for both numbers, this would
lead to confusion, he argues. He therefore adopts Stifel’s notation of 14, 1B
for the second and third unknown in addition to his own sign for the first
unknown. He then discusses the operations with multiple unknowns: addition,
subtraction, multiplication and division, as was done with polynomials in
his introductory chapters. He retains Stifel’s ambiguity from the Arithmetica
Integra that zy cannot be differentiated from yz.
Peletier has selected this example, instead of the one used by Stifel, because
that problem can easily be solved in one unknown (“Car il est facile par une
seule posicion sans l'eide des secondes racines”, Peletier 1554, 102).

I¢ vet multiplier 34 par fogm¢me cubique-
mant: ¢ font 27a¢f, c¢tadirg, 277 fgcons
Cubgs.

I¢ vet multiplier 2¢ par 45 : ¢ font8¢s:c'éta
dir¢,8% multiplicz par 1s. :

I¢ vet multiplier 3¢ par 6 : c¢ font 18c. :

I¢ vel: multiplicr 3a par 3agice font gacp, ¢t
adirg,9 fecons Cubgs.

Iz vet multiplier acf par 24¢ :cg font10af.
I¢ veu multiplier 1 par meag. Ici vous

voyez qug 1¢f, Multiplicande : € 18, premiere

particulg du Multipliant,font d¢ m¢me nature:

Fig. 2.4: The rules for multiplying terms with multiple unknowns from Peletier
(1554, 98). Compare these with Stifel (1545, f. 252")

Using z for the larger number and y for the smaller one he squares the second
equation to

36
z?y? = 4—91‘4 which leads to 49y? = 362>
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49,2

Because y? = 340 — 22 this can be rewritten as y? = 340 — 35Y°.

Then the second unknown can be expressed as

13 , 9
236y =340 or y~ = 144,
leading to the solution 12 and 14.

Peletier gives four other problems solved with multiple unknowns. The first
two are taken from Cardano’s De Quaestionibus Arithmeticis in the Practica
arithmeticae, problem 97 and 98 (Cardano, Opera III, 168-9), the third is the
problem from Cardano’s Ars magna discussed above (2.2). The fourth is one
from Stifel (1544, f. 310¥), reproducing the geometric proof. This shows that
Peletier was well acquainted with the most important algebraic treatises of
his time. In fact, Peletier’s example III (1554, 105-7) and its solution, is a
literal translation from Cardano’s, only using the symbolism from Stifel. The
problem is structurally similar to problem 41 from Pacioli discussed earlier
and follows the method by Pacioli. Compare the following text fragments:

Cardano, 1539, ff. HH.vir - HH.viv |Peletier, 1554, p. 106

Igitur per praecedentem iunge summam)
eorum sit 3 quan. m. 31/30 co. divide per
1 m. numero hominum quod est 2 exit 1
quan. m. 31/60 co. et haec est summa quae
debet aequari valori equi sed aequus valet
1. quan. igitur 1 quan. m. 31/60 co. ae-
quantur 1 quan. quare detrahe 1 quan. ex
1 quan. remanebit quan. equivalens 31/60
co. igitur 1 quan. aequivalet duplo quod est
31/30 co. igitur dabis ex hoc fracto valorem,
denominatoris qui est 30 [sic] ad co. et nu-
meratorem ad quan. igitur valor co. est 30
et valor quantitatis est 31 et in bursa fuere
30.

Par la precedente, assemblez les
troes sommes: ce sont 3A m. 31/30
R. Divisez par un nombre moindre
de 1 que les hommes, savoer est
par 2: ce sont 1 A m. 31/60 R.
E c’est la valuer du cheval. Donq,
1A est egale a1 A m. 31/60 R.
E par souttraction, A est egale a
31/60 R. Donc 1A, vaut la double,
qui est 31/30 R. Meintenant, prenez
pour 1A, le numerateur, que est 31,
e pour 1R prenez le denominateur
30. Partant, le cheval valoet 31 e
I’argant commun etoest 30.

Table 2.5: The dependence of Peletier on Cardano’s Practica Arithmeticae.

Peletier thus literally translated Cardano’s text only changing 1 quan. in 14
and reformulating the common sum as the value of a horse. We included
this fragment to show how strongly Peletier bases his algebra on Cardano
while Cifoletti attributes to him an important role in the development to-
wards a symbolic algebra. Nonetheless, Peletier introduces some interesting
new aspects in the next linear problem taken from Ars Magna. He first gives
a literal translation of Cardano’s solution calling the problem text proposi-
tion and the solution disposition. Interestingly he leaves out the substitution
steps from Cardano, lines (7) and (14). Cardano considered these important
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for a demonstration, but apparently Peletier does not. Then he introduces a
solution of his own (“trop plus facile que lautre”). Starting from the same
formulation (2.2), Peletier adapts Cardano’s solution method by means of
Stifel’s symbolism for multiple unknowns.

|Symbolic |Meta description |Origina1 text

lla == choice of first unknown Le premier & 1R

20b=y choice of second unknown |Le second 1A

3lc==z choice of third unknown Le tiers 1B.

4la + %(b + ¢) = 32 |premise E par ce que le premier avec

% des deus autres, an a 32:

5|x + %(y—f—z) = 32|substitute (1), (2) and (3)|1R p. (1A p. 1B)/2 seront
in (4) egales a 32.

62z +y+ 2z =64 |multiply (5) by 2 E par reduccion, e due trans-

posicion: 2R p. 1A p. 1B sont
egales a 64, qui sera la pre-
miere equacion.

b+ %(a + ¢) = 28 |premise Secondemant, par ce que le
second, avec 1/3 partie des
deus autres an a 28:

8ly + %(a:—f— z) = 28|substitute (1), (2) and (3)|ce sont 1A p. (1R p. 1B)/3

EN|

in (6) egales a 28:
9|z + 2z + 3y =84 |multiply (8) by 3 E par reduccion, 1A p. 1B p.
3A seront egales a 84, qui sera
la seconde equacion.
10{c + %(a + b) = 31 |premise Pour le tiers (lequel avec %
partie des deus autres an a
31)7
11{z + %(ery) = 31|substitute (1), (2) and (3)|nous aurons 1B p. (1R p.
in (10) 1A)/4, egales a 31.
12|z +y + 4z = 124 |multiply (11) by 4 e par samblable reduccion,

1R p. 1A p 4B seront egales
a 124. Voela, noz troes equa-
cions principales.

Table 2.6: Peletier solving a problem by multiple unknowns.

Having arrived at three equations in three unknowns there seems to be little
innovation up to this point. All operations and the use of three unknowns have
been done before by Stifel. However, we can discern two subtle differences.
Firstly, the last line (12) suggests that Peletier considers the three equations
as an aggregate. In the rest of the problem solving process he explicitly acts
on this aggregate of equations (“disposons donq nos troes equacions an cete
sorte”). Secondly, he identifies the equations by a number. In fact, he is the
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first one in history to do so, a practice which is still in use today.!” The
identification of equations, as structures which you can manipulate, facilitates
the rhetorical structure of the disposition. This becomes evident in the final
part (see Table 2.7).

|Symb01ic |Meta description |Origina1 text

13|22 4+ 4y + 5z = 208 |add (9) and (12) Ajoutons la seconde e la tierce, ce
seront, pour quatrieme equacion 2R
p- 4A p. 5B egales a 208

14(3y + 4z = 144 subtract (6) from (13)|Donq an la conferant a la premier
equacion, par ce que 2R sont tant
d’une part que d’autre, la differance
de 64 a 208 (qui est 144) sera egale
avec la differance de 1A p. 1B a 4A
p- 5B: Dong, an otant 1A p. 1B de
4A p. 5B, nous aurons pour la cin-
quieme equacion 3A p. 4B egales a
144

15|32 4+ 4y + 2z = 148 |add (6) and (9) ajoutons la premiere e la seconde:
nous aurons pour la sizieme equa-
cion 3R p. 4A p. 2B egales a 148.
16|3z + 2y + 5z = 188 |add (6) and (12) ajoutons la premiere e la tierce:
nous aurons pour la sesttieme equa-
cion 3R p. 2A p. 5B egale a 188.
17(6x + 6y 4+ 7z = 336 |add (15) and (16) ajoutons ces deus dernieres: nous
aurons, pour la huitieme equacion
6R p. 6A p. 7B egales a 336.

18{6x + 6y + 24z = 744 |multiply (12) by 6 Finablemant, multiplions la tierce
par 6 (pour sere les racines egales,
de ces deus dernieres equacions)
e nous aurons, pour la neuvieme
equacion 6R p. 6A p. 24B egales a
744.

Table 2.7: Peletier eliminating unknowns by adding and subtracting equations.

Peletier succeeded in manipulating the equations in such a way that he arrives
at two equations in which two of the unknowns have the same coefficients, or
in his terms, “equal roots”. Subtracting the two gives 17z = 408 arriving at
the value 24 for z. The other values can then easily be determined as 12 and
16. Comparing his method with Cardano’s, it is not shorter or more concise.
Cardano takes 16 steps to arrive at two equations in which one unknown can
be eliminated, Peletier takes 18 steps to the elimination of two unknowns. But

19 The classic work by Cajori (1928-9) on the history of mathematical notations, does not
include the topic of equation numbering or referencing. I have seen no use of equation
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Peletier does not use the argument of length, instead he considers his method
easier and clearer, thus emphasizing the argumentative structure. Indeed, as
can be seen from the table, the actual text fits our meta-description very well.
Peletier systematically uses operations on equations and applies addition and
subtraction of equations to eliminate unknowns. Moreover, he explicitly for-
mulates the operations as such: “add the second [equation] to the third, this
leads us to a fourth equation”. Although we have seen such operations per-
formed implicitly in Cardano’s illustration, the use of the terminology in the
argumentation is an important contribution. The use of multiple unknowns,
the symbolism and the argumentation, referring to operations on structures,
called equations, makes this an important entrance into symbolic algebra.

2.8 Valentin Mennher (1556)

Valentin Mennher, a reckoning master from Antwerp, introduces the rule in
between problems 254 and 255 as regle de la quantité, ou seconde radice in his
Arithmétique seconde (Mennher, 1556, f. Qi¥; 1565, f. FFi") as a “rule which
exceeds all other rules and without which many examples would otherwise be
unsolvable”. He refers to Stifel for the origin of the rule and adopts Stifel’s
notation.2? From problem 267, it becomes clear that he has used Stifel’s edi-
tion of Rudolff (1553) as he also uses the improved notation AA for the square
of the second unknown (1556, ff. Qui"™ — Qui¥; 1565, ff. F fviii" — F fviii?).
We will give one example from Mennher, though the method does not differ
from Stifel’s solution to problem 193 of Rudolff’s Coss. The problem is about
four persons having a debt, with the four sums of three given. The problem
is known from early Indian sources. Stifel uses four unknowns while Rudolff
originally reuses the second unknown. Mennher adopts Stifels method with
different values and slightly changing the unknowns. Mennher uses the values:

a+b+c=18
b+c+d=25
a+c+d=23
a+b+d=21

With the unknowns z, A, B and C for d, a, b and ¢ respectively, he expresses
the sum of all four as 18 + z, 25 + A, 23 + B and 21 + C.

numbers prior to Peletier’s.

20 Mennher, clearly learned the use of letters from Stifel, as he writes: “tout ainsi comme M.
Stiffelius ’enseigne, en posant apres le x pour la seconde position A, et pour la troisiesme
B, et pout la quatriesme C.” (Mennher, 1556, QiV; 1565 F fi" — F fiv).
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255. Quatre cGpaignons doibuent vy fom
me dargent, a fgauorr, le premier, fecong g;
tiers doibuent fl.18 Ic.—z‘-z‘--&uf-'-doibucn;ﬂ
25. le.3¢.4% & premicr doibuent fl.23.& Ic..;s.
premier, &.2¢.doibuent .21, I.ademandgcr{‘
combien chafenn doibt d pare? Pofez POurI’:.;
geut du quatricfine 1 %2, & pourle premier,
A.pour le deuviefme 1 B,pourle troifiefie ic,
adonctera 18-+ 1 %, autant que toute leur fop,.
me,quiieror egud 2§41 A.& 1 Afera cg.d1%
— 7 pour {argent du premier, & 2341 B.{ont
egaiS+raelerBeitegat 2 — ¢ pourlar
gentdufecond, & 21 44 C.izlilt(‘g.ﬁ 123
pourlargent du rrojﬁcﬁnc,lcﬁ;uclz 4produitz
font enfemble 4 2 — 5,622 18 + 1 2,013 %
fop: cgd33,& 1 2 eft eg.d 11 fl. pour le qua-
tricfiue,lefquelz adiouftes, anec § 8,8 en vien-
dront 29 fl.paur rourlcurargcnf. Stdonc %

Fig. 2.5: The use of the second unknown by Mennher (1556, f. F'fi").

As these four expressions have the same value, the debts of the first three
can be restated in terms of z, namely z — 7, z — 5, and = — 3 respectively.

Adding the three together with z leads to the sum of all four 42 — 15, which
is equal to 18 + z. From this it follows that = is 11, and the other debts are 4,
6 and 8. Most of the last twenty problems in the book are solved using several
unknowns.

2.9 Kaspar Peucer (1556)

The humanist Caspar Peucer wrote, among other works on medicine and
philosophy, a Latin algebra with the name Logistice Requlae Arithmeticae. The
book contributed little to the works published by Stifel and had little influence.
Except for a recent paper by Meifner and Deschauer (2005), Peucer seems to
be forgotten. He discusses the regula quantitatis by the term radicibus secundis
and provides four examples (Peucer 1556, ff. Tvir-Viir). He refers to Rudolff,
Stifel and Cardano for the origin of the method. His first example is the
ass and mule problems from the Greek epigrams, creating the indeterminate
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equation 1xz+1 = 1A—1. The other problems are linear ones involving multiple
unknowns. The symbolism is taken from Stifel (1544).

2.10 Towards a system of simultaneous equations

2.10.1 Buteo (1559)

Jean Borel, better known under his Latinized name Buteo, is an underesti-
mated as an author of mathematical works during the sixteenth century. He
started publishing only after he became sixty. His Logistica of 1559 is a natu-
ral extension of the ideas of Peletier. Though Peletier was the first to consider
an aggregate of equations, Buteo improved on Peletier and raised the method
to what we now call solving a system of simultaneous linear equations. The
naming of his book by the Greek term of logistics is an implicit denial of the
Arab contributions to Renaissance algebra. This position is shared by several
humanist writers of the sixteenth century.

Buteo introduces the second unknown in the third book on algebra in a
section De regula quantitatis (Buteo 1559, f. 189™). For the origin of the rule
he cites Pacioli and de la Roche (by the name Stephano). While the name of
the rule is indeed derived from de la Roche, Buteo remains quiet about his
main source, his rival Peletier.?!

After an explanation of the method by means of four examples he solves
many linear problems by multiple unknowns in the fifth book. He introduces
some new symbols but he had too little influence on his peers to be followed
in this. Where Peletier and Mennher still used the radix or cossic sign for the
first unknown, Buteo assigns the letter A to the first unknown and continues
with B, C; .. for the other unknowns. Ommitting the cossic signs all together,
Buteo takes a major step into the “representation of compound concepts”, a
necessary step towards algebraic symbolism according to Serfati (2010). The
next step would be the use of exponents as introduced by Descartes in the
Regule. Buteo further uses a comma for addition, the letter M for subtraction
and a left square bracket for an equation. Thus the linear equation

6 + 3y + 2c =84

is written as
6A,3B,2C[84

21 Apart from a theoretical dispute on the angles of contact, in which Buteo’s Apologia of
1562 pursues a refutation of Peletier, there existed a real hostility between them.
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Once an equation is resolved in one unknown, he uses two brackets as in
5C[60] for 5z = 60

A fragment of the fourth example is shown in Figure 2.6.

L A 1B 1C1D[34
1 A 3B.1C1D[ 35
1 A.1B. 4C1D[g2
1.4.18, 1G6D(78

2A4,6B,2C2D (72
24.1B.1C 1 D[54

§B.1C1D[33

2 A.2 B.2C12D[156
2 A.1B.1C1D[54

—_—

1B8.1C11 D122

§B.5C§§D[610
§B. 1C 1D[38

e e P

4C54D[571]

Fig. 2.6: Systematic elimination of unknowns by Buteo (1559, 194)

Buteo refers to equations, not by numbers as Peletier but at least by their
order. As an example let us look at question 30 (Buteo 1559, 357-8). His
commentary is very terse (see Table 2.8).

With this and other examples, Buteo systematically manipulates equations
to eliminate unknowns. His explanation refers explicitly to the multiplication
of equations and the operations of adding or subtracting two equations. The
idea of substitution is implicitly present, but is not performed as such, as can
be seen from the missing commentaries for steps (13) and (16).

2.10.2 Pedro Nunes criticizing the second unknown

Although from Portugese origin, Nunes wrote his treatise on algebra in Span-
ish and published it in Antwerp.?? Because his Algebra was published in 1567,
it could appear that Nunes did not take advantage of the significant advances

22 His name is therefore often written in the Spanish form Pedro Nufiez.
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24x + 12y + 8z = 336

multiply (4) by 4

multiplica aequationem (4) in 4

20z 4 5z = 180

(1)
(2)
3)
(4)
(

subtract (5) from (7)

auser (5) restat

|Symb01ic Meta description |Original text

1|z + % + % =14 premise Huius solution secundum quanti-
tatis regulam investigabitur, hoc
modo. Pone Biremes esse 1A,
Triremes 1B, Liburnicas 1C. Erit
igitur 14, B, 1/3 C [ 14. Item 1B,
1/3 A, C[13.Et1C,1/6 A,1/8 B
[ 14.

2 %—l—y—l—i:li’; premise

3%—}—%—1—2:14 premise

4|6x + 3y + 2z =84 multiply (1) by 6

5|4z + 12y + 3z = 156 |multiply (2) by 12

6|42 + 3y + 24z = 336 |multiply by 24

7

8

9

10z + 15y + 52 = 240

add (4) and (5)

adde (4) (5)

—_
(=]

10z + 60 = 15y

subtract (9) from (8)

Inter duas equationem postremas

que sunt (8) et (9) differentia est
(10)

11{5z = 60 subtract (10) from (8) qua sublata ex (10) restat (11)
12|z =12 divide (11) by 5 Partire in 5 provenit (12)
13{20x + 60 = 180 substitute in (12) in (8)

14{20z = 180 — 60 resolves (13) habeas Biremes ex aequatione ubi

est 180 auser 60

15|z =6 divide (14) by 20 partire (14) in 20
16[124+y+3 =13 substitute (15), (12) in (2)
17y =8 resolves (16) et Trimeres erunt 8

Quod erat quaesitum.

Table 2.8: Buteo’s handling of a system of linear equations.

in symbolic algebra established during the decades before him. However, in
the introduction, Nunes explains that he wrote most of the book over thirty
years ago.?3 He chose to base much of the problems treated in his book on
the Summa by Pacioli (1494). He questions some innovations that he learned
from Pacioli, such as the use of the second unknown. Nunes discusses the
problem of three men comparing their money as treated by Pacioli in distinc-
tion 9, treatise 9, paragraph 26 (1494, f. 191Y — 192"). However, the values
of the problem are not those of Pacioli but are identical to the problem of
Cardano, which we discussed above (2.2). Nunes does not reduce the problem

23 John Martyn discovered a manuscript in 1990, the Cod. cxiii/1-10 at Municipal Library
of Evora, Portugal. This Portugese text, written in 1533, contains an algebra which he at-
tributed to Pedro Nunes. The date corresponds well with this thirty years of time difference.
Martyn (1996) published an English translation and put much effort in the demonstration
of the similarities with the Spanish text of 1567. The attribution of this text to Nunez has
recently been refuted by Leitao (2002).
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to two linear equations in two unknowns to be resolved by manipulating the
equations as did Cardano (1545). Instead he follows the solution method in
two unknowns from Pacioli.?* He then provides a solution of his own, using a

single unknown and concludes with the following observation:2?

But having treated the same example, that is case 51, we solved this with much ease,
and more concise by the single unknown, without the use of the absolute quantity.
And all the cases that Father Lucas solved with the [rule of] quantity, we solved by
the rules of the unknown, without the aid of this last quantity.

Nunes is not very impressed by the requla quantitatis in which others saw “a

more beautiful” way for solving problems or even “a perfection of algebra”.
He believes that most (linear) problems can be solved easier and shorter by a
single unknown.

Similar criticism was formulated by other authors. Bosmans discovered a
copy of the Arithmetica Integra by Stifel (1544) with marginal annotations
from Gemma Frisius. The book, kept at the Louvain university library, has
unfortunately been destroyed during World War I. Bosmans (1905-6, 168)
reports three occasions in which Frisius critizes Stifel for using the second un-
known: “Haec quaestio non requirit secundas radices” (f. 252v), “hic quoque
secundis radicibus non est opus” (f. 253r), “et haec quastio secundis radi-
cibus non est opus” (f. 253v) and “et haec quaestio secundis radicibus absolve
potest” (f. 255r). This demonstrates that the use of the second unknown was
still controversial during the mid-sixteenth century.

One could blame Frisius and Nunes for a reactionary view point. Bosmans
(1908a, 159) quotes Nunes with some examples in which he rejects negative
solutions and zero as a solution to an equation. However, Nunes had a very
modern approach to algebra. As pointed out by Bosmans (1908a, 163), he can
be credited as being the first who investigates the relationship of the following
product with the structure of the equations (Nunes 1567, f. 125"):

(z+1)(xz+1),(z+1D)(z+2),(x+1)(x+3)...
e+ 1D)(z+1),2z+1)(z+2), 2+ 1)(x+3)...

As we now known from further developments, such investigations were impor-
tant to raise sixteenth century algebra from arithmetical problem solving to
the study of more abstract algebraic structures and relations. This leads us
to the last author before Viete writing on the Regula quantitatis.

24 We omit the solution here because a complete transcription of the problem with a
symbolic translation is provided by Bosmans (1908b, 21-2).

25 Nunes 1567, f. 225v: “Pero nos avemos tratado esto mismo exemplo, que es el caso 51, y
lo practicamos muy facilmente, y brevemente por la cosa, sin usar de la quantidad absoluta.
Y todos los casos que Fray Lucas practica por la quantidad, practicamos nos por las reglas
de la cosa, sin ayuda deste termino quantidad”.
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2.10.3 Gosselin (1577)

Guillaume Gosselin’s De Arte Magna is our last link connecting the achieve-
ments of Cardano, Stifel, and Buteo using the second unknown with Viete’s
study of the structure of equations in his Isagoge. Cifoletti (1993) has rightly
pointed out the importance of this French tradition to the further development
of symbolic algebra.

Gosselin is rather idiosyncratic in his notation system and seems to ignore
most of what was used before him. For the arithmetical operators, addition
and subtraction he uses the letters P and M, rather than 4+ and — as was
commonly used in Germany and the Low Countries at that time and also
adopted by Ramus in France. However, five years later in de Ratione (Gosselin,
1583) he did use the + and — sign. The letter ‘L’ (from latus) is used for the
unknown; the square becomes ‘Q’ and the cube ‘C’. In some cases he refers
to the second unknown by ‘q’, as did Cardano. For a linear problems with
several unknowns he switches to the letters A, B, C, as Buteo, but evidently
leading to ambiguities with the sign for 3. Even more confusing is the use of
‘L for the root of a number, such as

L9 for V9 and LCS for V/8

Accepting isolated negative terms, the letter ‘M’ is also used as MS8L for —8z.
Gosselin follows Buteo with equations to zero as in ‘3QM241L aequalia nihilo’,
for 322 — 242 = 0 (Gosselin 1577, f. 73?). The symbolism adopted by Gosselin
can be illustrated with an example of the multiplication of two polynomials
(ibid. f. 45Y):

4ALM6QPT

3QP4LM5

12CMI8QQP 21 Q

Producta 16QM24CP28L
M20LP30QM 35

Summa 67 QP SLM12C M 18 QQ M 35

The major part of book IV deals with the second unknown, though his ter-
minology is rather puzzling. Chapter II is titled De quantitate absoluta (f.
80") and chapter III (misnumbered as II) as De quantitate surda (f. 847).
In both these chapters Gosselin solves linear problems with several unknown
quantities. So what is the difference? Gosselin gives no clue as he leaves out
any definitions of the terms. However, we have previously seen that ‘abso-
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lute quantity’ is used by Nunes and quantita sorda by Pacioli and Cardano.?S
From a comparison of the five problems solved by ‘absolute quantities’ with
the four solved by the quantita surda it becomes apparent that Gosselin places
the distinction between multiple unknowns and the second unknown. Thus the
‘absolute quantities’ correspond with the symbolic unknowns A, B, C, .. as
used by Buteo. Gosselin leaves out the primary unknown of Stifel or Peletier,
as was previously done by Buteo. The quantita surda corresponds with the
quan. of Cardano (1545), for which Gosselin uses the symbol ¢. The positio of
Cardano becomes the latus for Gosselin.

ly+24a=735y—18
z + 20 = 4y
y:%x—i—f)

lz4+3+is45=20-9
=17
Sit prior numerus 1 L, fecundus 1 %

atque fic- qP2 P1L zqualia funt re-
fidui noncuple nempe 2 q M 18, &
addito quod deficit fubduétoque fur-
perfluo 1LP 20 zqualia 4q, fit1g,
L LPg,iam prior vt fupra fitx L, fe-
cundus erit = L P5,atqueadeo - LP
3PL LPgzqualiazL Mo, & addi-
to quod deficit fubdu&toque fuper-
fluo Z- L mquales 17, fit ynum latus
12, & tantus eft prior numerus, fecun-
dus< LPshocefts.

=12,y =8 )

Table 2.9: Gosselin’s use of the quantita surda (Gosselin, 1577, f. 84v)

Cifoletti (1993, 138-9) concludes on Gosselin that

it is true that this innovation originates with Borrel [Buteo], but Gosselin uses it with
a new skill that permits him to more easily solve the same problems proposed by
Borel. It seems reasonable to think that Viete took his symbol as point of departure to
arrive at his A; E. Gosselin could also be a source for the notation used by Descartes,
who in the Regulae proposes to designate the known term with lower-case letters and
the unknown with capitals.

26 Cifoletti (1993, 136) is wrong in claiming that “Cardano does not use the word surda
in this sense”. Furthermore, she translates the quantita surda as the surd quantity and
speculates on irrational quantities. However, the Italian term sorda, as used by Pacioli,
means ‘mute’ in Italian. Thus quantitate sorda may simply refer to the voiceless consonant
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20+ y+z+u=34

multiply (1) by 2

|Symb01ic Meta descriptionlOriginal text
1|z + % +2+5=17 premise 1ABCD aequalia 17
215 +y+ 2 +5=12 premise 1B1/3A1/3C1/3D aequalia 12
3|7+ % +z+ 5 =13 premise 1CABD aequalia 13
g+ e+ +u=13 premise 1D1/6A1/6B1/6C aequalia 13
5

revocentur ad integros numeros, exis-
tent 2A1B1C1D aequalia 34

z+3y+z+u=36

multiply (2) by 3

1A3B1C1D aequalia 36

T +y+4z+u =52

multiply (3) by 4

1A1B4C1D aequalia 52

r+y+z+6u="78

multiply (4) by 6

1A1B1C6D aequalia 78

el d k=]

2x 4+ 2y + 5z + Tu = 130

add (7) and (8)

addamus duas ultimas aequationes,
tertiam scilicet et quartam, existent
2A2B5C7D aequalia 130

10

y + 4z + 6u = 96

subtract (5) from

(9)

tollamus hinc primam, restabunt
1B4C6D aequalia 96

11

2z + 4y + 2z + Tu = 114

add (6) and (8)

addamus quartam et secundam, fient
2A4B2C7D aequalia 114

12

3y + z + 6u = 80

subtract (5) from

(11)

tollamus hinc primam,
3B1C6D aequalia 80

supererunt

13

2x + 4y + 5z + 2u = 88

add (6) and (7)

addamus secundam et tertiam aequa-
tionem, fient 2A4B5C2D aequalia 88

14

3y+4z+u=>54

subtract (5) from
(13)

tollamus primam, restabunt
3B4C1D aequalia 54

15

3y + 12z + 18u = 288

multiply (10) by 3

iam vero triplicemus 1B4C6D quae
fuerunt aequalia 96 fient 3B12C18D ae-
qualia 288

16

11z + 12u = 208

subtract (12) from
(15)

tollamus hinc 3B1C6D aequalia 80,
restabunt 11C12D aequalia 20

17

8z + 17u = 234

subtract (14) from
(15)

subducamus iterum ex eadem tripli-
cata aequatione 3B4C1