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Abstract. This paper discusses Curry’s work on how to implement the
problem of inverse interpolation on the ENIAC (1946) and his subsequent
work on developing a theory of program composition (1948-1950). It
is shown that Curry anticipated automatic programming and that his
logical work influenced his composition of programs.
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1 Introduction

In 1946, the ENIAC (Electronic Numerical Integrator and Computer) was re-
vealed to the public. The machine was financed by the U.S. army and thus it
was mainly used for military purposes like e.g. the computation of firing tables.
It was the first U.S. electronic, digital and (basically) general-purpose computer.
ENTAC did not have any programming interface. It had to be completely rewired
for each new program. Hence, a principal bottleneck was the planning of a com-
putation which could take weeks and it became obvious that this problem needed
to be tackled at some point.

In the middle of 1945 a Computations Committee was set up at Aberdeen Prov-
ing Ground to prepare for programming the new computing machines [11]. The
committee had four members: F.L. Alt, L.B. Cunningham, H.B. Curry and D.H.
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Lehmer. Curry and Lehmer prepared for testing the ENIAC, Cunningham was
interested in the standard punch card section and Alt worked with Bell and IBM
relay calculators. Lehmer’s test program for the ENIAC was already studied in
[9]. Here, we will deal with Haskell B. Curry’s implementation of a very concrete
problem on the ENTAC, i.e., inverse interpolation, and how this led him to de-
velop what he called a theory of programming.

Of course, Curry is best known as a logician, especially for his work on combi-
nators [1]. The fact that, on the one hand, a logician got involved with ENIAC,
and, on the other hand, started to think about developing more efficient ways
to program a machine, makes this a very early example of consilience between
logic, computing and engineering. Curry’s work in this context has materialized
into three reports and one short paper. The first report [5], in collaboration with
Willa Wyatt, describes the set-up of inverse interpolation for the ENIAC. The
second and third report [2,3] develop the theory of program composition and
apply it to the problem of inverse interpolation. A summary of these two reports
is given in [4]. Despite the fact that the reports [2,3] were never classified, this
work went almost completely unnoticed in the history of programming as well as
in the actual history and historiography. Only Knuth and Pardo have discussed
it to some extent [8, pp. 211-213].

2 A study of inverse interpolation of the ENIAC

Together with Willa Wyatt, one of the female ENTAC programmers, Curry pre-
pared a detailed technical report that presented a study of inverse interpolation
of [sic] the ENTAC. The report was declassified in 1999. This problem is ex-
plained as follows: “Suppose we have a table giving values of a function z(t) [...]
for equally spaced values of the argument ¢. It is required to tabulate ¢ for equally
spaced values of z.” [5, p.6] This problem is highly relevant for the computation
of firing tables. Indeed, given the coordinates of the target, it allows to compute
the angle of departure of a bomb as well as the fuse time.

The set-up is amply described in the report, with over 40 detailed figures of
wirings for parts of the program and many technical notes on exploiting hard-
ware specificities of the ENIAC. Notwithstanding this concreteness, Curry and
Wyatt have more general ambitions, viz. “the problem of inverse interpolation
is studied with reference to the programming on the ENTAC as a problem in its
own right [m.i.].” [5, p.6] Thus, even though the practical goal was to compute
firing tables, the aim was to consider the problem and its implementation in
its generality: “[The] basic scheme was not designed specifically for a particular
problem, but as a basis from which modifications could be made for various such
problems.” [5, p.54] For example, the scheme could be modified to provide for
composite interpolation. In total, four modifications are discussed in detail and
21 more are suggested in the conclusion.

In their analysis Curry and Wyatt give a method for structuring a program. They
distinguish between stages and processes. Processes are major subprograms that
can be repeated over and over again. A process consists of pieces called stages.
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Each stage is a program sequence with an input and one or more outputs. About
these stages Curry and Wyatt point out : “The stages can be programmed as
independent units, with a uniform notation as to program lines, and then put
together; and since each stage uses only a relatively small amount of the equip-
ment the programming can be done on sheets of paper of ordinary size.” [5, p.10]
Thus, hand-writing replaces hand-wiring since modifications of the problem can
be obtained by changing only these stages without the need to modify the com-
plete (structure of the) program. In this sense, the concept of stages adds to the
generality of their study.

Curry’s experience with putting the inverse interpolation on the ENIAC was the
starting point for a series of further investigations into programming. Moreover,
he would use the interpolation problem as a prototypical example for developing
and illustrating his ideas. As Curry wrote later: “This [interpolation] problem is
almost ideal for the study of programming; because, although it is simple enough
to be examined in detail by hand methods; yet it is complex enough to contain
a variety of kinds of program compositions.” [4, p. 102]

3 On the composition of programs

In 1949 and 1950 Curry wrote two lengthy reports for the Naval Ordnance that
proposed a theory of programming different from the Goldstine-von Neumann
(GvN hereafter) approach [6] (see Sec. 3.4) that “evolved with reference to in-
verse interpolation” [2, p.7]. The motivation and purpose of the reports is made
absolutely clear [2, p.5]:

In the present state of development of automatic digital computing ma-
chinery, a principal bottleneck is the planning of the computation |...]
Ways of shortening this process, and of systemizing it, so that a part
of the work can be done by the technically trained personnel or by ma-
chines, are much desired. The present report is an attack on this prob-
lem from the standpoint of composition of computing schedules [...] This
problem is here attacked theoretically by using techniques similar to
those used in some phases of mathematical logic.

Note that Curry explicitly considered the possibility of mechanizing the tech-
nique of program composition and thus made the firsts steps towards automatic
programming, i.e., compiling. As G.W. Patterson stated in a 1957 (!) review on
[4]: “automatic proramming is anticipated by the author” [10, p. 103]

3.1 Definitions and assumptions

Unlike modern programming languages which are machine-independent, Curry
chose to build up his theory on the basis of a concrete machine, viz. the TAS
computer that had von Neumann architecture. He leaves “the question of ulti-
mate generalization [i.e. machine-independence] until later”, but does make an
idealization of the TAS machine. Curry introduces several definitions related to
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his idealized TAS machine. Furthermore, he makes certain assumptions that are
used to deal with practical problems of programming.

The machine has 3 main parts: a memory, an arithmetic unit (consisting mainly
of accumulators A) and a control (keeping track of the active location in mem-
ory). The memory consists of locations and each location can store a word and
is identified by its location number. There are two types of words: quantities
and orders. An order consists of three main parts: an operator and two loca-
tion numbers, a datum location and an exit location. There are four “species”
of orders: arithmetical, transfer, control and stop orders. Roughly speaking, a
transfer order moves a word from one position to another, a control order changes
location numbers. A program is an assignment of n + 1 words to the first n + 1
locations. A program that exists exclusively of orders resp. quantities is called
an order program resp. quantity program. A normal program X is a program
where the orders and quantities are strictly separated into an order program A
and a quantity program C with X = AC.

Note that it is impossible to tell from the appearance of a word, if it is a quantity
or an order. Curry considers this as an important problem [2, p.98]:

[...] from the standpoint of practical calculation, there is an absolute
separation between [quantities and orders]. Accordingly, the first stage
in a study of programming is to impose restrictions on programs in order
that the words in all the configurations of the resulting calculation can
be uniquely classified into orders and quantities.

Curry introduces a classification of the kinds of programs allowed. In this context,
the mized arithmetic order is crucial. This is an arithmetical operation that
involves an order as datum. For example, an important use of mixed arithmetic
orders is looking up consecutive data in a table . Here, it is employed to effectively
calculate with location numbers. To enable this, Curry adds the table condition,
i.e. one may add one to a location number to get a next value. Ultimately, this
results in the notion of a reqular program, which is either a primary program or a
secondary program that satisfies the table condition whereby a primary program
never involves mixed arithmetic orders, but a secondary program at least one.
In any case, the calculation has to terminate.

3.2 Steps of program composition

Throughout the two main reports, Curry provides several steps for the process of
program composition. As noted by Curry, these steps are suitable for mechaniza-
tion. In this respect, the techniques provided in these steps can be considered as
techniques for compiling,.

a. Transformations and replacement The first step in program composi-
tion as discussed by Curry concerns the definition of the different transforma-
tions needed in order to attain compositions on the machine level. Let X =
MoMiMs..Mp;Y = NogN1N3...Ng; Z = LoL1Ly...L, be three regular programs
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with Ny, My, Lo initiating orders, T'(k) = k&’ with k¥ < m, ¥’ < n some numerical
function. Given a program X such that p = m then {T}(X) computes the pro-
gram Y with ¢ = n such that:

No = My
(T}(X) = N; = My, if there are {ki,...,k;, ..., k. } for which T'(k;) = i,4 > 0 (x)
and if ¢ > 1,3f such that f(ki,..., k) = k;
N; =J if there is no k such that T'(k) is defined

where J is a blank. {T}(X) is called a transformation of the first kind. It boils
down to a reshuffling of the words in X, where it is not necessary that every
word in X reappears in Y. Note that the function f is needed in order for {T'}
to be uniquely defined.

A transformation of the second kind (T)(X) gives the Y such that ¢ = p and
every word N; € Y is derived from a word M; € X by replacing every location
number k in every order M; of X by T(k). If M; is a quantity then N; = M;,.
This results in changing the datum and exit numbers in the orders to correspond
with the reshuffling from the transformation of the first kind.

Given program X and Y and 6 a set of integers then the transformation %x
called a replacement gives the program Z of length r + 1 where r = p if p > ¢
else r = q and for each L; € Z, 0 < i <r:

Myifi=0M;ifid0,i<p
L= N;ift<gand (: €6 ori>p)
Jifi€0,i>q

Thus, a replacement is a program made up from two programs by putting, in
certain locations of one program, words from corresponding locations in the other
program. Curry then gives definitions for transformations of the second kind
with replacement, defined as {ei,T = £({T}HX)) and transformations of the
third kind. This last class concerns transformations that result from combining

transformations of the first and second kind with replacements:

[T](z) = {T}(T)(x)

7] = {F}D)(@)

(0T (x) = {5-H(T)(x)

S(x) = [§F](2) = {§ (D) (@)

Note that 0 is a void program.
Curry goes on to show that it is possible to convert every regular program into
a normal program under certain restrictions.

Compositions Using these three kinds of transformations, Curry embarks on
the study of diverse program compositions. He considers the following composi-
tions: simple substitution, multiple substitution, reduction to a single quantity
program, loop programs and finally complex programs. This includes to find the
right combination of the different transformations and to determine the numer-
ical functions T'(k) used in the transformations. Here, we will just discuss how
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a simple substitution can be achieved.

Let Y = BC and X = AC be normal programs, with «, 3,7 the respective
lengths of A, B,C, m is the location number of a word M in A where the pro-
gram Y is to be substituted and n the location number of the starting location
of B. The following numerical functions are needed:

k for0<k<m
Ti(k)=¢m+n—1fork=m
k+p8—-1form<k<a+7y

Ty(k) = m+k—nforn<k<n+g
2T la+k—nforn+B8<k<n+pf+~

Then with 0 the set of k’s with n < k < m + (3, the simple substitution of Y in
X at M is given by Z = [[T(:]%](x) Consider that, if M is an output of X, the
simple substitution of Y in X results in the program composition Z, denoted as

Z=X-Y.

Basic programs In [3], Curry starts with an analysis of programs into their
simplest possible programs called basic programs. Curry gives several reasons
for the significance of determining basic programs [4, p.100]:

(1) Experience in logic and in mathematics shows that an insight into
principles is often best obtained by a consideration of cases too simple
for practical use [...] (2) It is quite possible that the technique of program
composition can completely replace the elaborate methods of Goldstine
and von Neumann [...] (3) The technique of program composition can
be mechanized; if it should prove desirable to set up programs |[...] by
machinery, presumably this may be done by analyzing them clear down
to the basic programs

A basic program consists of a single order plus their necessary outputs and data
[3, p.22]. Therefore, two important concepts are locatum and term. A locatum is
a variable that designates a word in the machine, a term is a word constructed
by the machine from its locata at any stage. If £ is a term and A\ a locatum,
then {£ : A} is a program that calculates the term ¢ and stores it in the locatum
A, i.e. yielding what we would nowadays call an assignment. Given a predicate
@ constructed by logical connectives from equalities and inequalities of terms,
then {®@} designates a discrimination which tests whether @ is true or not. The
assignment program can be analyzed in more basic programs using the equation:

{0(€) : A} ={&: p} = {o(w) : A}

where ¢ is some function.
Curry defines several functions and orders to list all the basic programs. First,
he gives a list of arithmetic functions:

7T0(t) =+t 7T'1(t) = —t
mo(t) = +[t| ms(t) = —|[t|
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Besides these arithmetic functions, Curry defines two mixed arithmetic orders,
ie., d(x) and e(x) where d(x) is an order that reads the location number of
its own datum into the accumulator and e(*) an order that reads the location
number of its own exit number into the accumulator. Similarly, d(z) designates
the location number of the datum of order x, and e(z) the location number of
the exit number of the order x. Some more additional orders are the conditional
and unconditional jump and the stop order.

On the basis of these most basic orders Curry defines his final set of basic orders,
of which some are the result of simple compositions of the original set of basic
orders. This is done for practical reasons. In this way, Curry replicates all orders
of the GvN coding plus adds some more that he deems useful. E.g.,‘clear’, absent
in the GvN coding, is {0 : A}; a conditional jump {A < 0}; {A + m(R) : A},
add the absolute value of the register R to the accumulator A; and the partial
substitution order, S, in the GvN coding, becomes {4 : d(z)}.

Analysis and synthesis of expressions How can one convert expressions such
as (x + 1)(y + 1)(z + 1) to a composition of basic programs? This problem is
treated in the last three chapters of [3]. Ch. III deals with arithmetic programs,
Ch. IV with discrimination programs and Ch. V with secondary programs.

In Ch. IIT Curry gives all the necessary rules, which are based on inductive
definitions, for transforming fairly straightforward arithmetic expressions (ex-
pressions that do not need control orders or discriminations) to a composition of
basic programs. We will not go into the details of this here. However, to clarify
what is done, the rules allow to convert the expression (z + 1)(y + 1)(z + 1) to:

{z: A} -{A+1: A} - {A:w}—>{y: A} - {A+1: A} - {A: R} —
{wR: A} - {A:w} -{Z: A} - {A+1: A} - {A: R} - {wR: A}

Curry only gives a partial treatment of discrimination and secondary programs.
For discrimination programs, this includes procedures to handle elementary
propositions that are used as predicates. For secondary programs, some specific
programs, such as ‘tabulate’, are synthesized.

3.3 Notation

As is clear from 3.2, Curry develops a notation for programs different from the
flow charts discussed by Goldstine and von Neumann. We already introduced
the notation for compositions and assignments. Another notation is that for
conditionals, i.e., X — Y & Z means that X is either followed by Y or Z
depending on the output of X.

Curry’s notation allows to code several expressions. Here is the notation for n!:

nl={1:A} = {A: 2} = {A:i} - (Y — (It(m,i) = I & O3))

Y = {iz: z}

It(m,i) ={i: A} > {A+1: A} - {A:i} > {m: A} - {A—i: A} - {A <0}
where I represents the input to Y, A is an accumulator of the arithmetical unit
and Os is some output channel.
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3.4 A Comparison with the Goldstine-von Neumann approach

Originally, Curry feared that the third part of the GvN reports [6, Part III]
Combining routines might overlap with his own work on composition of programs
[2, p. 6]. Yet by 1950, Curry had seen this report and promptly concluded that
his approach differed significantly from GvN’s [3, pp.3—4]. Perhaps, the chief
difference in their respective approaches is the fact that Curry’s is the more
systematic one. There are several indications of this finding. For example, the
classification of programs (Sec. 3.1) or their analysis into basic programs (Sec.
3.2) with the explicit goal of synthesizing and analyzing expressions. Curry also
notes that the GvIN approach is not suitable for automatic programming;:

[GVN give] a preparatory program for carrying out on the main machine
a rather complicated kind of program composition. But one comment
seems to be in order in regard to this arrangement. The scheme allows
certain data to be inserted directly into the machine by means of a
typewriter-like device. Such an arrangement is very desirable for trouble-
shooting and computations of a tentative sort, but for final computations
of major importance it would seem preferable to proceed entirely from a
program or programs recorded in permanent form, not subject to erasure,
such that the computation can be repeated automatically [...] on the basis
of the record.” [3, p. 4]

To this Curry adds the following footnote in order to strengthen his point: “It
is said that during the war an error in one of the firing tables was caused by
using the wrong lead screw in the differential analyser. Such an error would have
been impossible if the calculation had been completely programmed.” Clearly,
this remark indicates that Curry was not only highly aware of the significance
of a digital approach but also of the possible merits of higher-level programming
and the prospects of automated program optimization.

A second important point made by Curry, concerns the fact that he considered
his notation as more suited for automatic programming than the flow chart
notation of the GvN approach [2, p.7]:

The present theory develops in fact a notation for program construc-
tion which is more compact than the “flow charts” of [6, Part I]. Flow
charts will be used [...] primarily as an expository device. By means of
this notation a composite program can be exhibited as a function of its
components in such a way that the actual formation of the composite
program can be carried out by a suitable machine.

In general, one may say that the cardinal difference of Curry’s approach is due
to the fact that it is based on a systematic logical theory, whereas this is not the
case for the GvN-approach.

3.5 Logic and the theory of program composition

In [3, p.5], Curry makes explicit that he regards his approach as a logician’s:
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The objective was to create a programming technique based on a system-
atic logical theory. Such a theory has the same advantages here that it
has in other fields of human endeavor. Toward that objective a beginning
has been made.

Curry’s guiding ideas while doing research in mathematical logic are the same
as those that guided his theory of composing programs [1, p. 49]:

[[t is evident that one can formalize in various ways and that some of
these ways constitute a more profound analysis than others. Although
from some points of view one way of formalization is as good as any other,
yet a certain interest attaches to the problem of simplification [...] In fact
we are concerned with constructing systems of an extremely rudimentary
character, which analyze processes ordinarily taken for granted.

Curry’s analysis of basic orders and programs into the composition of more ele-
mentary orders (cfr. Sec. 3.2, pp. 6-7) is a clear example of this approach. In fact,
Curry’s analysis is at some points directly informed by his theory of combinators.
In Sec. 3.2, p. 4 we explained the several kinds of transformations necessary to
attain composition on the machine level. Remarkably, Curry makes use of func-
tions rather than of combinators. However, he does rely on certain concepts of
combinators in his explanation of how regular programs can be transformed into
normal programs. This is related to the condition (%) used in the definition of
transformations of the first kind. There, a projection function is needed to select
a value k;. Then, the function T'(k,) = ¢ is called K-free, if it has at least one
solution, W-free, if it has no multiple solutions, and C-free, if T is monotone
increasing, whereby K = A\.zy.x, W = Azy.xyy and C = \xyz.xzy.

On top of this analysis, Curry superposes a calculus of composition. While deal-
ing with the synthesis of programs, Curry arrives at the problem that a program
can be synthesized in more than one way. Hence, a calculus of equivalences
becomes accessible. [4, p.100]:

When these processes [of composition| are combined with one another,
there will evidently be equivalences among the combinations. There will
thus be a calculus of program composition. This calculus will resembles,
in many respects the ordinary calculus of logic. It can be shown, for
example, that the operation “—” is associative. But the exact nature of
the calculus has not, so far as I know, been worked out.

Curry provides several equivalent programs and points out that finding shorter
programs equivalent to longer ones is important with respect to memory which
was very expensive at the time. His approach to study programs and their vari-
ations antedates by nearly a decade the Russian study of equivalent programs [7].

4 Discussion

The ENTAC was not just one of the first electronic computers, it was also the
place where ideas originated that are still relevant today. While Lehmer’s work
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on ENITAC announced the use of the computer as a tool for experimental math-
ematics, it was Curry’s work to anticipate parts of a theory of programming.

Surely, Curry was aware that his suggestions would create a certain distance
between man and machine, a distance which was almost completely absent with
ENTAC, and only marginally present in the GvIN approach. Thus, he developed
his theory of compositions in a way that allowed for mechanization and conse-
quently automatic programming. As a result, a theory of programming emerged
from the practical problems related to hand-wiring thereby also transgressing the
limitations of a notation of programs still bound to hand-writing and manual
composition. This, however, does not mean that Curry completely abstracted
away from the concrete context he started from. On the contrary, his work is
a good example of the mutual interactions between logic and the machinery of
computing. To draw a conclusion, Curry’s work reveals an interesting balance
between, on the one hand, the highest awareness of the practicalities involved
with the hardware and concrete problems such as inverse interpolation, and, on
the other hand, the general character of a theory of compositions that becomes
a calculus in its own right but still is evidently rooted in these practicalities.
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