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Abstract

In a celebrated paper “Can one hear the shape of a drum?” (Amer. Math. Monthly

73 (1966), 1–23) M. Kac asked his famous question on the consequences of isospec-

trality, which was eventually answered negatively by construction of non-congruent

planar isospectral pairs.
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Relation between Shapes and Sounds of Drums, According to M. Kac

In many fields of physics, such as quantum mechanics or electromagnetics, the stationary

Schrödinger equation, or Helmholtz equation

(∆ + E)Ψ = 0 (1)

plays a central role. For two-dimensional domains, in the framework of quantum chaos,

semiclassical trace formulas (see e.g. (Gutzwiller, 1990)) provide a connection between

the density of energy levels and classical features of the domains such as area, perimeter,

and classical trajectories of a particle in the domain. Two domains sharing the same

spectrum must therefore share common classical features. But do these domains have to

be identical? In a celebrated paper “Can one hear the shape of a drum?” (Amer. Math.

Monthly 73 (1966), 1–23) (Kač, 1966), M. Kac formulated his famous question

“Can one hear the shape of a drum?”.

Formally, answering “no” to this question amounts to finding planar isospectral pairs

— non-isometric planar simply connected domains for which the sets {En ‖ n ∈ N}
of solutions of (1) with Ψ|Boundary = 0 are identical. Any example of such a pair of

non-congruent planar isospectral domains yields a counter example to Kac’s question.

Since the appearance of (Kač, 1966), more than 500 papers have been written on the

subject.

TO PUT SOMEWHERE IN THE INTRODUCTION:

A. One-dimensional systems

The frequency spectrum uniquely determines the length of the system. Mathematically, so-

lutions of the Laplace equation on an interval of length L are simply given by sin(nπx/L).

ETC....
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Figure 1 The paradigmatic pair of isospectral billiards with seven half-square shaped base tiles.

B. Vibrating plates experiments (Chladni)

C. Physical problems

• Scalar problem: vibrating membranes (Helmholtz equation for acoustical modes

with E = k2 and k = 2πν/c, where ν is the frequency and c the velocity of sound),

quantum mechanics (time-independent Schrödinger equation)

• Electromagnetic problem: for a cavity with perfectly reflecting walls, an electromag-

netic wave verifies Maxwell equations... with boundary conditions E⊥ = .... Here

k = 2πν/c, with c the speed of light;

• billiards.

Billiards are two-dimensional closed compact domains of the Euclidean plane R2. We will

be mainly concerned here with systems modeling the behaviour of a particle in a box,

whose dimensions are such that it can be assumed that it can be approximated by a two-

dimensional enclosure. The behaviour of the particle can be described, in the framework

of quantum mechanics, by a wavefunction ψ, which is a function of the position of the

particle, and which characterizes the amplitude of probability ψ(x) that the particle be

located at position x. If the system is described by the Hamiltonian H, the wavefunction
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satisfies the stationary Schrödinger equation

(−H + E)ψ = 0. (2)

For two-dimensional billiards, defined by a closed contour ∂B in the plane, the Hamilto-

nian describes the free motion inside the billiard and hard-wall boundary conditions; it

reads H = p2/2m inside the boundary enclosure ∂B, ∞ outside. The study of billiards

consists of looking for solutions of equation (2) for the free motion of a particle of mass m

inside the billiard, imposing boundary conditions on ∂B. Using units such that ~ = 1 and

m = 1/2, the stationary Schrödinger equation then reads

(∆ + E)ψ = 0. (3)

We will consider

• Dirichlet boundary conditions ψ|∂B = 0;

• Neumann boundary conditions ∇ψ|∂B = 0.

Solving equation (3) gives eigenfunctions ψn and eigenvalues En; if boundary conditions

are imposed there is as infinite but countable number of real positive eigenvalues: we note

0 < E1 ≤ E2 ≤ E3 · · · . Apart from some very special cases (e.g. the rectangular billiard),

the analytical calculation of eigenvalues or eigenfunctions is practically impossible.

However their statistical behaviour can be characterized, as we will see later.

D. Quantum chaos

In his work “Essai philosophique sur les probabilités”, the French philosopher and mathe-

matician Pierre Simon de Laplace writes in 1776 that “If we could imagine an intelligence

that, for a given time, would capture all relations between beings in this universe, it could

determine for any given time in the past or in the future the respective position, move-

ments and, more generally, characteristics of all these beings.” Laplacian determinism

prevailed up to the end of the 19th century, when the mathematician Jacques Hadamard
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stressed the existence of systems for which time evolution depended strongly on initial

conditions, which forbids any long-term prediction. In his book ”Science et Méthode”

(1908), Henri Poincaré states the fact that “A cause so small that it escapes our attention

may determine a considerable effect that we are to see, and then we say that this effect is

due to chance.” Classical systems are thus sensitive to initial conditions, which make their

evolution impredictable; very quickly chaos appears. This has led to the birth of new fields

such as the study of stochastic systems, whose aim is at finding, through a statistical ap-

proach of phenomena, laws that govern chaos. Poincaré distinguishes between integrable

systems, whose equations of motion can be made equivalent, by an appropriate change

in variables, to a set of independent systems with one degree of freedom. The equations

of motion for systems with one degree of freedom can be solved analytically, and there-

fore integrable systems are characterized by the fact that their equations of motion can be

solved exactly. In integrable systems, trajectories occur in families. On the other hand,

systems whose equations of motion are nonlinear do not admit generically analytical so-

lutions: they are called non-integrable. In general, trajectories do not occur in families.

They are isolated, and chaotic, which means that two trajectories initially very close can

quickly diverge. For instance, the hydrogen atom, whose classical description can be done

in terms of a two-body problem, is integrable, whereas the helium atom is more complex

and non-integrable. This distinction establishes two classes in the world of classical me-

chanics. One is the class of integrable systems, whose equations of motion are exactly

solvable, and which are governed by predictability. The other contains all non-integrable

systems, among which chaos seems to be a characteristic.

The intrinsic unpredictability conferred to non-integrable systems by this chaotic be-

haviour has met the quantum revolution at the beginning of the twentieth century. Heisen-

berg’s uncertainty principle makes any microscopic determinism impossible: according to

this principle, it is impossible to know with arbitrary accuracy both the momentum and

the position of a particle. However, the very notion of a trajectory looses its meaning in

quantum mechanics. The evolution of a system is governed by a Schrödinger equation,

which is a linear equation describing equally hydrogen and helium atoms. A system is

described by the Hamiltonian and its eigenvalues and eigenfunctions which contain all

information about its evolution. Since wavefunctions represent probability density ampli-

tudes, this description is probabilistic by nature. But the statistical description that allowed
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to circumvent the lack of knowledge on a system because of its chaotic behaviour does not

exist any more in quantum mechanics. Thus, quantum mechanics seems to ignore the

distinction between chaotic and integrable systems.

However, a detailed study of experimental data coming from neutron scattering on heavy

atomic nuclei revealed that such processes, which are chaotic, posess a local density of

energy levels which coincides with the distribution of eigenvalues of random matrices

(that is, matrices with independently distributed random coefficients). On the other hand,

integrable systems, like for instance an electron in a rectangular box, displayed a local

density of energy levels distributed like independent random variables. According to their

classical behaviour, systems thus appeared to be characterized by very different energy

level distributions. In particular, for independent random variables the probability for two

levels to be very close is huge, whereas eigenvalues of random matrices have a character-

istic behaviour called “level repulsion”; that is, the probability for two energy levels (or

eigenvalues) to be close to each other goes to zero when the distance between nearest

levels vanishes. At the beginning of the eighties, it became clear that there was indeed a

quantum evidence of classical characteristics (integrability or chaoticity) of a system, and

that the classical behaviour governed e.g. the properties of the local density of energy

levels.

Numerical and experimental study of many various systems has confirmed the existence of

two classes for the distribution of energy levels, corresponding to the two distinct classical

behaviours of integrable or chaotic systems: all integrable systems on the one hand, all

chaotic systems on the other hand, have a similar quantum behaviour. One can naturally

wonder about the reasons of this correspondence, which is a manifestation of the deep

connection between the classical and the quantum world. It is well known that classical

mechanics can be seen as a limit of quantum mechanics when Planck’s constant, seen as

a parameter, goes to zero. It is therefore natural that, for small enough values of this

parameter, classical characteristics of quantum systems begin to emerge. If one considers

an electron in a box, one can construct a certain linear combination of wave functions

that describes its probability density distribution at each point of the box. At the classical

limit, this probability distribution gets localized (that is, takes higher values) on classically

authorized trajectories. The quantum systems thus somehow “knows” about classical tra-

jectories of the underlying classical system; it is therefore quite natural that the statistical
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behaviour of quantum energy levels be, at least partly, related to the classical features of

the system. It should be briefly mentioned that there is a great variety of systems beyond

integrable and chaotic ones. In particular, non-integrable systems can display various

degrees of chaos; some are not even chaotic. This quantum-classical correlation can be

understood in a less handwaving way, in the framework of quantum chaos, by a tool called

trace formula, which will be the subject of section V.B.2.

As the study of isospectral billiards wasa historically mainly concerned with polygonal

billiards, it should be mentioned that there exists in particular a class of billiards called

pseudo-integrable billiards. These are both non-integrable and non-chaotic billiards, and

their classical characteristics intermediate between those of integrable and those of chaotic

billiards. For instance, classical trajectories appear within families of parallel trajectories

of same length, but nevertheless the equations of motion are not exactly solvable because

of the presence of diffraction corners. The quantum study of such diffractive systems has

revealed that for many of them the energy level nearest-neighbour distribution also dis-

played properties intermediate between those of integrable and those of chaotic billiards.

In particular they display level repulsion, like chaotic billiards or eigenvalues of random

matrices; but the nearest-neighbour distribution has only an exponential decrease, like

for integrable systems or randomly distributed variables. These distributions are called

“intermediate statistics”.

E. Mathematical problem

harmonic functions (solutions of Laplace equation).

• Dirichlet problem

• Neumann problem (also called in old papers hydrodynamic problem)

• mixed boundary conditions: Zaremba (Zaremba, 1927) proposed in 1927 the gen-

eralized problem of finding, for a given L2 vector field V , a harmonic L2 function u

such that ∀h harmonic function
∫

(V −∇.u).|∇h| = 0. He showed that if divV=0 in

the whole domain this problem is equivalent to Neumann problem.
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I. A PEDESTRIAN PROOF OF ISOSPECTRALITY

The first examples of isospectral billiards in the Euclidean plane were constructed by us-

ing powerful mathematical tools. We will however postpone this historical construction to

section III.3. This sections aims at presenting the main ideas that are involved in isosec-

trality, so that the reader can acquire some intuition on it. More rigorous mathematical

grounds will be provided in the next section.

A. Paper-folding proof

We shall start with a simple construction method that was proposed in (Chapman, 1995).

It is based on the so-called ”paper-folding” method. To illustrate it we will follow (Thain,

2004), where the method is illustrated for a simple example. Consider the two billiards

3 4

7

1 2

5 6

1 2 3 4

5 6 7

Figure 2 The pair 73 (see appendix B) of isospectral billiards with a rectangular base shape.

in Fig. 2. Each billiard is made of seven identical rectangular building blocks. The solid

lines are hard wall boundaries, the dotted lines are just an eyeguide marking the building

blocks. Let φ be an eigenfunction of the left billiard with energy E. The goal is to construct

an eigenfunction of the right billiard with the same energy, that is a function which

• verifies Eq. (3);

• vanishes on the boundary of the billiard;

• has a continuous normal derivative inside the billiard.

The idea is to define a function ψ on the right billiard as a superposition of translations

of the function φ. Since Helmholtz equation (3) is linear, any linear combination of trans-

lations of ψ will be a solution of Helmholtz equation with the same eigenvalue E in the

interior of each building block of the second billiard. The problem reduces to find a lin-

ear combination that vanishes on the boundary and has the correct continuity properties
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inside the billiard. The following method allows to obtain all these properties simultane-

ously. Take three copies of the left billiard of Fig. 2. Each copy is then folded in a different

folding 1

folding 2

folding 3

1 2 3 4

5 6 7

−7

2+4

5−6+7

−4+7

−1+2−5 3−6

−4

1

1 2−3

5 6

−1+2−5 1+3−6 5−6+7

2+4+6 1−4+7

1 2 3 4

5 6 7

2−3−7

3

3−4+5

Figure 3 Pictorial representation of the paper-folding method

way, as shown in Fig. 3 (left column). Then the three folded billiards are stacked on top of

each other as indicated in the right column of Fig. 3; note that the first shape (folding 1)

has been translated on the left before being stacked, and that the second shape (folding 2)

has been rotated by π. Once superposed, these three billiard yield the shape of the right

billiard of Fig. 2.

Now we make a correspondence between stacking two sheets of paper and adding the

functions defined on these sheets; moreover stacking the reverse of a sheet corresponds to

adding the opposite of the function. For instance in folding 3, a minus sign is associated

in the right column to tiles 3 and 4, which are folded back, and a plus sign to the other

tiles which are not. The function ψ is defined by this “folding and stacking” procedure.

For instance is is defined in the tile numbered 1 in Fig. 2 by

ψ|tile1 = −φ|tile1 + φ|tile2 − φ|tile5. (4)
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The procedure above ensures that ψ vanishes on the boundary and has a continuous

derivative across the tile boundaries. Consider for instance the leftmost vertical boundary

of the right billiard. We have φ|tile5 = 0 on this boundary (since it is at the boundary of the

left billiard), and φ|tile1 = φ|tile2 on this boundary since tiles 1 and 2 are glued together.

Thus, ψ given by Eq. (4) indeed vanishes on the leftmost vertical boundary of the right

billiard.

With the paper-folding method, it is clear that what matters is the way the building blocks

(the elementary rectangles in our example) are glued to each other, irrespective of their

shape. Suppose we denote by 1, 2, 3 respectively the left, right and bottom edge of tile 4

in the left billiard of Fig. 2. To obtain the whole billiard one unfolds tile 4 with respect to

its side number 3, getting tile 7. Then tile 7 is unfolded with respect to its side number

2, yielding tile 6, and so on. The unfolding rules can be summed up in a graph specifying

the way we unfold the building block. The vertices of the graph represent the building

blocks, and the edges of the graph are “coloured” according to the unfolding rule, i.e.

according to which of its sides the building block is unfolded. The graphs can also be

encoded in permutations a(µ), b(µ), 1 ≤ ν ≤ 3. For instance for the first graph we have

a(1) = (23)(56), a(2) = (12)(67), a(3) = (25)(47). It will turn out later to be useful to write

these permutations as permutation matrices M (µ), N (µ), 1 ≤ ν ≤ 3, with entries 0 and 1.

In fact, only three sides of the rectangle are involved in the unfolding. So we can start with

any triangular-shaped building block, and unfold it with respect to its sides in the same

way as the billiards in Fig. 2 are obtained from the rectangular building block. This leads

to billiard pairs whose isospectrality is granted by the paper-folding proof given above. For

example, starting from the triangle in Fig. 4) left and following these unfolding rules, we

get the pair of isospectral billiards shown in Fig. 4) right. Clearly the paper-folding proof

applies in exactly the same way as is does for the billiards of Fig. 2. Taking a building

block in the form of half-square, we recover the celebrated example of Fig. 1.

The building block is in fact not required to be a triangle or a rectangle. More generally,

any building block posessing three edges around which to unfold it leads to a different pair

of isospectral billiards. Another interesting example is obtained by taking an heptagon and

unfolding it with respect to three of its sides following the unfolding rules (see Fig. 5). This

yields the first example of Gordon, Webb and Wolpert (Gordon et al., 1992).
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7
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432

7

6

5

2

3 1

1

2

3

5

6

4

7

Figure 4 The graphs corresponding to a pair of isospectral billiards: if we label the sides of the

triangle by µ = 1, 2, 3, the unfolding rule by symmetry with respect to side µ can be represented

by edges made of µ braids in the graph. From a given pair of graphs, one can construct infinitely

many pairs of isospectral billiards by applying the unfolding rules to any shape.

1

2
3

Figure 5 Isospectral billiards produced by Gordon, Webb and Wolpert (Gordon et al., 1992). The

top left figure is the seven-edged building block.

In (Chapman, 1995), more involved examples are produced, following the same proce-

dure. Starting from the building block of Fig. 6 left, one obtains an example of a pair of

chaotic billiards. The building block of Fig. 6 right yields a very simple disconnected pair

where each billiard consists of a disjoint rectangle and triangle. In this case isospectrality

can be checked directly by calculating the eigenvalues, since the eigenvalue problem can

be solved exactly for triangles and half-squares.
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In (Sleeman and Hua, 2000), the authors consider a building block with piecewise fractal

boundary: starting from a (π/2, π/3, π/6) base triangle they cut each side into 3 pieces

and remove the three triangular corners. Along the freshly made cuts a Koch curve is

constructed, while the ancient sides still allow the Chapman unfolding. This yields a pair

of isospectral billiards with fractal boundary of dimension log 4/ log 3.

Figure 6 Examples of building blocks yielding isospectral pairs.

B. Transplantation proof

The paper-folding proof can be made more formal be means of the so-called “transplanta-

tion” method. The transplantation method was introduced by Bérard in (Bérard, 1989).

It will be presented in more detail in section VII.

Let φ be an eigenstate of the first billiard. Any point in the billiard can be specified by its

coordinates q = (x, y) inside a building block, and a number i arbitrarily associated to the

building block (for example 1 ≤ i ≤ 7 in our example of Fig. 2). Thus φ is a function of

the variable (a, i). According to the paper-folding proof, a building block i of the second

billiard is constructed from superposition of three building blocks j obtained by folding the

first billiard. We can code the result of the folding-and-stacking procedure in a so-called
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transplantation matrix T , as

T =

































−1 1 0 0 1 0 0

1 0 1 0 0 −1 0

0 1 −1 0 0 0 −1

0 0 0 0 1 −1 1

0 0 1 −1 1 0 0

0 1 0 1 0 1 0

1 0 0 −1 0 0 1

































. (5)

Isospectrality arises from the fact that one can construct an eigenstate ψ of the second

billiard, defined by

ψ(a, i) = N
∑

j

Tijφ(a, j), (6)

where N is some normalization factor. That is, one can ”transplant” the eigenfunction of

the first billiard to the second one. The proof of isospectrality reduces to checking that

ψ given by (5)-(6) vanishes on the boundary and has a continuous derivative inside the

billiard.

This is most simply illustrated on the following example, based on the presentation of

(Thain, 2004). We consider the pair of Fig. 2 with rectangular base tile. The base shape

could be replaced by any arbitrary shape provided only three sides are considered for

applying unfolding rules leading to the construction of the pairs. Here we take a base

rectangle with sides of length a and b. The first step is to transform the problem into an

equivalent one on translation surfaces. Translation surfaces (Gutkin and Judge, 2000),

also called planar structures, are manifolds of zero curvature (i.e. such that in the vicinity

of each point there exists a homeomorphism from this vicinity to R2 defining a local coor-

dinate system), with a finite number of singular points (see (Vorobets, 1996) for a more

rigorous mathematical definition). A construction by Zemlyakov and Katok (Zemlyakov

and Katok, 1976) allows to construct a planar structure on rational polygonal billiards,

that is polygonal billiards whose angles at the vertices are of the form αi = πmi/ni. This

planar structure is obtained by “unfolding” the polygon, that is by gluing to the initial

polygon its images obtained by mirror reflexion with respect to each of its sides, and re-

peating this process on the images. For polygons with angles αi = πmi/ni, this process

17



terminates and 2n copies of the initial polygon are required, where n is the gcd of the ni.

Identifying parallel sides, one gets a planar structure of genus in general greater than 1.

This structure has singular points corresponding to vertices of the initial polygon where

the angle αi = πmi/ni is such that mi 6= 1. The genus of the translation surface thus

obtained is given by (Berry and Richens, 1981)

g = 1 +
n

2

∑

i

mi − 1

ni

. (7)

The billiards of Fig. 2 possess one 2π-angle, two 3π/2-angles and eight π/2-angles each.

The translation surfaces associated to these billiards are obtained by gluing together 2n =

4 copies of the billiards, yielding planar surfaces of genus 4. They are shown in Fig. 7.

Opposite sides are identified (e.g. in the first surface, the left edge of tile 1 is identified

with the right edge of tile 5). The symbols ◦ and • represent a 6π-angle, while the ×
and ∗ symbols denote a 8π angle. Taking into account the identification of opposite sides,

it means that one has to turn around ∗ by an angle 8π before coming back to the initial

point. An example of a staight line drawn on the first surface is shown on Fig. 7.

Each translation surface is tiled by 7 rectangles. Again, any point on the surface can be

specified by its coordinates q = (x, y) ∈ [0, a] × [0, b] inside the rectangle, together with a

tile number i. Each tile on the translation surface has 6 neighbours, attached respectively

at its left, upper left, upper right, right, lower right and lower left edge, and numbered

from 1 to 6. For instance tile 1 is surrounded by: tile 5 on its left, tile 6 on its right, tile

3 on its upper left edge, tile 1 itself on its upper right edge (because of the identification

of opposite sides), tile 3 on its lower left edge and tile 1 on its lower right edge. The way

the tiles are glued together can be specified by permutation matrices A(ν), 1 ≤ ν ≤ 6, such

that A
(ν)
ij = 1 if and only if the edge number ν of i glues i and j together. For instance for
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1 5

2

5
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6

4 7

1 6

7 3

3

32

2

24 7

7 23 4 34

4 3

Figure 7 The pair 73 of isospectral billiards with a rectangular base shape unfolded to a translation

surface (i.e. flat billiard with opposite sides identified).

the first translation surface, the matrix specifying which tile is on the right of which is

A(1) =

































0 0 0 0 0 1 0

0 0 1 0 0 0 0

0 0 0 0 0 0 1

0 0 0 1 0 0 0

1 0 0 0 0 0 0

0 0 0 0 1 0 0

0 1 0 0 0 0 0

































(8)

(tile 6 is on the right of tile 1, therefore A
(1)
1,6 = 1, and so on). In a similar way, matrices
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B(ν), 1 ≤ ν ≤ 6, can be defined for the second translation surface. Now suppose there

exists a matrix T such that

∀i, 1 ≤ i ≤ 6, A(i)T = TB(i). (9)

Such a matrix provides a mapping between the two translation surfaces. It is called a

“transplantation matrix”. Then it is easy to show that for any given eigenstate φ of the first

translation surface we can construct an eigenstate ψ for the second translation surface,

defined by Eq. (6). Obviously Helmholtz equation (3) is satisfied since it is linear. To

prove isospectrality we only have to check for continuity properties at each edge. Suppose

tiles i and j are glued together by one of their edges. There exists a ν, 1 ≤ ν ≤ 6, such

that A
(ν)
ij = 1 (ν is the label of the edge between tiles i and j). It is such that

|ψ(a, j)〉 =
∑

k

A
(ν)
ik |ψ(a, k)〉, (10)

where |ψ(a, i)〉 is the 7-dimensional vector whose components are ψ(a, i), 1 ≤ i ≤ 7, a

belonging to the edge between i and j. To prove the continuity of ψ between tiles i and j,

we have to show that the quantity

C = |ψ(a, i)〉 − |ψ(a, j)〉

= |ψ(a, i)〉 −
∑

k

A
(ν)
ik |ψ(a, k)〉 (11)

is equal to zero. Using Eq. 6, (11) becomes

C =
∑

k

Tik|φ(a, k)〉 −
∑

k,k′

A
(ν)
ik Tkk′|φ(a, k′)〉. (12)

The sum over k on the right-hand side yields a term (A(ν)T )ik′. By the commutation

relation (9), it is equal to (TB(ν))ik′, which gives

C =
∑

k

Tik

(

|φ(a, k)〉 −
∑

k′

B
(ν)
kk′|φ(a, k′)〉

)

. (13)

Now the continuity of the function φ ensures that the terms between brackets all vanish.
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Thus C = 0, and continuity is proven.

The proof rests entirely on the existence of a transplantation matrix T satisfying the com-

mutation properties (9). It turns out that such a matrix exists. One can check that given

the matrix

T =

































1 0 0 1 0 0 1

0 1 0 0 1 0 1

0 0 1 0 0 1 1

1 0 0 0 1 1 0

0 1 0 1 0 1 0

0 0 1 1 1 0 0

1 1 1 0 0 0 0

































, (14)

equations (9) are fulfilled for all ν, 1 ≤ ν ≤ 6. Thus the proof of isospectrality is completed.

We will come back later in section VII on this transplantation proof of isospectrality.

The natural question is to know how one can find a suitable matrix T verifying all com-

mutation equations (9), and (to start with) how the matrices A(ν), B(ν) are obtained.

Historically these matrices were obtained by the construction of Sunada triples, as will

be explained in section III.3. In fact it turns out that the matrix T is just the incidence

matrix of the graph associated to a certain finite projective space (the Fano plane in our

example), as will be explained in detail in section VII.
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II. FURTHER EXAMPLES IN HIGHER DIMENSIONS

In (Milnor, 1964), J. Milnor showed that from two nonisometric lattices of rank 16 in R16

discovered by Witt in (Witt, 1941), one can construct a pair of flat tori which have the

same spectrum of eigenvalues. (All relevant terms will be defined below.)

In this section, we will describe a simple criterion for the construction of nonisometric flat

tori with the same eigenvalues for the Laplace operator, from certain lattices (which was

used by Milnor for the particular case mentioned in the beginning of this section), and

then we construct, for each integer n ≥ 17, a pair of lattices of rank n in Rn which match

the criterion. Furthermore, we describe powerful results of S. Wolpert and M. Kneser on

the moduli space of flat tori.

A. Lattices and flat tori

A lattice (that is, a discrete additive subgroup) can be prescribed as AZn with A a fixed

matrix. For example, put

A =





1 0

1 1



 ; (15)

then the lattice AZ2 consists of the points of the form

a(1, 1) + b(0, 1), a, b ∈ Z. (16)

An n-dimensional (flat) torus T is Rn factored by a lattice L = AZn with A ∈ GL(n,R). So

the torus is determined by identifying points which differ by an element of the lattice.

If we go back to the planar example of above, the torus topologically is a doughnut — one

may see this by cutting out the parallelogram determined by (1, 1) and (0, 1), and then

gluing opposite sides together.

The metric structure of Rn projects to T , and volume(T ) = |detA|; T carries a Laplace
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operator

∆ = −
∑

i

∂2/∂x2
i , (17)

the projection of the Laplacian of Rn. The lengths of closed geodesics of T are given as

‖ a ‖ for a arbitrary in L, ‖ · ‖ being the Euclidean norm.

Let P be a symmetric matrix which defines a quadratic form on Rn. The spectrum of

P is defined to be the sequence (with multiplicities) of values γ = NTPN for N ∈ Zn.

The sequence of squares of lengths of closed geodesics of Rn/AZn is the spectrum of

ATA = Q; the sequence of eigenvalues is the spectrum of 4π2(A−1)(A−1)T = 4π2Q−1. The

Jacobi inversion formula yields for positive τ ,

∑

N∈Zn

exp(−4π2τNTQ−1N) =
volume(T )

(4πτ)n/2

∑

M∈Zn

exp(
−1

4τ
MTQM). (18)

We now explain the way in which O(n,R) \GL(n,R)/GL(n,Z) is the moduli space of flat

tori. Here, O(n,R) is the orthogonal group in n dimensions. To A ∈ GL(n,R) is associated

the lattice AZn. The tori Rn/AZn and Rn/BZn are isometric if and only if AZn and BZn

are isometric by left multiplication by an element of O(n,R). The matrices A and B are

associated to the same lattice if and only if they are equivalent by multiplication on the

right by an element of GL(n,R). So the tori Rn/AZn and Rn/BZn are isometric if and

only if A and B are equivalent in

O(n,R) \ GL(n,R)/GL(n,Z). (19)

Denote the space of positive definite symmetric n × n-matrices by ℘(n,R), and observe

that the map

A ∈ GL(n,R) 7→ ATA ∈ ℘(n,R) (20)

determines a bijection from O(n,R) \ GL(n,R) to ℘(n,R).
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B. Construction of examples

CRITERION. If L is a lattice of Rn, L∗ denotes its dual lattice, which consists of all y ∈ Rn

for which 〈x, y〉 ∈ Z for all x ∈ L; here, 〈·, ·〉 is the usual scalar product on Rn×Rn. Clearly,

(L∗)∗ = L, and two lattices L and L′ are isometric if and only if L∗ and L′∗ are.

Recall that two flat tori of the form Rn/Li, i ∈ {1, 2}, are isometric if the lattices L1 and

L2 are isometric.

We start by making the following observation.

Theorem II.1 Let L1 and L2 be two nonisometric lattices of rank n in Rn, n ≥ 2, and suppose

that for each r > 0 in R, the ball of radius r about the origin contains the same number of

points of L1 and L2. Then the flat tori Rn/L∗
1 and Rn/L∗

2 are nonisometric while having the

same spectrum for the Laplace operator.

Proof. Suppose x 6= 0 is an element of L1 of length α. Then there is an α′ < α such that

the ball of radius α′ centered at 0 contains all elements of L1 with length strictly smaller

than α (since L1 is discrete). Since this ball contains as many elements of L2 as of L1, it

follows easily that L2 also contains vectors of length α.

Each element z ∈ Li, i ∈ {1, 2}, determines an eigenfunction f(x) = e2π〈x,z〉i for the

Laplace operator on Rn/L∗
i , with corresponding eigenvalue λ = (2π)2〈z, z〉, so the number

of eigenvalues less than or equal to (2πr)2 is equal to the number of points of Li contained

in the ball centered at 0 with radius r.

We conclude that Rn/L∗
1 and Rn/L∗

2 have the same spectrum of eigenvalues, while being

not isometric. �

Now consider the nonisometric lattices L16
1 and L16

2 of rank 16 in R16 as described by Witt

in (Witt, 1941). These lattices satisfy the condition of Theorem II.1 (Witt, 1941, p.324).

Now embed R16 in R17 in the canonical way. Denote the coordinate axes of the latter by

X1, X2, . . . , X17, such that 〈X1, X2, . . . , X16〉 = R16. Suppose ` 6= 0 is a vector on the X17-

axis which has length strictly smaller than any non-zero vector of L1 (and L2). Define two

new lattices L17
i (of rank 17) generated by L16

i and `, i = 1, 2. Since X17 ⊥ R16, it follows

easily that for any r > 0, the ball centered at the origin with radius r contains the same

number of elements of L17
1 as of L17

2 . One observes that these lattices are nonisometric.
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Whence, by Theorem II.1, we obtain two nonisometric flat tori R17/L17
i

∗
, i = 1, 2, which

have the same spectrum of eigenvalues for the Laplace operator.

Inductively, we can now define, in a similar way, the nonisometric lattices Ln
1 and Ln

2 of

rank n, n ≥ 17, satisfying the condition of Theorem II.1, and thus leading to nonisometric

flat tori Rn/Ln
i
∗, i = 1, 2, which have the same spectrum of eigenvalues for the Laplace

operator.

MILNOR’S CONSTRUCTION. By using the Witt nonisometric lattices in R16 (Witt, 1941),

John Milnor (Milnor, 1964) essentially used the aforementioned criterion to construct the

first example of nonisometric isospectral flat tori.

C. The eigenvalue spectrum as moduli for flat tori

We now quickly browse through some interesting results on the eigenvalue spectrum for

flat tori.

We already saw that there exist nonisometric isospectral flat tori. A natural question is

now how such tori are distributed.

Theorem II.2 (S. Wolpert (Wolpert, 1978)) Let Ts be a continuous family of isospectral

tori defined for s ∈ [0, 1]. The tori Ts, s ∈ [0, 1], are isometric.

A very interesting (unpublished) result by M. Kneser is the following (see (Wolpert, 1978)

for a proof):

Theorem II.3 (M. Kneser) The total number of nonisometric tori with a given eigenvalue

spectrum is finite.

So given an eigenvalue spectrum of some torus, only a finite number of nonisometric tori

can be isospectral to it.

The following result is rather technical.
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Theorem II.4 (S. Wolpert (Wolpert, 1978)) There is a properly discontinuous group Gn

acting on ℘(n,R) containing the transformation group induced by the GL(n,Z) action

S 7→ A[Z], (21)

where S ∈ ℘(n,R) and Z ∈ GL(n,Z). Given P, S ∈ ℘(n,R) with the same spectrum either

g(P ) = S for some g ∈ Gn, or P, S ∈ Vn, where the latter is a subvariety of ℘(n,R).

Moreover,

(i) Vn = {Q ∈ ℘(n,R) ‖ spec(Q) = spec(R), R ∈ ℘(n,R) with R 6= g(Q) for all g ∈ Gn},

and

(ii) Vn is the intersection of ℘(n,R) and a countable union of subspaces of Rm for some m.

In this section we have seen that is essentially “easy” to construct (nonisometric) isospec-

tral flat tori. The Milnor example was exhibited in 1964. But it has taken about 30 years

to find counter examples to Kac’s question in the real plane . . .
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III. SUNADA THEORY

We review some basic notions of group theory. We will be slightly more elaborate than

just restricting ourselves to the setting we (strictly) need. Then we will introduce Sunada

Theory.

A. Permutations

We denote permutation action exponentially (the image of an element x by the permuta-

tion g is xg) and let elements act on the right. We denote the identity element of a group

by id or 1, if no special symbol has been introduced for it before. A group G without its

identity id is denoted G×. The number of elements of a group G is denoted by |G|.
We write the action of a group on a set at the right, as an exponent, and as such a

permutation group (G,X) is a pair consisting of a group G and a set X such that each

element g of G defines a permutation g : X → X of X, and the permutation defined by

gh, g, h ∈ G, is given by gh : X → X : x 7→ (xg)h.

Finally, an involution in a group is an element of order 2.

B. Commutator notions

The conjugate of g by h is gh = h−1gh. Let H be a group. The commutator of two

group elements g, h is equal to [g, h] = g−1h−1gh. The commutator of two subsets

A and B of a group G is the subgroup [A,B] generated by all elements [a, b], with

a ∈ A and b ∈ B. The commutator subgroup of G is [G,G], also denoted by G′. Two

subgroups A and B centralize each other if [A,B] = {id}. The subgroup A normalizes

B if Ba = B, for all a ∈ A, which is equivalent with [A,B] being a subgroup of B. If

A and B are two subgroups of the group G, then they are conjugate(d) if there is an

element g of G such that Ag = B. The subgroup A of G is (a) normal (subgroup) in

(of) G if Ag = A for all g ∈ G. In such a case, we write A�G. If A 6= G, we also write A/G.

Inductively, we define the nth central derivative [G,G][n] of a group G as [G, [G,G][n−1]],

and the nth normal derivative [G,G](n) as [[G,G](n−1), [G,G](n−1)]. For n = 0, the 0th
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central and normal derivative are by definition equal to G itself. If, for some natural

number n, [G,G](n) = {id}, and [G,G](n−1) 6= {id}, then we say that G is solvable

(soluble) of length n. If [G,G][n] = {id} and [G,G][n−1] 6= {id}, then we say that G is

nilpotent of class n. The center of a group is the set of elements that commute with

every other element, i.e., Z(G) = {z ∈ G ‖ [z, g] = id,∀g ∈ G}. Clearly, if a group G

is nilpotent of class n, then the (n−1)th central derivative is a nontrivial subgroup of Z(G).

A group G is the central product of its subgroups A and B if AB = G, A ∩ B is contained

in the center of G, and A and B centralize each other. Sometimes we write G = A ◦ B in

such a case.

A group G is called perfect if G = [G,G] = G′.

Let R be a finite group. The Frattini group φ(R) of R is the intersection of all proper

maximal subgroups, or is R if R has no such subgroups.

C. p-Groups and extra-special groups

For a prime number p, a p-group is a group of order pn, for some natural number n 6= 0. A

Sylow p-subgroup of a finite group G is a p-subgroup of some order pn such that pn+1 does

not divide |G|.

A p-group P is special if either [P, P ] = Z(P ) = φ(P ) is elementary abelian or P itself is.

(A group is elementary abelian if it is abelian, and if there exists a prime p so that each

of its nonidentity elements has order p.) Note that P/[P, P ] is elementary abelian in that

case. So we have the exact sequence

1 7→ [P, P ] 7→ P 7→ V (n, p) 7→ 1, (22)

where V (n, p) is the n-dimensional vector space over Fp and |P | = pn|[P, P ]|. So

P/[P, P ] ∼= V (n, p), (23)
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the latter now seen as its additive group.

If |Z(P )| = |[P, P ]| = |φ(P )| = p, P is called extra-special.

We now present a classification for extra-special groups which depends on the knowledge

of the nonabelian p-groups of order p3.

There are four nonabelian p-groups of order p3 — see (Gorenstein, 1980). First of all, we

have M = M(p):

M(p) = 〈x, y, z ‖ xp = yp = zp = 1, [x, z] = [y, z] = 1, [x, y] = z〉. (24)

(Note that this is the general Heisenberg group of order p3 which we will encounter later

on.) Next, define

M3(p) = 〈x, y ‖ xp2

= yp = 1, xy = xp+1〉. (25)

Finally, we have the dihedral group D of order 8 and the generalized quaternion group Q

of order 8.

Theorem III.1 ((Gordon, 1986)) An extra-special p-group P is the central product of r ≥ 1

nonabelian subgroups of order p3. Moreover, we have

(1) If p is odd, P is isomorphic to NkM r−k, while if p = 2, P is isomorphic to DkQr−k for

some k. In either case, |P | = p2r+1.

(2) If p is odd and k ≥ 1, NkM r−k is isomorphic to NM r−1, the groups M r and NM r−1

are not isomorphic and M r is of exponent p.

(3) If p = 2, then DkQr−k is isomorphic to DQr−1 if k is odd and to Qr if k is even, and the

groups Qr and DQr−1 are not isomorphic.

D. Finite simple groups

A group is simple if it does not contain nontrivial normal subgroups.
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The finite simple groups are often regarded as the elementary particles in Finite Group

Theory. Before explaining this a bit more precisely, recall that a composition series of a

group G is a normal series

1 = H0 / H1 / · · · / Hn = G, (26)

such that each Hi is a maximal normal subgroup of Hi+1. Equivalently, a composition

series is a normal series such that each factor group Hi+1/Hi is simple. The factor groups

are called composition factors.

A normal series is a composition series if and only if it is of maximal length. That is, there

are no additional subgroups which can be “inserted” into a composition series. The length

n of the series is called the composition length.

If a composition series exists for a group G, then any normal series of G can be refined to

a composition series. Furthermore, every finite group has a composition series.

A group may have more than one composition series. However, the Jordan-Hölder

theorem states that any two composition series of a given group are equivalent.

The classification of finite simple groups (see (Solomon, 2001) for a survey) states that

Every finite simple group is cyclic, or alternating, or is contained in one of 16

families of groups of Lie type (including the Tits group, which strictly speaking is

not of Lie type), or one of 26 sporadic groups.

In an appendix to this paper we list the finite simple groups, with some additional

information on the nomenclature.

In this review, we will encounter several aspects of certain simple groups in the construc-

tion theory of counter examples to Kac’s initial question.

E. Sunada Theory

Recall that a number field is a finite, algebraic field extension of Q. A standard example is

Q(
√

2). Let K be as such. The (Dedekind) zeta function ζK(s) (associated to K), s being a

complex variable, is
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∑

I

(NK

Q(I))−s, (27)

taken over all ideals I of the ring of integers OK of K, I 6= {0}. Note that NK

Q(I) denotes

the norm of I (to Q), equal to |OK/I|.

Let K be an algebraic number field of degree n. Let p be a rational prime. Let P1, . . . , Pg

be the prime ideals of OK lying above p. Then

〈p〉 =

g
∏

i=1

P ei

i , (28)

where

ei = eK(Pi). (29)

If ei > 1 for some i ∈ {1, . . . , g}, then p is said to be ramified in K. If ei = 1 for all i, p is

unramified in K.

Let K = Q(θ) be as above, that is, an algebraic number field of degree n. Suppose

θ1, θ2, . . . , θn are the conjugates of θ over Q. If

Q(θ1) = · · · = Q(θn) = K, (30)

then K is a Galois extension of Q.

A number-theoretic exercise which asks for non-isomorphic number fields K1 and K2 with

the same zeta function has the following answer:

Theorem III.2 (K. Komatsu (Komatsu, 1976)) Let K be a finite Galois extension of Q with

Galois group G = Gal(K/Q), and let K1 and K2 be subfields of K corresponding to subgroups

G1 and G2 of G, respectively. Then the following conditions are equivalent:

(i) Each conjugacy class of G meets G1 and G2 in the same number of elements;
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(ii) The same primes p are ramified in K1 and K2 and for the unramified p the decomposi-

tion of p in K1 and K2 is the same;

(iii) The zeta functions of K1 and K2 are the same.

In particular, if G1 and G2 are not conjugate in G, then K1 and K2 are not isomorphic while

having the same zeta function. It should be noted that several such triples (G,G1, G2) are

known — see the examples paragraph further in this section.

Any group triples (G,G1, G2) satisfying Theorem III.2(i) are said to satisfy “Property (*)”.

F. Sunada’s theorem and a trace formula

Sunada’s idea was to establish a counterpart of this theorem for Riemannian geometry.

In that context, there also is an analogue for the zeta function. For M a Riemannian

manifold, one defines

ζM(s) =
∞
∑

i=1

λ−s
i , Re(s) ≥ 0, (31)

where

0 < λ1 ≤ λ2 ≤ · · · (32)

are the non-zero eigenvalues of the Laplacian for M.

The function ζM has an analytic continuation to the whole plane, and it is well-known that

ζM1
(s) = ζM2

(s) if and only if M1 and M2 are isospectral.

The following theorem gives sufficient conditions for two manifolds to have the same zeta

function.

Theorem III.3 (T. Sunada (Sunada, 1985)) Let π : M 7→ M0 be a normal finite Rie-

mannian covering with covering transformation group G, and let π1 : M1 7→ M0 and

π2 : M2 7→ M0 be the coverings corresponding to the subgroups H1 and H2 of G, respec-

tively. If the triplet (G,H1, H2) satisfies Property (*), then the zeta functions ζM1
(s) and

ζM2
(s) are identical.
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The proof of the latter theorem makes use of an interesting trace formula, which we

present now.

Let V be a Hilbert space on which a finite group G acts as unitary transformations and

let A : V 7→ V be a self-adjoint operator of trace class such that A commutes with the

G-action. For a subgroup H of G, denote by V H the subspace of H-invariant vectors.

Trace Formula. The restriction of A to the subspace V G is also of trace class, and

tr(A|V G) =
∑

[g]∈[G]

(|Gg|)−1tr(gA), (33)

where [G] = {[g]} is the set of conjugacy classes in G and Gg is the centralizer of g in G.

If the triplet (G,G1, G2) satisfies Property (*), then

tr(A|V G1 ) = tr(A|V G2 ). (34)

Even ifG1 andG2 are not conjugate, the manifolds M1 and M2 could possibly be isometric.

Theorem III.4 (T. Sunada (Sunada, 1985)) There exist finite coverings π1 : M1 7→ M0

and π2 : M2 7→ M0 of Riemann surfaces with genus ≥ 2 such that for a generic metric g0 on

M0, the surfaces (M1, π
∗
1g0) and (M2, π

∗
2g0) are isospectral, but not isometric.

Sunada’s Theorem allows us to construct isospectral pairs provided we find triples

(G,G1, G2) satisfying Property (*).

Now we give examples of such triples.

G. Property (*): examples

Example 1 — see I. Gerst (Gerst, 1970). LetG be the semidirect product Z/8Z×nZ/8Z,

and define G1 and G2 by

G1 = {(1, 0), (3, 0), (5, 0), (7, 0)}, G2 = {(1, 0), (3, 4), (5, 4), (7, 0)}. (35)
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Example 2 — see F. Gassman (Gassmann, 1926). Let G = S6 be the symmetric group

on 6 letters {a, b, c, d, e, f}. Put

G1 = {1, (ab)(cd), (ac)(bd), (ad)(bc)} (36)

and

G2 = {1, (ab)(cd), (ab)(ef), (cd)(ef)}. (37)

Example 3 — see K. Komatsu (Komatsu, 1976). Let G2 and G2 be two finite groups

with the same order, and suppose that their exponents (= the least common multiples of

the orders of their elements) both equal the same odd prime p. Put |G1| = |G2| = ph for

h ∈ N×, and embed G1 and G2 in the symmetric group Sph on ph letters by their left action

on themselves. For a conjugacy class [g] corresponding to the partition

|Sph | = ph! = p+ p+ · · · + p, (38)

we have

|([g] ∩G1)| = ph − 1 = |([g] ∩G2)|, (39)

while |([g] ∩Gi)| = 0 otherwise.

Concretely, let G1 = (Z/pZ)3, and let G2 be the group

G2 = 〈a, b ‖ ap = bp = [a, b]p = 1, a[a, b] = [a, b]b, b[a, b] = [a, b]b〉, (40)

that is, G2 is the extra-special group of order p3. Then (Sp3 , G1, G2) verify Property (*).

One can in fact generalize Komatsu’s example by defining the following group. The general

Heisenberg group Hn of dimension 2n+1 over Fq, with n a natural number, is the group of

square (n + 2) × (n + 2)-matrices with entries in Fq, of the following form (and with the

usual matrix multiplication):
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









1 α c

0 In βT

0 0 1











, (41)

where α, β ∈ Fn
q , c ∈ Fq and with In being the n × n-unit matrix. Let α, α′, β, β′ ∈ Fn

q and

c, c′ ∈ Fq; then











1 α c

0 In βT

0 0 1











×











1 α′ c′

0 In β′T

0 0 1











=











1 α+ α′ c+ c′ + 〈α, β′〉
0 In β + β′

0 0 1











. (42)

Here 〈x, y〉, with x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) elements of Fn
q , denotes

x1y1 + x2y2 + . . .+ xnyn.

The following properties hold for Hn.

(i) Hn has exponent p if q = ph with p an odd prime; it has exponent 4 if q is even.

(ii) The center of Hn is given by

{(0, c, 0) ‖ c ∈ Fq}. (43)

(iii) Hn is nilpotent of class 2.

Then similarly as above, (Sp2n+1 ,Hn, (Z/pZ)2n+1) verifies Property (*).

Any finite group arises as the fundamental group of a compact smooth manifold of

dimension 4. For a triplet (G,G1, G2) of the type described in Example 3, we find a

compact manifold M0 with fundamental group G. Let M be the universal covering of M0.

Then the quotients Mi = M/Gi have non-isomorphic fundamental groups Gi, i = 1, 2. By

Theorem III.3 the manifolds (M1, π
∗
1g0) and (M2, π

∗
2g0) are isospectral for any metric g0 on

M0, but not isometric.
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IV. LIVSIC COHOMOLOGY

In this section, we describe a connection between isospectrality and cohomology. We start

with tersely introducing group cohomology.

A. Group cohomology

Group modules

Let G be a group. A (left) G-module M is an abelian group (written additively) on which

G acts as endomorphisms. In other words, a G-module is an abelian group M together

with a map

G×M 7→M, (g,m) 7→ gm (44)

such that for all g, h ∈ G and m,n ∈M the following properties hold:

g(m+ n) = gm+ gn (45)

(gh)m = g(hm) (46)

1m = m. (47)

Example. Let G be a group. The module M = Z[G] with the action

h(
∑

g

ngg) =
∑

g

nghg (48)

is called the regular G-module.

Let M be a G-module, and define the module of invariants MG as

MG = {m ∈M ‖ gm = m for all g ∈ G}. (49)
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MG is of course a submodule of M .

The n-th cohomology group

Let A be a G-module and let Cn(G,A) denote the set of functions of n variables

f : G×G× · · · ×G 7→ A (50)

into A. If n = 0, C0(G,A) = Hom(1, A) ∼= A. The elements of Cn(G,A) are n-cochains.

Clearly, Cn(G,A) is an abelian group with the usual addition and trivial element.

Now define homomorphisms δ = δn : Cn(G,A) 7→ Cn+1(G,A) as follows.

δn(f)(x1, . . . , xn+1) = x1f(x2, . . . , xn+1)+

n
∑

i=1

(−1)if(x1, . . . , xi−1, xixi+1, . . . , xn+1)

+(−1)n+1f(x1, . . . , xn). (51)

One can prove that δn+1δn(Cn(G,A)) = 0 for all n ∈ N. So the following sequence is a

complex:

A 7→δ0 C1(G,A) 7→δ1 · · · 7→δn−1 Cn(G,A) 7→δn Cn+1(G,A) 7→δn+1 · · · (52)

Now define the subgroups Zn(G,A) = kerδn and Bn(G,A) = imδn−1. For n = 0 let

B0(G,A) = 0. The elements of Zn(G,A) are the n-cocycles; the elements of Bn(G,A) the

n-coboundaries. Since Bn(G,A) is a normal subgroup of Zn(G,A), factor groups can be

formed. The n-th cohomology group of G with coefficients in A is then given by

Hn(G,A) = Zn(G,A)/Bn(G,A) = kerδn/imδn−1. (53)

For n = 0 we have
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H0(G,A) = Z0(G,A) = {a ∈ A ‖ xa = a for all x ∈ G} = AG, (54)

the module of invariants.

Example. Let M be a G-module and regard Z as a trivial G-module. Then

H0(G,M) = MG ∼= HomG(Z,M). (55)

If A is a G-module, then

Z1(G,A) = {f : G 7→ A ‖ f(xy) = xf(y) + f(x)} (56)

and

B1(G,A) = {f : G 7→ A ‖ f(x) = xa− a for some a ∈ A}. (57)

The 1-cocycles are also called crossed homomorphisms of G into A.

Proposition IV.1 Let A be a G-module. Then there exists a bijection between H1(G,A) and

the set of conjugacy classes of subgroups H ≤ G n A complementary to A, in which the

conjugacy class of G maps to zero. All the complements of A in G n A are conjugate if and

only if H1(G,A) = 0.

The following proposition is known as “Hilbert’s Satz 90” (which we present in the form

of E. Noether’s generalization):

Proposition IV.2 Let L/K be a finite Galois extension with Galois group G = Gal(L/K).

Then H1(G,L×) = 1 and H1(G,L) = 0.

We mention the following result on the second cohomology group.

Theorem IV.3 Let G be a group and A an abelian group, and let M denote the set of group

extensions
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0 7→ A 7→ E 7→ G 7→ 1 (58)

with a given G-module structure on A. Then there is a 1 − 1 correspondence between the set

of equivalence classes of extensions of A by G contained in M with the elements of H2(G,A).

The class of split extensions in M corresponds to the class [0] ∈ H2(G,A).

For finite groups, one has the next theorem.

Theorem IV.4 Let G be a finite group and A be a G-module. Then every element of

Hn(G,A), n ∈ N, has a finite order which divides |G|. If A is a finite G-module and

(|G|, |A|) = 1, then Hn(G,A) = 0 for all n ≥ 1. So any extension of A by G is split.

B. Livsic’s cohomological equation

Let (M, g) be a Riemannian manifold without boundaries. The length spectrum is the

discrete set

Lsp(M, g) = {Lγ1
< Lγ2

< · · · } (59)

of lengths of closed geodesics γj.

Denote by (T ∗M,
∑

j dxj ∧ dξj) the cotangent bundle of M equipped with its natural sym-

plectic form. Given the metric g, we define the metric Hamiltonian by

H(x, ξ) = |ξ| =

√

√

√

√

n+1
∑

ij=1

gij(x)ξiξj, (60)

and define the energy surface to be the unit sphere bundle

S∗M = {(x, ξ) ‖ |ξ| = 1}. (61)

The geodesic flow Gt is the Hamiltonian flow
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Gt = exptΞH : T ∗M \ 0 7→ T ∗M \ 0, (62)

where ΞH is the Hamiltonian vector field. Since it is homogeneous of degree 1 with

respect to the dilatation (x, ξ) 7→ (x, rξ), r > 0, one can restrict Gt to S∗M . Its generator

is also denoted by Ξ.

Livsic’s cohomological problem asks whether a cocycle f ∈ C∞(S∗M) satisfying

∫

λ

fds = 0 (63)

for every closed geodesic of the metric g is necessarily a coboundary f = Ξ(g), where

Ξ is the generator of the geodesic flow Gt and g is a function with a certain degree of

regularity. Under a deformation gε of a metric g = g0 preserving the extended Lsp(M, g)

(including multiplicities), one has

∫

λ

ġds = 0, ∀λ. (64)

When the cohomology is trivial, one can therefore write ġ = Ξ(f) for some f with the

given regularity.

One does not expect the cohomology to be trivial in general settings, but the results might

be interesting for the length spectral deformation problem.

V. PROPERTIES OF ISOSPECTRAL BILLIARDS

The existence of isospectral pairs proves that the knowledge of the infinite set of eigenen-

ergies does not suffice to uniquely determine the shape of a billiard boundary. A natural

question arises: if the set of eigenvalues is not sufficient to distinguish two isospectral

billiards, then which quantity, which quantities would suffice to uniquely specify which is

which?

In this section we review various elements that have been brought forward to discriminate

between two isospectral billiards.
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A. Weyl expansion

The problem of calculating the eigenvalue distribution for a given domain B (sometimes

called Weyl’s problem) is dealt with starting from the density of energy levels

d(E) =
∑

n

δ(E − En) (65)

where δ is Dirac delta function and the sum runs over all eigenvalues of the system. The

counting function is its integrated version:

N(E) =
∑

n

Θ(E − En), (66)

where Θ is the Heaviside step function. Statistical functions of the energy can be studied

by proper smoothing of the delta functions in (65). The mean of a function f of the energy

is defined by its convolution with a test-function ξ:

f̄(E) =

∫ ∞

−∞
f(e)ξ(E − e)de. (67)

The test-function ξ is taken to be centered at 0, normalized to 1 and have an important

weight only around the origin, with a width ∆E large compared to the mean level spacing

but small compared to E.

We want to study the mean behaviour of N(E). Suppose the Hamiltonian of an N -

dimensional system is of the form

H(q, p) = p2/2m+ V (q). (68)

The “Thomas-Fermi approximation” consists of making the assumption that each quantum

state is associated to a volume (2π~)N in phase space. The mean value of N(E) is given

by

N̄(E) '
∫

dNpdNq

(2π~)N
Θ (E −H(q, p))

' 1

Γ(N/2 + 1)

( m

2π~2

)N/2
∫

V (q)<E

[E − V (q)]N/2dq (69)

41



after having integrated over p. In the case where we want to describe the movement in an

n-dimensional box we get

N̄(E) ' V
Γ(N/2 + 1)

( m

2π~2

)N/2

EN/2, (70)

which is the first term in a series expansion of N̄(E), called Weyl expansion, and V is the

volume of the box. For two-dimensional billiards and under our conventions on units, this

first term of Weyl expansion reads (for both Dirichlet and Neumann boundary conditions)

N̄(E) ' A
4π
E, (71)

where A is the area of the billiard. For the mean density of states, the Thomas-Fermi

approximation gives

d̄(E) =

∫

dNpdNq

(2π~)N
δ (E −H(q, p)) . (72)

For two-dimensional billiards, the first term in the Weyl expansion thus gives a mean

density of states equal to

d̄ =
A
4π
. (73)

The following terms in Weyl expansion are obtained by asymptotic expansion of the

Laplace transform of the density of states, defined by

Z(t) =
∑

n

e−Ent. (74)

For polygonal billiards, it was shown in (Bailey and Brownell, 1962) (see also (Kač, 1966)

for Dirichlet boundary conditions and in (Pleijel, 1953-1954; Sleeman, 1982) for Neu-

mann boundary conditions) that this expansion for t→ 0 reads

Z(t) =
A
4πt

∓ L
8
√
πt

+ β +O (exp(−const/t)) , (75)

where L is the perimeter of the billiard and β is a constant depending on the connectivity

of the domain and on the corners of the boundary. The sign before L is (–) for Dirichlet

boundary conditions and (+) for Neumann boundary conditions. Brownell (Brownell,

1957) showed that for multiply connected domains with smooth boundary and p smooth
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holes β = (p − 1)/6. Asymptotic expansion of Z(t) including contributions of corners is

given in (Stewardson and Waechter, 1971) (following a method described in (McKean

and Singer, 1967)) for boundaries with smooth arcs of length γi and corners of angle

0 < αj ≤ 2π. For Dirichlet boundary conditions it reads

Z(t) ' A
4πt

− L
8
√
πt

+
∑

j

1

24

(

π

αj

− αj

π

)

+
∑

i

1

2π

∫

γi

κ(l)dl (76)

where κ(l) is the curvature measured along the arc. (The inward-pointing cusp α = 2π

is correctly accounted for, while the outward-pointing cusp should be treated separately,

see (Baltes and Hilf, 1976).) This allows to obtain an expansion of N̄(E) controlled by

logarithmic Gaussian error estimates (see (Baltes and Hilf, 1976) for detailed definitions):

N̄(E) ' 1

4π
AE ∓ 1

4π
L
√
E + K, (77)

where L is the perimeter of the billiard and K a constant depending on the geometry of the

boundary. The sign before L is (–) for Dirichlet boundary conditions and (+) for Neumann

boundary conditions. For polygonal billiards with angles θi, the constant is deduced from

(76) to be

K =
1

24

∑

angle i

(

θi

π
− π

θi

)

. (78)

As one can see, the statistical behaviour is determined by certain characteristic quantities

of the boundary of the billiard, like area, perimeter, or angles. Conversely, if the spectrum

is known, it determines the area and the perimeter of the billiard, and it gives the constant

K. In particular, isospectral billiards must have the same area and the same perimeter. In

the case of polygonal billiards, the fact that K must be the same as well entails relations

between the angles of the billiards.

B. Periodic orbits

1. Green function

We define the propagator of the system as the conditional probability amplitude

K(qf , tf ; qi, ti) for the particle to be at point qf at time tf , knowing that it was at point
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qi at time ti. The propagator is the only solution of the Schrödinger equation that satisfies

condition

lim
tf→ti

K(qf , tf ; qi, ti) = δ(qf − qi). (79)

One can then show (see (Gutzwiller, 1991) and references therein) that the propagator

can be written as a Feynman integral

K(qf , tf ; qi, ti) =

∫

Dq(t)e i
~

�
dtL(q̇,q,t), (80)

where the sum runs over all possible trajectories going from (qi, ti) to (qf , tf ). The notation

(80) has to be understood as the limit as n goes to infinity of a discrete sum over all n

step paths going from (qi, ti) to (qf , tf ): the sum (80) runs over all continuous, but not

necessarily derivable, paths. One immediately sees that the classical limit of quantum

mechanics corresponds to letting the constant ~ go to 0: the main contributions to the

probability K then correspond to stationary points of the action
∫

dtL(q̇, q, t) (see (Berry,

1991)).

The advanced Green function is the Fourier transform of the propagator. It is defined by

G(qf , qi;E) =
1

i~

∫ ∞

0

dt K(qf , t; qi, 0) eiEt/~. (81)

It is a solution of the equation

(−H + E)G(qf , qi;E) = δ(qf − qi). (82)

The action along a trajectory can be defined as the integral of the momentum

S(qf , qi;E) =

∫ qf

qi

p dq, (83)

and the Green function as

G(qf , qi;E) =
1

i~

∫

Dq(t)e i
~

S(qf ,qi;E). (84)

The Green function is thus a sum over all continuous paths from qi to qf . In many cases

equation (82) allows to calculate the Green function. In the case of free motion in Eu-
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clidean space, the Hamiltonian reduces to the Laplacian (up to a sign), and the Green

function is solution of

(∆qf
+ E)G(qf , qi;E) = δ(qf − qi), (85)

where the qf index recalls that the derivatives of the Laplacian are applied on variable qf .

In two dimensions, Green’s function is

G(qf , qi;E) =
1

4i
H

(1)
0 (k|qf − qi|) (86)

with k =
√
E; H

(1)
0 is a Hankel function of the first kind. In dimension 3 we get

G(qf , qi;E) =
eik|qf−qi|

2ik
. (87)

2. Semiclassical Green function

Semiclassical methods are based on the fact that the classical limit of quantum mechanics

is obtained for ~ → 0 in the path integral expressing the propagator. The expansion of this

integral in powers of ~ allows to calculate the sequence of quantum corrections to classical

theory. The semiclassical approximation only keeps in this expansion the lowest-order

term in ~. Corrections to this approximation correspond to taking into account higher-

order terms. This semiclassical approximation is therefore valid only if the following term

is negligeable, that is if S/~ � 1.

The expression (84) for Green’s function G(qf , qi;E) is a sum over all continuous paths

joining qi to qf at energy E. The semiclassical approximation consists in keeping only

the lowest-order term in the ~ expansion. This term is given by stationary phase approx-

imation. The only paths contributing to the integral (84) are paths for which the action

S reaches a stationary value, that is, paths that correspond to classical trajectories. The

semiclassical Green function can thus be expressed as a sum, over all classical trajectories,

of exponentials whose phase is, up to a π/2 multiple, the classical action integrated along

the trajectory. The same approximation can be obtained for the Feynman propagator (80).

Integration of (80) (or, more precisely, of its discretized version) by stationary phase ap-

proximation is due to Van Vleck. Gutzwiller (Gutzwiller, 1991) obtained an expression for

the semiclassical Green function. Stationary points correspond to classical trajectories. In-
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tegrating with respect to time and then choosing a coordinate system (q‖, q⊥) such that q‖ is

the coordinate along the trajectory and q⊥ the coordinates perpendicular to the trajectory,

one obtains the semiclassical Green function as a sum over all classical trajectories:

Gs.c.(qf , qi;E) =
∑

cl

2π

(2iπ~)(N+1)/2

[

1

q̇i‖ q̇f‖
det

(

− ∂2S

∂qf⊥∂q i⊥

)]1/2

× exp

(

i

~
S(qf , qi;E) − iµ

π

2

)

. (88)

N is the space dimension. To obtain (88), the action (83) has been expanded around clas-

sical trajectories of energy E going from qi to qf . The second order of the expansion is

a quadratic form in the position qf . We call a conjugate point a point (of the trajectory

around which the action is expanded) where one eigenvalue of this quadratic form be-

comes negative (close to the starting point qi the quadratic form is positive definite). In

Equation (88), the index µ depends on the classical trajectory considered: it counts the

number of conjugate points along the trajectory. Physically, a conjugate point corresponds

to a point of the trajectory where there is an “inversion” of a pencil of nearby trajectories,

either as a caustic or as a focal point. It is the case in particular in two dimensions for

hard wall reflexions. Each reflexion yields a contribution µ = 2 for Dirichlet boundary

conditions and 0 for Neumann or periodic boundary conditions.

Since we will mainly be interested in the trace formula in two-dimensional polygonal

billiards, we only state the result in this case. The classical action along a periodic orbit of

length lp is given by

Sp =

∮

pdq = klp. (89)

To each trajectory is associated its Maslov index µp. The semiclassical Green function reads

Gs.c.(q, q;E) =
∑

~lp

eiklp−iµp
π
2
−3i π

4

√

8πklp
, (90)

with k =
√
E.
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3. Density of states

The Green function of a quantum system is defined by (81). It will be more useful to

express Green’s function as a sum over eigenvalues and eigenfunctions of the Hamiltonian,

according to (82). It can be verified that formally

G(qf , qi;E) =
∑

n

Ψn(qi)Ψn(qf )

E − En

, (91)

where Ψ denotes the complex conjugate of Ψ, is indeed a solution of (82). In order to give

a mathematically correct meaning to this expression, we use the advanced Green function

G+(qf , qi;E) = G(qf , qi;E + iε). (92)

The words “Green function” will always implicitly refer to the limit of the advanced Green

function for ε→ 0. We use the fact that for ε→ 0,

lim
ε→0

1

x+ iε
= pv

1

x
− iπδ(x) (93)

(pv denotes the principal value and δ Dirac delta function), and that, since H is Hermitian,

its eigenvectors verify
∫

ΨmΨn = δmn. The density of energy levels (65) can thus be related

to the Green function by

d(E) = − 1

π

∫

Im G(q, q;E) dq. (94)

The Green function G(q′, q;E) diverges for q′ → q but not its imaginary part. Expression

Im G(q, q;E) has to be understood as the imaginary part of G(q′, q) taken at the limit

q′ → q. Thanks to this relation, the density of states can be expressed as the trace of

Green’s function. Equation (94) is the starting point of trace formulae. Note that if the

density of states (65) is regularized as a sum of Lorentzians

dε(E) =
ε

π

∑

n

1

(E − En)2 + ε2
, (95)
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one gets

dε(E) = − 1

π

∫

Im G(q, q;E + iε) dq. (96)

Equation (94) must therefore be understood as the limit, as ε → 0, of each member of

Equation (96). However the density of states is usually calculated from the Green function

by first evaluating the integral for q = q′ (the “trace” of the Green function), then taking

the imaginary part. This can be made rigorous, by multiplying the Green function by some

factor making the integral convergent in the limit q = q′ (Balian and Bloch, 1974).

The density of states in the semiclassical approximation is then the sum of a “smooth part”

and an oscillating term which is a superposition of plane waves:

d(E) = d̄(E) + dosc(E), (97)

where d̄ is the Thomas-Fermi term (73), and

dosc(E) ' i

(2iπ~)(N+1)/2

∑

ppo,n

Tp

| det(Mn
p − I)|1/2

e
in �klp

~
−νp

π
2 � + c.c., (98)

the index νp now taking into account additional phases due to integration. The identity

matrix is denoted by I, Mp is the monodromy matrix associated to the orbit p and c.c.

denotes the conjugated complex. Gutzwiller trace formula (98) is a sum over all primitive

periodic orbits and all repetition numbers n. It is a formal sum: convergence issues will

be left aside in this review.

In the case of integrable and pseudo-integrable systems, periodic orbits are no longer iso-

lated but appear within families, of parallel trajectories having the same length (“cylinders

of periodic orbits”). The Gutzwiller trace formula does not apply any more. In (Berry and

Tabor, 1976), Berry and Tabor derived a trace formula for multidimensional integrable

systems. In the case of a two-dimensional polygonal billiard, the trace formula becomes

d(E) ' d̄+
∑

pp

Ap

2π

∞
∑

n=1

eiknlpp−3iπ/4−inνppπ/2

√

8πknlpp

+ c.c., (99)

where Ap is the area occupied by the cylinder of periodic orbits labeled by p.

It can be proved fairly easily, using transplantation, that two isospectral domains have the
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same length spectrum (i.e. both domains have periodic orbits of the same length) (Okada

and Shudo, 2001a). It is possible to encode any trajectory drawn on the billiard (provided

it does not pass through vertices) by symbolic dynamics. A trajectory is labeled by the

sequence of edges of the base tile that it crosses on its way.

Consider again the example of Fig. 2. Fig. 8 shows two pencils of periodic orbits on each

billiard. One can check that these two pencils appear with the same length and the same

width in both billiards.

Figure 8 Periodic and diffractive orbits in the unfolded pair 73.

Conversely, S. Fulling and P. Kuchment have proven in (Fulling and Kuchment, 2005) that

“Coincidence of length spectra does not imply isospectrality”, giving the explicit example

of a so-called Penrose-Lifshits mushroom (see section VIII.B).
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C. Diffractive orbits

When the system contains scattering points, the semiclassical trace formula (99) has to

be modified. The semiclassical density of states includes a term associated to diffractive

trajectories, that is classical trajectories going from one scattering point to another (Keller,

1962; Vattay et al., 1994).

In the case of polygonal billiards, Hannay and Thain (Hannay and Thain, 2003) have

been able to derive an exact expansion for the Green function, as a sum over all scattering

trajectories. It reads

G(a, b) =
∞
∑

n=0

1

(2π)n

∑

n vertex
paths

1

2i

∫ ∞

−∞
ds1ds2...dsnH

(1)
0 [kR(s1, s2, ..., sn)]

×
n
∏

k=1

2π

(γkMk + θk + isk)2 − π2
, (100)

where

R2(s1, s2, ..., sn) =
(

r0 + r1e
s1 + r2e

s1+s2 + · · · + rne
s1+s2+···+sn

)

×
(

r0 + r1e
−s1 + r2e

−s1−s2 + · · · + rne
−s1−s2−···−sn

)

. (101)

The Green function appears as a sum over paths made of n straight lines going from a

diffracting corner to another. The diffraction angles are Mkγk + θk, 1 ≤ k ≤ n, with γk

the measure of the angle at the singularity and Mk the number of times the path winds

around the singularity (thus, 0 ≤ θk < γk).

In (Giraud, 2004) it was shown that isospectral domains can be distinguished by the fact

that in general the lengths of their diffractive orbits differs. This can be illustrated e.

g. in the case of the billiard with rectangular base tile unfolded to a translation surface

(Fig. 8). If the sides of the base tiles are incommensurate, then for a given diffractive orbit

of one billiard a diffractive orbit of same length in the other billiard has to be in the same

direction. For the dashed diffractive orbit drawn in the second billiard of Fig. 8, orbits

starting from a diffractive corner of the first billiard in the same direction never reach

another diffractive corner.

The connection between the energy spectrum and the length spectrum through the trace
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formula indicates however that these discrepancies between diffractive orbits must be

compensated in a certain way. This can be understood by analyzing the formula of Hannay

and Thain (100). In fact each contribution to the Green function in (100) has to be

understood as an infinite sum over all windings around vertices (i.e. the four corners and

the two points at the millde of the horizontal sides of each of the seven rectangular tiles

in Fig. 7). If there is a scatterer (as is the case for instance at the bottom right corner of

a b ε

=lim

a bε

0ε

+

+

+

+                        ...

a bε

a bε

a bε

ε

ε

ε

Figure 9 A contribution to the Green function in case of forward diffraction. If the orbit goes

through a vertex the term in (100) should be interpreted as the limit for ε → 0 of an infinite

number of trajectories. If there is no vertex only the straight path contribution remains, the other

(winding) terms add up to zero.

tile 7 in the second billiard of Fig. 7) then there is a non-zero contribution, while if there

is no scatterer (e.g. at the bottom left corner of tile 7 in the second billiard) the series of

diffractive terms adds up to zero:

∞
∑

Mk=−∞

2π

(2πMk + π + isk)2 − π2
= 0. (102)

As a consequence, a diffractive contribution to the Green function, going from a point a to

a point b through possibly several vertices, has to be understood as a sum of trajectories

winding around scattering or non-scattering vertices (see Fig. 10). Now each of these new

“ficticious” trajectories avoid vertices (since they wind around), and to each of them in

one billiard it is always possible to find a partner in the other billiard.
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Figure 10 A contribution to the Green function in case of forward diffraction. The filled circles are

scattering vertices, the empty ones are non-scattering vertices.

D. Green function

This compensation is made clear through a relation between the Green functions of the

two domains (Giraud, 2004). Recall that the way the building blocks are glued together

(or, equivalently, the colouring of the associated graph) can be described by matrices

M (µ), N (µ), 1 ≤ µ ≤ 3, as introduced in section I. The transplantation between the two

billiards can be described by some matrix T . It turns out that these matrices verify the

property
∑

i′,j′

Ti,i′Tj,j′M
(A)
i′,j′ = 1 + 2M

(B)
i,j , (103)

which can be proved using the commutation relation (9) of the M (µ) (that will be studied

in more detail in section VII) and the fact that (T 2)ij = 1 + 2δij. To each of the “ficti-

cious” trajectories described above one can associate a “word” (a1, a2, . . . , an) describing

the edges crossed by the trajectory, and a matrix M =
∏

M (ai). This trajectory exists

between tiles i and jif and only if Mij = 1. Thus, in the expansion (100) of the Green

function between a point in tile i and a point in tile j in the first (second) billiard, each

trajectory appears with a weight MA
ij (MB

ij ). But according to Eq. (103) we have

MB
ij =

1

2

∑

i′,j′

Ti,i′Tj,j′M
A
i′j′ −

1

2
. (104)
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Therefore from Eq. (100) and identity (104) one can infer a relation between Green func-

tions, namely

G(B)(a, i; b, j) =
1

2

∑

i′,j′

Ti,i′Tj,j′G
(A)(a, i′; b, j′) − 1

2
G(t)(a; b), (105)

where G(t)(a; b) is the Green function on the base tile.

E. Scattering poles of the exterior Neumann problem

1. Fredholm theory

In section V.C we considered the particular case of polygonal isospectral billiards, for

which the expansion of (Hannay and Thain, 2003) exists. In a more general setting, it

is also possible to express the Green function with Dirichlet boundary conditions as an

infinite sum taking into account all possible reflexions on obstacles. Balian and Bloch

(Balian and Bloch, 1974) gave a general method, called “multiple reflexion expansion”,

which gives the Green function in terms of the free Green function G0. Applied to a two-

dimensional billiard this gives

G(q, q′;E) = G0(q, q
′;E) − 2

∫

∂B

ds G0(q, s;E)∂sG0(s, q
′;E) (106)

+ (−2)2

∫

∂B

ds ds′ ∂sG0(q, s;E)∂s′G0(s, s
′;E)G0(s

′, q′;E) + · · · ,

where s, s′ are points along the boundary, and ∂x denotes here the derivative along an

outward vector normal to the boundary at point x. The term G0(q, q
′;E) on the right

hand of (106) corresponds to direct (free) propagation from q to q′, the first integral

corresponds to trajectories from q to q′ with one reflexion on the boundary at point s,

etc... We introduce the kernel KE(q, q′) = −2∂q′G0(q, q
′;E), which a continuous infinite-

dimensional operator defined on ∂B × ∂B. One can express (106) as

G(q, q′;E) = G0(q, q
′;E) (107)

− 2
∞
∑

n=0

∫

∂B

ds ds′ G0(q, s;E)Kn
E(s, s′)∂s′G0(s

′, q′;E).
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Performing formally the sum over n yields the infinite-dimensional operator (I − KE)−1.

Fredholm theory (Smithies, 1962) shows that, for sufficiently “nice” billiards, the operator

(I −KE)−1 is well-defined and can be expressed as

(I −KE)−1 =
NE

D(E)
, (108)

where D(E) is the Fredholm determinant det(I−KE), NE is an infinite-dimensional oper-

ator defined on ∂B×∂B, and I is the identity operator. The Fredholm determinant admits

an expansion

D(E) =
∞
∑

0

Dn(E), (109)

with

Dn(E) =
(−1)n

n!

∫

∂B

dq1 . . .

∫

∂B

dqnK





q1, q2, ..., qn

q1, q2, ..., qn



 (110)

and D0(E) = 1. We have introduced the determinant

K





q1, q2, ..., qn

q′1, q
′
2, ..., q

′
n



 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

KE(q1, q
′
1) KE(q1, q

′
2) ... KE(q1, q

′
n)

KE(q2, q
′
1) KE(q2, q

′
2) ... KE(q2, q

′
n)

... ... ... ...

KE(qn, q
′
1) KE(qn, q

′
2) ... KE(qn, q

′
n)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (111)

The operator NE is defined on ∂B × ∂B by its expansion NE =
∑∞

0 Nn with

Nn =
n
∑

k=0

Dk(E)Kn−k
E . (112)

The Fredholm determinant D(E) has the property that it has zeros at eigenvalues of the

system (Georgeot and Prange, 1995). It has been shown in (Tasaki et al., 1997) that for

billiards with C2 boundary, D(E) can be decomposed as an interior and an exterior con-

tribution, namely D(E) = D(0)dint(E)dext(E). The exterior contribution dext(E) is related

to the scattering of a wave on an obstacle having the shape of the billiard with Neumann

boundary conditions, i.e. the zeros of its analytic continuation are resonances of the exte-
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rior scattering problem. The interior contribution reads

dint(E) = eiAE
4

(L2E

4

)−AE
4π

e−
AγE
2π

∞
∏

n=1

(

1 − E

En

)

eE/En , (113)

where A and L are respectively the area and the perimeter of the billiard, and γ a constant

depending on the geometry of the billiard. The zeros of dint(E) are thus the eigenenergies

of the interior Dirichlet problem.

Obviously, isospectral billiards share the same interior part dint(E). But calculating the

Fredholm determinant requires the knowledge of the whole shape of the billiard. In

particular solutions of the exterior Neumann scattering problem may differ between two

isospectral billiards. Therefore isospectral pairs might be distinguished by measuring the

sound scattered by them (Tasaki et al., 1997).

To check this property, numerical investigations have been performed in (Okada et al.,

2005a). In fact, Fredholm theory applies only for billiards with a smooth boundary, which

is not the case for any of the known examples (see B). For billiards with a piecewise

smooth boundary it is however possible to approximate D(E) by a discretized version

Dm(E), depending on the number m of points taken on the boundary of the billiard, and

which converges to D(E) for large m. This convergence fails for boundaries with cor-

ners: all Dm(E) tend to 0. Nevertheless, for domains with corners (Okada et al., 2005b)

showed that it is possible to define a regularized version of Dm(E) that converges to

D(E)/D(0) = dint(E)dext(E). Using this regularized version, zeros of the regularized Fred-

holm determinant were computed numerically for various pairs of isospectral billiards in

(Okada et al., 2005a). It was observed that zeros close to the real axis coincide, as they

should since they are eigenvalues of the interior problem. On the other hand complex ze-

ros (remote from the real axis), which correspond to resonances of the exterior Neumann

problem, are shown to differ. To quantify this discrepancy between resonances of the two

billiards, the resonance counting number

Nδ(r) =
{

z ∈ C; |z| < r,−π
2
< arg(z) < −δ

}

(114)

was studied in (Okada et al., 2005a). The best fit Nδ(r) = Cδ,Rr
2, computed over the range

r ∈ [0, R], yields noticeably different values of Cδ,R for each billiard. This clearly proves
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that isospectral pairs can indeed be distinguished by resonances of scattering waves.

F. Eigenfunctions

1. Triangular states

Although in general analytical solutions to the Helmholtz equation (∆ + E)Ψ = 0 with

Dirichlet boundary conditions are not known, it is possible to construct particular solutions

of this equation as eigenfunctions coinciding with those of the elementary sub-domains of

the billiards. Let us take the example of the two billiards in Fig. 11, where each billiard in

Fig. 11 is made of 7 triangular (half-square) tiles.

Eigenfunctions for a d× d–square with Dirichlet boundary conditions are of the form

sm,n(x, y) =
4

d2
sin
(mπx

d

)

sin
(nπy

d

)

, (115)

with eigenvalues Em,n = π2(m2 + n2)/d2, m,n ≥ 1. Eigenfunctions for the elementary tri-

angles with Dirichlet boundary conditions are obtained from (115) by antisymmetrization

with respect to the diagonal:

tm,n(x, y) =
4

d2

[

sin
(mπx

d

)

sin
(nπy

d

)

− sin
(mπy

d

)

sin
(nπx

d

)]

. (116)

The corresponding eigenenergies are given by π2(m2 + n2)/d2, m > n. The functions tm,n

turn out to be also elementary solutions of the Helmholtz equation for both isospectral

billiards of Fig. 11. Indeed tm,n vanishes on all lines x = kd, y = kd, y = x + 2kd and

y = −x+2kd, k ∈ Z, which are precisely the lines on which the boundary of both billiards

lie (in the convention of Fig. 11). It is therefore possible to construct particular solutions of

Helmholtz equation by taking 7 copies of an eigenfunction of the triangle. These particular

solutions are called “triangular states”. The labels of the lowest-energy triangular states

among the eigenvalues E1 ≤ E2 ≤ . . . of the billiards have been calculated in (Gottlieb and

McManus, 1998). The results are displayed in Table V.F.1. Each integer pair (m,n), m > n,

defines a triangular state tm,n. Obviously, the fact that an integer can be represented in

more than one way as a sum of two squares leads to degeneracies for triangular states.
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Figure 11 Isospectral billiards divided into smaller regions.

m n Eigenvalue m n Eigenvalue
1 2 E9 0 1 E5

1 3 E21 1 1 E9

2 3 E27 0 2 E15
1 4 E38 1 2 E20
2 4 E44 2 2 E29

Table I Rank of the first triangular modes tm,n.

Note that for Neumann boundary conditions, it can be easily checked that the functions

um,n(x, y) =
4

d2

[

cos
(mπx

d

)

cos
(nπy

d

)

+ cos
(mπy

d

)

cos
(nπx

d

)]

(117)

for 0 ≤ m ≤ n, (m,n) 6= (0, 0), have a normal derivative that vanishes on all lines x = kd,

y = kd, y = x + 2kd and y = −x + 2kd, k ∈ Z. Therefore um,n are solutions of Helmholtz

equations for the billiards of Fig. 11 with Neumann boundary conditions. Their label

among the eigenstates of the billiards is given in Table V.F.1 (Gottlieb and McManus,

1998).

2. Mode-matching method

The knowledge of these particular triangular states is the starting point for the so-called

“mode-matching method”. For the sake of definiteness, we consider again the two isospec-

tral pairs on a Cartesian reference frame, following (Wu et al., 1995), as in Fig. 11. The
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mode-matching method consists in dividing the billiards into subdomains for which solu-

tions of the Helmholtz equation are known analytically. Consider as an example the left

billiard of Fig. 11. It is made of the 5 elementary domains, 3 triangles A,B,E and 2

squares C,D. Let d be the length of the side of the elementary square, and set an = nπ/d,

bn =
√

E − a2
n. We define the function ψn(x, y) = sin(anx) sin(bny)/ sin(bnd). For each

subdomain, analytical solutions are given by (translations of) functions (115) or (116).

If given boundary conditions are imposed on the boundaries of these subdomains, as in

Fig. 12, solutions can be written explicitely for these elementary subdomains as superpo-

sitions of functions obtained from translations or reflexions of ψn. In particular, one can

y

x

y

x

A E

y

x

y

x

y

x

y

x

y

x

B1
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C1

C2 D2

y

x

D1

Figure 12 Elementary regions building the isospectral pairs.

construct functions taking value 0 on the plain boundary and 1 on the dashed boundary
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for each of the domains depicted in Fig. 12. These functions are given by

Φ(A)
n (x, y) = ψn(x, d− y) − ψn(y, d− x) (118)

Φ(B1)
n (x, y) = ψn(x, y) − ψn(d− y, d− x)

Φ(B2)
n (x, y) = ψn(y, x) − ψn(d− x, d− y)

Φ(C1)
n (x, y) = ψn(y, d− x)

Φ(C2)
n (x, y) = ψn(y, x)

Φ(D1)
n (x, y) = ψn(y, d− x)

Φ(D2)
n (x, y) = ψn(x, d− y)

Φ(E)
n (x, y) = ψn(x, y) − ψn(y, x).

The mode-matching method consists in looking for a solution Ψ of Helmholtz equation

as a superposition of such functions, with amplitudes chosen such that Ψ and its partial

derivatives be continuous at each boundary between subdomains. At the boundary be-

tween elementary subdomains, the eigenfunction Ψ can be expanded on the functions

ϕn(x) = sin(anx), as

ΨAB(x, y) =
∑

n

Anϕn(x) (119)

ΨBC(x, y) =
∑

n

Bnϕn(y − d)

ΨCD(x, y) =
∑

n

Cnϕn(y − d)

ΨDE(x, y) =
∑

n

Dnϕn(x− 2d),

where the sum goes from 1 to some truncation number N . The value

of the eigenfunction Ψ only depends on the value of the vector V =
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(A1, . . . , An, B1, . . . , Bn, C1, . . . , Cn, D1, . . . , Dn). Therefore Ψ can be written as

ΨA(x, y) =
∑

n

AnΦ(A)
n (x, y − 2d) (120)

ΨB(x, y) =
∑

n

AnΦ(B1)
n (x, y − d) +

∑

n

BnΦ(B2)
n (x, y − d)

ΨC(x, y) =
∑

n

BnΦ(C1)
n (x− d, y − d) +

∑

n

CnΦ(C2)
n (x− d, y − d)

ΨD(x, y) =
∑

n

CnΦ(D1)
n (x− 2d, y − d) +

∑

n

DnΦ(D2)
n (x− 2d, y − d)

ΨE(x, y) =
∑

n

DnΦ(E)
n (x− 2d, y),

where ΨX is the restriction of the function Ψ to the elementary domain X = A,B,C,D,

or E. The function Ψ is indeed an eigenfunction of the billiard if its normal derivatives

at the boundaries between domains are continuous. This latter condition can be written

as a system of linear equations that can be cast under the form MV = 0, where M is a

4N × 4N -matrix given by

M =















U − 2W PWP − PV/2 0 0

PWP − PV/2 U −W −V/2 0

0 −V/2 U W

0 0 W U − PWP















(121)

with Umn = (bn cot bnd)δmn, Vmn = (bn/ sin bnd)δmn, Wmn = aman/(E − a2
m − a2

n) and

Pmn = (−1)nδmn. The matrix M depends on E through the bn. Eigenvalues of the billiard

correspond either to values of E where detM = 0 (”real” billiard states) or to V = 0.

In the latter case, the wavefunction vanishes on the boundaries between the domains; it

corresponds to triangular states of section V.F.1. Otherwise Eqs. (120) give the general

form of eigenfunctions in the billiard.

The mode-matching method provides an alternative proof to isospectrality. Indeed the

same method can be applied to the right billiard of Fig. 11. The matrix corresponding to
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M is the 4N × 4N -matrix M ′ given by

M ′ =















U −W PWP − PV/2 0 0

PWP − PV/2 U −W PV/2 W

0 PV/2 U −W PWP

0 W PWP U −W















(122)

and it can be easily checked that M and M ′ are related by

M =t TM ′T (123)

with

T =
1√
2















0 1 0 P

1 0 P 0

0 −1 0 P

−1 0 P 0















. (124)

If Ψ is a solution of Helmholtz equation for the first billiard, given by (120) with constants

specified by some vector V, then MV = 0. Let Ψ′ be the function defined on the second

billiard by some constants given by the vector V′ = TV. Because of Eq. (123) the vector

V′ verifies M ′V′ = 0, and therefore Ψ′ is a solution of Helmholtz equation for the second

billiard. Since the relation between Ψ and Ψ′ is linear, the eigenenery is the same for both

functions, and thus the billiards are isospectral.

G. Eigenvalue statistics

In order to further characterize properties of the distribution of eigenvalues of the Lapla-

cian, a commonly used function is the level spacing distribution function P . It is defined

as the probability density distribution of the spacings between nearest-neighbour energy

levels. That is, if we set si = Ei+1 − Ei, the nearest-neighbour spacing distribution is

defined by

P (s)ds =
1

N
]{i; s ≤ si ≤ s+ ds} (125)

61



where we only consider N eigenvalues around a given energy E. In order to be able to

compare statistics, the function P (s) is chosen to be normalized by

∫ ∞

0

P (s)ds = 1 and

∫ ∞

0

sP (s)ds = 1. (126)

For each class of classical systems described in section .D, conjectures relating the quantum

behaviour to the classical properties of systems have been proposed. For integrable bil-

liards, Berry and Tabor conjectured (Berry and Tabor, 1977) that the energy levels behave

like independent uniformly distributed random variables, that is a Poisson distribution.

The nearest-neighbour level spacing should thus be given by

P (s) = e−s. (127)

Chaotic systems are so complex that a natural idea is to replace all parameters and vari-

ables appearing in its description by random variables. To study properties of chaotic

systems, the basic idea is to replace the Hamiltonian of the system, which is out of reach

analytically, by a matrix whose coefficients are independent Gaussian random variables.

This random matrix theory (RMT) has been introduced by Wigner and Dyson (see (Porter,

1965) for a review on the seminal papers, and (Guhr et al., 1998) for a recent review

on RMT). Three kinds of ensembles of random matrices (Gaussian orthogonal ensemble

GOE, gaussian unitary ensemble GUE or Gaussian symplectic ensemble GSE) can be de-

fined, according to the symmetries of the system that has to be described. Matrices are

drawn from these ensembles with a Gaussian probability measure which is invariant under

transformations corresponding to classical symmetries (i.e. under respectively orthogonal,

unitary or symplectic transformations). Bohigas, Giannoni and Schmit conjectured (Bohi-

gas et al., 1984) that systems which are invariant under time reversal symmetry are well

described by GOE matrices, and by GSE matrices if angular momentum is a half-integer

if there is no rotational invariance. Generic systems should be described by GUE matrices

(Bohigas et al., 1984)-(Wintgen, 1987). Wigner (see (Guhr et al., 1998)) has proposed to

approximate the nearest-neighbour spacing distribution forN×N–matrices by its value for

2 × 2–matrices. This quantity has much simpler expressions and numerically corresponds
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very accurately to the exact N ×N–result. The general form of this “Wigner surmise” is

P (s) = aβs
βe−bβs2

, (128)

with β = 1, 2 or 4 according to the symmetry class of the problem; aβ and bβ are given by

normalization conditions (126). In particular systems with time-reversal symmetry can be

described by the spectrum of GOE matrices. The nearest-neighbour distribution reads

P (s) =
π

2
s exp

(

−π
4
s2
)

. (129)

For intermediate systems, numerical results show that the nearest-neighbour spacing dis-

tribution behaves like a Wigner-Dyson distribution for small values of its argument, that

is

P (s) ∼s→0 s
α, α > 0, (130)

while it decreases exponentially at infinity, like Poisson distribution (127):

P (s) ∼s→∞ exp(−as). (131)

Another useful quantity used to characterize spectra of billiards is the spectral rigidity

∆̄3(L), defined in (Mehta, 1990) by par

∆̄3(L) =

〈

min
A,B∈R

1

L

∫ L/2

−L/2

(N(E + ε) − A−Bε)2 dε

〉

. (132)

It measures the deviation of the density of states from a straight line, on an interval [E −
L/2, E + L/2]. Berry showed in (Berry, 1985) that for a generic integrable system

∆̄3(L) = L/15, L� Lmax (133)

(with Lmax = ktH/Tmin, Tmin being the period of the shortest orbit and tH heiseberg time),

and a non-universal saturation for L � Lmax. On the other hand, for a system which is
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invariant by time-reversal symmetry and with unstable periodic orbits

∆̄3(L) ' (lnL)/π2 − 0.00695, L� Lmax (134)

and non-universal saturation for L� Lmax.

As explained in section I, the shape of the building block can be varied as desired. Ex-

amples of chaotic pairs, or pseudointegrable pairs, or pairs with a fractal boundary can

pe produced. Eigenvalue statistics for the pair of Fig. 1 have been studied numerically

in (Wu et al., 1995), based on the first 598 energy levels. Removing the 78 triangular

states, it was observed that P (s) agrees with the nearest-neighbour distribution for GOE

matrices given by Eq. (129). Computation of ∆̄3 showed that it is also of GOE type for

these billiards.

H. Nodal domains

Nodal lines for two-dimensional billiards are one-dimensional curves on which eigenfunc-

tions vanish. Nodal domains are connected regions of the billiard where an eigenfunction

has a constant sign. A theorem by Courant (Courant and Hilbert, 1953) states that the

n-th eigenfunction Ψn has at most n nodal domains. The number νn of nodal domains in

Ψn can be further estimated (Pleijel, 1956). Let us define a rescaled nodal-domain number

ξn = νn/n ∈ [0, 1]. If j1 is the first zero of the Bessel function J0, then limn→∞ ξn ≤ (2/j1)
2.

It has been shown that the limit distribution of ξn, defined by

P (ξ) = lim
E→∞

〈δ (ξ − ξn)〉En∈[E,E+gE] (135)

for some fixed g > 0, has universal features.

For some instances of isospectral pairs, such as flat tori in Rn with n ≥ 4 (Gnutzmann

et al., 2005) (see also (Levitin et al., 2006)), it was conjectured that two isospectral do-

mains produce a different number of nodal domains (domains separated by nodal lines

where Ψ = 0). Heuristic arguments as well as numerical investigations were collected in

(Gnutzmann et al., 2005) to support this conjecture.
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VI. EXPERIMENTAL AND NUMERICAL INVESTIGATIONS

Although isospectrality is proven on mathematical grounds, the knowledge of exact eigen-

values and eigenfunctions can not be obtained analytically for such systems. Experimen-

tal as well as numerical simulations have occured very early in the history of billiards.

In 1909, in the Bulletin international de l’Académie des sciences de Cracovie, Stanislas

Zaremba proposed a way of “numerically” calculating solutions of the Dirichlet and Neu-

mann problem at a given point (Zaremba, février 1909). Usual numerical methods to

compute eigenvalues and eigenfunctions in polygonal billiards are based on the so-called

“method of particular solutions”, or FHM as it was introduced by Fox, Henrici and Moler

in (Fox et al., 1967). At a diffracting corner with angle πα, a wavefunction Ψ admits

a “corner” decomposition into Bessel functions valid at a distance less than the nearest

diffracting corner. In polar coordinates centred around the corner πα this decomposition

reads

Ψ(r, θ) =
∑

k

akJkα(kr) sin(kαθ), (136)

where Jν are Bessel functions of the first kind, and k =
√
E. The sine function in (136) en-

sures that the function Ψ(r, θ) is zero on the boundary edges connected to corner πα. The

idea of FHM is to require that Ψ also vanish on the rest of the boundary at a finite number

of points, and to truncate the sum (136). This gives a system of m linear equations, which

admits a non-zero solution {ak, 1 ≤ k ≤ m}if and only if the matrix corresponding to this

linear system is singular. The FHM method therefore consists in varying the energy E and

tracking the singularities of the matrix M .

Unfortunately for more than one diffracting corner it becomes virtually impossible to track

singularities, all the more since in various circomstances FHM fails to converge when the

number of terms included in (136) is increased. Even for the paradigmatic pair with half-

square base shape (Fig. 1), which is one of the simplest isospectral billiards, each pair has

four diffractive angles: two 3π/2 and two 3π/4 angles, and FHM fails to give eigenvalues

with a good accuracy. This is why attention has been focused on physical experiments.

All known pairs of isospectral billiards are built on the same principle as the ”historical”

pair 73 of Fig. 1. As has been explained in section I any initial building block possessing

three sides along which to unfold the block can be used to construct an isospectral pair.
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In particular, the properties of the resulting pair will depend strongly on the choice of the

initial building block. Physicists have mainly concentrated on the paradigmatic example

of Fig. 1. The focus has mainly be put on this pair, which allows to make comparisons

between the different approaches.

In this section we review both experimental and numerical investigations which give an

insight into the behaviour of eigenvalues and eigenfunctions for isospectral billiards.

A. Numerical investigations

1. Numerical computations of the spectrum and eigenfunctions by a mode-matching method

Numerical approaches to the study of isospectrality for the billiards of Fig. 1 have followed

the experiments of Sridhar and Kudrolli. Various approaches have been used in order to

solve the Helmholtz equation (∆ + E)Ψ = 0 with Dirichlet boundary conditions inside

the billiards. The first numerical results were obtained by Wu, Sprung and Martorell and

reported in (Wu et al., 1995). Using the mode-matching method described in section

V.F.2, eigenvalues of the billiard are the values for which the determinant of the matrix

M , given by (121), vanishes. The results obtained by this method are displayed in column

2 of VI.B.2. As expected, both billiards yield the same values. Wu et al. (Wu et al.,

1995) compared their results to results obtained by a finite-difference method consisting

in discretizing the Laplacian ∆. This finite-difference method gives the results displayed

in column 1 of Fig. VI.B.2 (the numerical results are again exactly the same for both

billiards). As a check for the validity of this approach, one can identify the eigenvalues of

triangular states. Lowest-energy triangular state are expected to have eigenenergies equal

to 5π2/d2 and 10π2/d2. As one can see in Table VI.B.2, these eigenvalues respectively

correspond to the 9th and the 21st mode, consistantly with Table V.F.1.

2. Numerical computations by expansion of eigenfunctions around the corners, with domain-

decomposition method

The main drawback of the mode-matching method of (Wu et al., 1995) is the fact that

one has to know analytic solutions of the Helmholtz equation on subdomains of the bil-
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liard. T.A. Driscoll, in (Driscoll, 1997), uses a numerical method based on an algorithm

by Descloux and Tolley (Descloux and Tolley, 1983), particularly suited to treating the

case of polygonal billiards. The idea is again to decompose the billiard into domains, each

domain Di containing only one diffracting angle ai. On each domain the restriction of

the eigenfunction Ψ is supposed to be some Ψi that admits a Bessel function expansion

around corner ai, according to (136). Truncating this expansion to some finite order, the

problem reduces to finding the coefficients of the expansion for the Ψi. Mode-matching

numerically leads to undesired singularities. Instead, (Descloux and Tolley, 1983) use an

algorithm minimizing a function that measures discrepancies between the Ψi and between

their derivatives at the boundaries between subdomains. Improvement of this algorithm

allowed Driscoll to obtain the first 25 eigenvalues for both billiards of Fig. 1 with an

accuracy of up to 12 digits. Betcke and Trefethen (Betcke and Trefethen, 2005) use a

modified method of particular solutions using 140 expansion terms at each singular cor-

ner, 140 boundary points on each side of the polygon, and 50 interior points to obtain

following estimates for the first three eigenvalues: 2.537943999798, 3.65550971352 and

5.17555935622.

B. Experimental realizations

1. Electromagnetic waves in metallic cavities

Many experimental studies have been carried out on chaotic quantum billiards to check

the various properties conjectured analytically for chaotic systems (Bohigas et al., 1984).

One commonly used method is based on the correspondence between the stationary

Schrödinger equation and Helmholtz equation for electromagnetic waves in two dimen-

sions (which is also the equation obeyed by vibrating plates). The experiments are carried

out by sending electromagnetic microwaves into a cylindrical copper cavity. The height h

of the cavity is small, and the two other dimensions are shaped according to the desired

billiards to investigate. For wavelengths λ > 2h, i.e. frequences below ν0 = c/2h, all

modes obey the two-dimensional wave equation (∆ + k2)Ψ = 0. The Ez component of the

electric field plays the role of the quantum wave, and vanishes on the boundary. Probes

allow to send an elecromagnetic wave in the cavity and to measure the transmission spec-
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trum. In particular, eigenvalues correspond to resonances in the transmission spectrum.

Various choices of the probe locations ensure that no resonance is missed.

If A is the area of the cavity, the number of resonances below ν0 is approximately given

by A
4π

(π/h)2. But the quality factor of the cavity is proportional to h; therefore one has to

find a compromise between a high quality factor and a large number of resonances.

Measurements of the intensity of the wave function (or here the electric field) were

achieved by the perturbation body method (Sridhar et al., 1992): the resonance frequency

of the cavity is shifted by the presence of a small metallic body inside the cavity. This shift

is a function of the square of the electric field at the point of the metallic body.

The first experimental investigation of isospectral billiards was realized at Northeastern

University, Boston, by Srinivas Sridhar and Arshad Kudrolli (Sridhar and Kudrolli, 1994).

Sridhar and coworkers had carried out various studies on chaotic quantum billiards, such

as Sinai billiard (a square billiard with a circular obstacle in the interior) or Bunimovitch

stadium-shaped billiard, observing the scarring of eigenfunctions (Sridhar, 1991) or local-

ization phenomena (Sridhar and Heller, 1992) for such billiards. The experiments aimed

at investigating isospectrality were realized on cavities having the shape of the isospectral

pair of Fig. 1.

Experimentally, each cavity has 9 rectangular sides. The base shape is an isosceles rectan-

gular triangle (a half-square) whose smaller size is d = 76 mm (3 in.) long. The height of

the cavity is h = 6.3 mm (' 0.25 in.), so that microwaves at frequencies below ν0 = 25 GHz

are actually two-dimensional. Measurements carried out to obtain the 54 lowest eigen-

values showed that, as expected, the eigenvalues of the two cavities are equal. Relative

discrepancies of 0.01 to 0.2% between pairs of eigenvalues were found. These discrepan-

cies and the width of the resonances were assumed to be caused by imperfections due to

assembly of the pieces forming the cavity. This experiment also allowed to get an insight

on the properties of eigenvalues of isospectral pairs. It was checked that the eigenval-

ues found experimentally agree with the Weyl formula (71) for the integrated density of

states:

N (E) ' A
4π
E − L

4π

√
E +K. (137)

For the choice d = 3 in. one gets an area A = 31.5 in.2 and a perimeter L = 27 in.;

the constant K is given by (78) and yields K = 5/12. It was observed that, at least for
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the lowest eigenvalues no degeneracy occured. By measuring the electric field inside the

cavity, some of the lowest eigenfunctions were obtained. The results for the 10 first eigen-

values are displayed in Table VI.B.2. It is funny to note that these pairs of eigenfunctions

look quite different, although they possess the same eigenvalues. It was checked that one

eigenfunction could be deduced from the other by transplantation. The particular case of

the 9-th mode, which is a triangular state, is well reproduced. Indeed, as shown in Table

VI.B.2, the measured 9-th eigenvalue is very close to its theoretical value E = 5π2/d2.

2. Transverse vibrations in vacuum for liquid crystal smectic films

Another experimental realization of Kac’s membranes was achieved by using liquid crystal

films in a smectic phase, spanned on a shape of the form of the isospectral billiard to be

considered (Even and Pieranski, 1999). First, the shapes were etched in circular stainless-

steel wafers of diameter 4cm and thickness 125 µm. The smectic film is then drawn

on the shape, and after a few hours it reaches an equilibrium with uniform thickness e

of several hundred nm (corresponding to a few dozens monomolecular layers) over the

whole surface. The whole experiment is set into vacuum. The film then obeys the wave

equation

γ∆z = ρe
∂2z

∂t2
, (138)

where γ is the intrinsic tension of the film (in the experiments γ ∼ 5.10−2N/m), and ρ

the density, with a vertical displacement z vanishing on the border. The film is excited

by a voltage applied by an electrode under the film, and the amplitude and phase of

its oscillations are measured by sending a laser beam and measuring its deviations by a

photodiode. The signal detected is proportional to the height of the film at the position of

the electrode. The frequency of the excitation is varied from a few Hz to several kHz, and

eigenfrequencies correspond to resonance peaks. Displacing the electrode over the whole

shape allows to reconstruct eigenmodes.

The experiment was carried on isospectral billiards with an isosceles triangular base shape:

two angles β = γ are equal, while the third one is varied from α = 67.5◦ to α = 97.5◦.

The angle α = 90◦ corresponds to the example of Fig. 1. The first 30 modes for both

shapes were measured. The average relative difference between two eigenvalues for a

given mode is 0.3%, which is within the estimated experimental error of order 0.5%. For
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the right angle triangle (α = 90◦) the modes are to be compared with other numerical or

experimental results. Data for the 10 first eigenvalues of the α = 90◦ billiards were given

in (Even and Pieranski, 1999) and are displayed in Table VI.B.2. When the parameter α

is varied, there is an avoided crossing between eigenvalues of the 8th and the 9th mode.

Since the 9th mode is a triangular mode (see section V.F.1) and the 8th is not, the coupling

between these two modes necessarily comes from experimental imperfections.

This experiment has also been tested on a billiard where the gluing scheme of the base

triangles is modified. Namely, tile E in Fig. 11 left is flipped around the line x = 5d/2.

This leads to a significantly different spectrum. In particular, the triangular modes are no

longer eigenstates of such a billiard. Again this is a check that the way the tiles are glued

together, according to the rules constructed from finite projective spaces or from Sunada

triples, is of primary importance for isospectrality.
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rank Finite differences Mode matching Electromagnetic waves Smectic films (relative values)

1 1.028936 1.028535 1.02471 1.02481 1.000000 1.000000

2 1.481865 1.481467 1.46899 1.47194 1.438000 1.430000

3 2.098249 2.097467 2.08738 2.08831 2.040000 2.027000

4 2.649715 2.649547 2.64079 2.63985 2.571000 2.548000

5 2.938176 2.937434 2.93297 2.92949 2.854000 2.823000

6 3.732689 3.732334 3.72695 3.71892 3.623000 3.570000

7 4.295193 4.294728 4.28393 4.28388 4.184000 4.153000

8 4.677665 4.677532 4.67021 4.66917 4.554000 4.507000

9 5.000002 5.000000 4.98838 4.98531 4.861000 4.811000

10 5.291475 5.290275 5.27908 5.27278 5.150000 5.095000

11 5.801531 5.801138 5.78755 5.78371

12 6.433894 6.432156 6.41357 6.43781

13 6.866260 6.866226 6.84891 6.84718

14 7.159802 7.159343 7.15242 7.16045

15 7.694737 7.692417 7.67783 7.70604

16 8.463655 8.463257 8.44285 8.45947

17 8.613536 8.611169 8.57859 8.62220

18 9.012405 9.010349 8.99495 8.97209

19 9.609968 9.609791 9.60312 9.59562

20 9.921131 9.921040 9.92583 9.93689

21 10.000008 10.000000 10.00330 10.03932

22 10.571020 10.569736 10.55227 10.55740

23 11.066916 11.065727 11.09578 11.10035

24 11.419551 11.418850 11.41874 11.40569

25 11.984650 11.984080 11.99364 11.98033

Table II Comparison between the first eigenvalues Ei of the isospectral pair obtained by various

methods, expressed in units of π2/d2. The 9-th mode corresponds to the triangular mode: its

normalised eigenvalue is expected to be equal to 5. (The conversion from frequencies to lengths is

done assuming vacuum in the cavity; (Wu et al., 1995) give the values for electromagnetic cavities

with a factor 1.0006 corresponding to the presence of air in the cavity.)

VII. TRANSPLANTATION

The aim of this section is to describe the concept of transplantation. This concept was

presumably first introduced by P. Bérard — see his papers (Bérard, 1992, 1993). It will

include the geometric aspect behind Kac theory.

A. Graphs and billiards by tiling

Tiling. All known isospectral billiards can be obtained by unfolding polygonal-shaped

tiles, but essentially one can only consider triangles. We call such examples isospectral
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Euclidean TI-domains. The way the tiles are unfolded can be specified by three permutation

d× d-matrices M (µ), 1 ≤ µ ≤ 3 and d ∈ N, associated with the three sides of the triangle:

• M
(µ)
ij = 1 if tiles i and j are glued by their side µ;

• M
(µ)
ii = 1 if the side µ of tile i is the boundary of the billiard, and

• 0 otherwise.

The number of tiles is, of course, d. Call the matrices M (µ) “adjacency matrices”.

One can sum up the action of the M (µ) in a graph with coloured edges: each copy of the

base tile is associated with a vertex, and vertices i and j, i 6= j, are joined by an edge

of colour µ if and only if M
(µ)
ij = 1. In the same way, in the second member of the pair,

the tiles are unfolded according to permutation matrices N (µ), 1 ≤ µ ≤ 3. We call such a

coloured graph an involution graph for reasons to be explained later in this section. If D

is a Euclidean TI-domain with base tile a triangle, and M = {M (µ) ‖ µ ∈ {1, 2, 3}} is the

set of associated permutation matrices (or, equivalently, the associated colouring), denote

by Γ(D,M) the corresponding involution graph.

The following proposition is easy but fundamental (Thas, 2007).

Proposition VII.1 Let D be a Euclidean TI-domain with base tile a triangle, and let M =

{M (µ) ‖ µ ∈ {1, 2, 3}} be the set of associated permutation matrices. Then

3
∑

µ=1

M (µ) − ∆(
3
∑

µ=1

M (µ)) (139)

is the adjacency matrix of Γ(D,M), where ∆M = ∆(
∑3

µ=1M
(µ)) is defined by

∆M
ii = (

∑3
µ=1M

(µ))
ii

for all i, and ∆M
ij = 0 if i 6= j. �

Transplantability. Two billiards are said to be transplantable if there exists an invertible

matrix T — the transplantation matrix — such that

TM (µ) = N (µ)T for all µ. (140)
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Figure 13 Two isospectral billiards with a triangular base shape on 7 tiles.

If the matrix T is a permutation matrix, the two domains would just have the same shape.

One can show that transplantability implies isospectrality. For, if Ψ1 is an eigenfunction of

the first billiard and Ψ
(i)
1 is its restriction to triangle i, then one can build an eigenfunction

Ψ2 of the second billiard by taking

Ψ
(i)
2 =

∑

j

TijΨ
(j)
1 . (141)

In the next section, we will discuss in detail the celebrated example found in (C. Gordon

and Wolpert, 1992) by Buser et al. We will show isospectrality by following the method

of Buser et al. (Buser et al., 1994). As the reader will notice, this will in fact be a

down-to-earth approach/example of transplantability.

B. The example of Gordon et al.

In this section we analyse the first known example of a pair of simply connected com-

pact isospectral but non-congruent Euclidian domains. The pair was found by C. Gordon,

D. Webb and S. Wolpert in their paper “Isospectral plane domains and surfaces via Rie-

mannian orbifolds” (C. Gordon and Wolpert, 1992) (Invent. Math. 110 (1992), 1–22).
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We follow the very transparent approach of Buser et al. (Buser et al., 1994) to show

isospectrality.

Let λ be any real number, and f any eigenfunction of the Laplacian with eigenvalue λ

for the Dirichlet problem corresponding to the left-hand propeller (in Fig. VII.B). Let

f0, f1, . . . , f6 denote the functions obtained by restricting f to each of the 7 triangles of

the left-hand propeller, as indicated on the left in Fig. VII.B.

Notation. For brevity, we write i for fi.

The Dirichlet boundary condition is that f must vanish on each boundary-segment. Using

the reflection principle, this is equivalent to the assertion that f would go into −f if

continued as a smooth eigenfunction across any boundary-segment. (More precisely it

goes into f ◦ σ where σ is the reflection on the boundary segment.)

On the right in Fig. VII.B, we show how to obtain from f another eigenfunction of eigen-

value λ, this time for the right-hand propeller. In the central triangle, we put the function

1 + 2 + 4. By this we mean the function f1 ◦ τ1 + f2 ◦ τ2 + f4 ◦ τ4 where for k = 1, 2, 4, τk is

the isometry from the central triangle of the right-hand propeller to the triangle labelled

k on the left-hand propeller. Now we see from the left-hand side that the functions 1,2,4

continue smoothly across dotted lines into copies of the functions 0,5,−4 respectively, so

that their sum continues into 0 + 5 − 4 as shown. (The reader can check in a similar way

that this continues across a solid line to 4 − 5 − 0 (its negative), and across a dashed line

to 2 − 5 − 3, which continues across either a solid or dotted line to its own negative.)

These assertions, together with the similar ones obtained by symmetry (i.e. cyclic permu-

tation of the arms of the propellers), are enough to show that the transplanted function

is an eigenfunction of eigenvalue λ that vanishes along each boundary segment of the

right-hand propeller.

So we have defined a linear map which for each λ takes the λ-eigenspace for the left-hand

propeller to the λ-eigenspace for the right-hand one. This is easily checked to be a non-

singular map, and so the dimension of the eigenspace on the right-hand side is larger or

equal the dimension on the left-hand side. Since the same transplantation may also be

applied in the reversed direction the dimensions are equal. This holds for each λ, and so
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the two propellers are Dirichlet isospectral.

In fact they are also Neumann isospectral, as can be seen by a similar transplantation

proof obtained by replacing every minus sign in the above by a plus sign. (Going from

Neumann to Dirichlet is almost as easy: just color the triangles on each side alternately

black and white, and attach minus signs on the right to function elements that have

moved from black to white or vice versa.)

C. The other known examples

A similar technique as in the previous section allowed Buser et al. (Buser et al., 1994)

to show that the series of billiard pairs they produced in the aforementioned paper are

indeed isospectral. All these pairs are listed in an appendix to this paper; they were first

found by searching for suitable Sunada triples, and then verified to be isospectral (in the

plane) by the transplantation method. We also refer to (Okada and Shudo, 2001b) for a

further discussion on the subject of this section.

D. Euclidean TI-domains and their involution graphs

The following question was posed in (Thas, 2007):

Question. Let (D1, D2) be a pair of nonisometric isospectral Euclidean

TI-domains, and let Γ(D1) = Γ(D1, {M (µ) ‖ µ ∈ {1, 2, 3}}) and

Γ(D2) = Γ(D2, {N (µ) ‖ µ ∈ {1, 2, 3}}) be the corresponding involution

graphs. Are Γ(D1) and Γ(D2) cospectral?

Note that one does not ask the domains to be transplantable.

We now show that, maybe surprisingly, the answer is “yes” when the domains are

transplantable. The proof is taken from (Thas, 2007).
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Proof. Define, for µ = 1, 2, 3, M
(µ)
∗ as the matrix which has the same entries as M (µ), ex-

cept on the diagonal, where it only has zeroes. Define matrices N
(µ)
∗ analogously. Suppose

that TM (µ)T−1 = N (µ) for all µ.

Note the following properties:

• M
(µ)
∗ and N

(µ)
∗ , µ = 1, 2, 3, are symmetric (0, 1)-matrices, with at most one 1 entry on

each row;

• [M
(µ)
∗ ]m = M

(µ)
∗ if the natural number m is odd and [M

(µ)
∗ ]m = I

(µ)
M , where [I

(µ)
M ]ii = 1

if there is a 1 on the i-th row of M
(µ)
∗ , and 0 otherwise, if m is even, µ = 1, 2, 3, and

similar properties hold for the N
(µ)
∗ ;

• Tr(M
(i)
∗ M

(j)
∗ ) = Tr(M

(j)
∗ M

(i)
∗ ) = 0 for i 6= j and Tr(N

(i)
∗ N

(j)
∗ ) = Tr(N

(j)
∗ N

(i)
∗ ) = 0 for

i 6= j;

• Tr(M
(i)
∗ M

(j)
∗ M

(k)
∗ ) and Tr(N

(i)
∗ N

(j)
∗ N

(k)
∗ ) are independent of the permutation (ijk) of

(123) (this is because the individual matrices are symmetric);

• the value of all traces in the previous property is 0 (note that if {i, j, k} = {1, 2, 3},

such a trace equals 0 since the existence of a nonzero diagonal entry ofM
(i)
∗ M

(j)
∗ M

(k)
∗ ,

respectively N
(i)
∗ N

(j)
∗ N

(k)
∗ , implies Γ(D1), respectively Γ(D2), to have closed circuits

of length 3);

• ∑3
i=1M

(µ)
∗ =

∑3
µ=1M

(µ) − ∆(
∑3

µ=1M
(µ)) and

∑3
i=1N

(µ)
∗ =

∑3
µ=1N

(µ) −
∆(
∑3

µ=1N
(µ)).

Put A =
∑3

i=1M
(µ)
∗ , the adjacency matrix of Γ(D1), and B =

∑3
i=1N

(µ)
∗ , the adjacency

matrix of Γ(D2).

Consider a natural number n ∈ N0. Then keeping the previous properties in mind, it

follows that

Tr(An) = Tr(Bn). (142)

Whence by the following lemma (cf. (van Dam and Haemers, 2003, Lemma 1)) the adja-

cency matrices of Γ(D1) and Γ(D2) have the same spectrum.
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Figure 14 The Fano plane.

Lemma VII.2 Two k × k-matrices K and K ′ are cospectral if and only if Tr(K l) = Tr(K ′l)

for l = 1, 2, . . . , n.

�

E. Finite projective geometry

More details on the notions considered in this section can be found in (Hirschfeld, 1998).

Let Fq be the finite field with q elements, q a prime power, and denote by V (n, q) the

n-dimensional vectorspace over Fq, n a nonzero natural number. Define the (n − 1)-

dimensional projective geometry PG(n − 1, q) over Fq as the geometry of all subspaces

of V (n, q) ordered by set inclusion.

Note that PG(n− 1, q) is often called the “Desarguesian” or “classical” projective space.

The projective space PG(−1, q) is the empty set, and has dimension −1.

A d(-dimensional)-subspace of PG(n, q) contains (qd+1 − 1)/(q − 1) points. In particular,

PG(n, q) has (qn+1 − 1)/(q − 1) points. It also has (qn+1 − 1)/(q − 1) hyperplanes (=

(n− 1)-dimensional subspaces).

Example. The Fano plane has 7 points, 7 lines, three points on each line (= three points

“incident” with each line) and three lines through each point (= three lines “incident”

with each point).
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F. Axiomatic projective spaces

A more synthetic way of defining projective spaces can be done by means of axioms as

follows.

An axiomatic projective space is a set P (the set of points), together with a set of subsets of

P (the set of lines) — all of which have at least three elements, and a symmetric incidence

relation, satisfying these axioms:

• Each two distinct points p and q are incident with exactly one line.

• Axiom of Veblen: when L contains a point of the line through p and q 6= p (different

from p and q), and of the line through q and r 6= q (different from q and r), it also

contains a point on the line through p and r.

• There is a point p and a line L that are disjoint.

The last axiom is there to prevent degenerations.

If the number of points of the space is finite, we speak of a “finite projective space” (FPS).

A subspace of the projective space is a subset X, such that any line containing two points

of X is a subset of X. The full space and the empty space are also considered as subspaces.

The geometric dimension of the space is said to be n if that is the largest number for which

there is a strictly ascending chain of subspaces of the form

∅ = X−1 ⊂ X0 ⊂ · · · ⊂ Xn = P . (143)

The following result is classical; it states that all axiomatic (finite) projective spaces of

dimension at least three are essentially unique (they are of Desarguesian type). For di-

mension two, this result would be false, for non-Desarguesian examples are known — see

(Hughes and Piper, 1973).

Theorem VII.3 A finite axiomatic projective space of dimension at least 3 is Desarguesian,

so is isomorphic to a PG(n, q) for some natural number n ≥ 3 and finite field Fq.

We now take a closer look at (axiomatic) projective planes, for which we first provide the

following equivalent definition.
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A finite axiomatic projective plane Π of order n, where n ∈ N, is a point-line incidence

structure satisfying the following conditions:

(i) each point is incident with n+ 1 lines and each line is incident with n+ 1 points;

(ii) any two distinct lines intersect in exactly one point and any two distinct points lie

on exactly one line.

One also traditionally requires that n be ≥ 2 to exclude the uninteresting cases of a single

line and a point not on it (n = −1), a single line and one point on it (n = 0), or the

three vertices and three sides of a triangle (n = 1). This is equivalent to requiring that Π

contains an ordinary quadrangle (four points with no three on a line) as subgeometry. It is

easily seen that a finite projective plane of order n has n2+n+1 points and n2+n+1 lines.

The obvious examples of finite projective planes are the projective planes PG(2, q) over

finite fields Fq as defined before. In this case the order n = |Fq| is a prime power, and

in fact no examples of finite projective planes of non prime power order are known. A

classical theorem of R. Moufang states that a finite projective plane is isomorphic to some

PG(2, q) if and only if a certain configurational property corresponding to the classical

theorem of Desargues is satisfied. Projective planes of this type are therefore often called

Desarguesian, and since these correspond to planes coordinatized over finite fields, we

also use this terminology for projective spaces of dimension n ≥ 3, as already mentioned.

However, many finite projective planes are known which are not Desarguesian — see

(Hughes and Piper, 1973).

G. Automorphism groups

An automorphism or collineation of a finite projective space is an incidence and type pre-

serving bijection (so line set and point set are preserved) of the set of subspaces to itself.

It can be shown that any automorphism of a PG(n, q), n ≥ 3, necessarily has the following

form:

θ : xT 7→ A(xσ)T , (144)
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where A ∈ GL(n + 1, q), σ is a field automorphism of Fq, the homogeneous coordinate

x = (x0, x1, . . . , xn) represents a point of the space (which is determined up to a scalar),

and xσ = (xσ
0 , x

σ
1 , . . . , x

σ
n) (recall that xσ

i is the image of xi under σ).

The set of automorphisms of a projective space naturally forms a group, and in case of

PG(n, q), n ≥ 3, this group is denoted by PΓL(n+1, q). The normal subgroup of PΓL(n+

1, q) which consists of all automorphisms for which the companion field automorphism σ

is the identity, is the projective general linear group, and denoted by PGL(n + 1, q). So

PGL(n + 1, q) = GL(n + 1, q)/Z(GL(n + 1, q)), where Z(GL(n + 1, q)) is the central

subgroup of all scalar matrices of GL(n + 1, q). Similarly one defines PSL(n + 1, q) =

SL(n + 1, q)/Z(SL(n + 1, q)), where Z(SL(n + 1, q)) is the central subgroup of all scalar

matrices of SL(n+ 1, q) with unit determinant.

An elation of PG(n, q) is an automorphism of which the fixed points structure precisely is

a hyperplane, or the space itself. A homology either is the identity, or it is an automorphism

that fixes a hyperplane pointwise, and one further point not contained in that hyperplane.

H. Involutions in finite projective space

Let PG(n, q), n ∈ N ∪ {−1}, be the n-dimensional projective space over the finite field Fq

with q elements, so that q is a prime power; we have |PG(n, q)| = qn+1−1
q−1

. (Note again that

PG(−1, q) is the empty space.)

We discuss the different types of involutions that can occur in the automorphism group of

a finite projective space (Segre., 1961).

.

• BAER INVOLUTIONS. A Baer involution is an involution which is not contained in

the linear automorphism group of the space, so that q is a square, and it fixes an

n-dimensional subspace over F√
q pointwise.

• LINEAR INVOLUTIONS IN EVEN CHARACTERISTIC. If q is even, and θ is an involution

which is not of Baer type, θ must fix an m-dimensional subspace of PG(n, q) point-

wise, with 1 ≤ m ≤ n ≤ 2m + 1. In fact, to avoid trivialities, one assumes that

m ≤ n− 1.
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• LINEAR INVOLUTIONS IN ODD CHARACTERISTIC. If θ is a linear involution of

PG(n, q), q odd, the set of fixed points is the union of two disjoint complementary

subspaces. Denote these by PG(k, q) and PG(n− k − 1, q), k ≥ n− k − 1 > −1.1

We are now ready to explore a connection bewtween Incidence Geometry and Kac Theory.

I. Transplantation matrices, projective spaces and isospectral data

Suppose we want to construct a pair of isospectral billiards, starting from any polygonal

base shape. The idea described in (Giraud, 2005a) is to start from the transplantation

matrix T , and choose it in such a way that the existence of commutation relations

TM (µ) = N (µ)T (145)

for some permutation matrices M (µ), N (µ) will be known a priori. As we will see, this is

the case if T is taken to be the incidence matrix of an FPS; the matrices M (µ) and N (µ) are

then permutations on the points and the hyperplanes of the FPS.

An (N, k, λ)−symmetric balanced incomplete block design (SBIBD) is a set of N points,

belonging to N subsets (or blocks) such that

• each block contains k points;

• any two distinct points belong to exactly λ blocks, and

• each point is contained in k different blocks.

One can show that a PG(n, q) is an (N, k, λ)-SBIBD with N = (qn+1 − 1)/(q − 1),

k = (qn − 1)/(q − 1) and λ = (qn−1 − 1)/(q − 1).

Example. The Fano plane is a (7, 3, 1)−SBIBD.

1 We do not consider the possibility of involutions without fixed points, as they are not relevant for our

purpose.
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The points and the blocks can be labeled from 0 to N − 1. For any (N, k, λ)−SBIBD one

can define an N ×N -incidence matrix T describing to which block each point belongs. The

entries Tij of the matrix are Tij = 1 if the point j belongs to the line i, and 0 otherwise.

The matrix T verifies the relation

TT T = λJ + (N − k)λ/(k − 1)I, (146)

where J is the N × N -matrix with all entries equal to 1 and I the N × N identity matrix.

In particular, the incidence matrix of PG(n, q) verifies

TT T = λJ + (k − λ)I (147)

with k and λ as given above.

Example. The incidence matrix of the Fano plane corresponds to a labeling of the lines

such that line the 0 contains the points 0, 1, 3, and the line 1 contains the points 1, 2, 4, etc.

Any permutation σ on the points of an FPS can be written as a d × d permutation matrix

M defined by Miσ(i) = 1 and the other entries equal to zero.

If M is a permutation matrix associated to a collineation, then there exists a permutation

matrix N such that

TM = NT. (148)

In other words, (148) means that permuting the columns of T (i.e. the hyperplanes of the

space) under M is equivalent to permuting the rows of T (i.e. the points of the space)

under N .

Let us consider an FPS π with incidence matrix T . To each hyperplane in π we associate

a tile in the first billiard, and to each point in π we associate a tile in the second billiard.

If we choose permutations M (µ) in the collineation group of π, then the commutation

relation (148) will ensure that there exist permutations N (µ) verifying
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TM (µ) = N (µ)T. (149)

These commutation relations imply transplantability, and thus isospectrality, of the bil-

liards constructed from the graphs corresponding to M (µ) and N (µ).

If the base tile has r sides, we need to choose r elements M (µ), 1 ≤ µ ≤ r, in the

collineation group of π. This choice is constrained by several factors:

• Since M (µ) represents the reflexion of a tile with respect to one of its sides, it has to

be an involution.

• In order that the billiards be connected, no point should be left out by the matri-

ces M (µ) — in other words, the graph associated to the matrices M (µ) should be

connected.

• Finally, if we want the base tile to be of any shape, there should be no loop in the

graph.

Let us first assume we are looking for a pair of isospectral billiards with d = (q3−1)/(q−1)

copies of a base tile having the shape of an r-gon, r ≥ 3. We need to find r involutions

such that the associated graph is connected and without a loop. Such a graph connects

d vertices and thus requires d − 1 edges. Since a collineation is a permutation, it has a

cycle decomposition as a product of transpositions. For involutions with s fixed points,

there are (d − s)/2 independent transpositions in this decomposition. Each transposition

is represented by an edge in the graph. As a consequence, q, r and s have to fulfill the

following condition:

r(q2 + q + 1 − s)/2 = q2 + q. (150)

More generally, we define “projective isospectral data” as triples (P, {θ(i)}, r), where P is

a finite projective space of dimension at least 2, and {θ(i)} a set of r nontrivial involutions

of P, satisfying the following equation

r(|P| − Fix(θ)) = 2(|P| − 1), (151)
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for some natural number r ≥ 3. Here Fix(θ) = Fix(θ(i)) is a constant number of fixed

points of P under each θ(i), and |P| is the number of points of P.

One can now generate all possible pairs of isospectral billiards whose transplantation ma-

trix is the incidence matrix of a PG(2, q), with r and q restricted by the previous analysis.

All pairs must have a triangular base shape (r = 3).

Using the classification of involutions for dimension 2, we examine the various cases.

LET q BE EVEN AND NOT A SQUARE. Then any involution is an elation and therefore has

q + 1 fixed points. Therefore, q and r are constrained by the relation

rq2/2 = q2 + q. (152)

The only integer solution with r ≥ 3 and q ≥ 2 is (r = 3, q = 2). These isospectral billiards

correspond to the Fano plane PG(2, 2) and will be made of d = 7 copies of a base triangle.

LET q BE ODD AND NOT A SQUARE. Then any involution is a homology and therefore has

q + 2 fixed points. Therefore, q and r are constrained by the relation

r(q2 − 1)/2 = q2 + q. (153)

The only integer solution with r ≥ 3 and q ≥ 2 is (r = 3, q = 3). These isospectral billiards

correspond to PG(2, 3) and will be made of d = 13 copies of a base triangle.

LET q = p2 BE A SQUARE. Then any involution fixes all points in a Baer subplane PG(2, p)

and therefore has p2 +p+1 fixed points. Therefore, p and r are constrained by the relation

r(p4 − p)/2 = p4 + p2. (154)

There is no integer solution with r ≥ 3 and q ≥ 2.

However, one can look for isospectral billiards with loops: this will require the base tile

to have a shape such that the loop does not make the copies of the tiles come on top of

each other when unfolded. If we tolerate one loop in the graph describing the isospectral
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billiards, then there are d edges in the graph instead of d − 1 and the equation for p and

r becomes r(p4 − p)/2 = p4 + p2 + 1, which has the only integer solution (r = 3, p = 2).

These isospectral billiards correspond to PG(2, 4) and will be made of d = 21 copies of a

base triangle.

To summarize, we have that:

• The Fano plane PG(2, 2) provides 3 pairs (made of 7 tiles).

• PG(2, 3) provides 9 pairs (made of 13 tiles).

• PG(2, 4) provides 1 pair (made of 21 tiles).

It turns out that the pairs obtained here are exactly those obtained in (Buser et al., 1994;

Okada and Shudo, 2001b).

Now consider the space PG(3, 2), which contains 15 points. The collineation group of

PG(3, 2) is the group PGL(4, 2) ∼= PΓL(4, 2) ∼= GL(4, 2). Generating (on a PC) all

possible graphs from the 316 involutions, one obtains four pairs of isospectral billiards

with 15 triangular tiles, which completes the list of all pairs found in (Buser et al., 1994;

Okada and Shudo, 2001b).

For projective spaces of dimension 2, we have the next result.

Theorem VII.4 (O. Giraud (Giraud, 2005a)) Let P = PG(2, q) be the 2-dimensional

projective space over the finite field Fq, and suppose there exists projective isospectral data

(P, {θ(i)}, r). If q is not a square, then (r, q) ∈ {(3, 2), (3, 3)}. If q is a square, then there are

no integer solutions of Equation (151).

So this method explicitly gives the transplantation matrix T for all these pairs: each one

is the incidence matrix of an FPS, and the transplantation matrix explicitly provides the

mapping between eigenfunctions of both billiards. The inverse mapping is given by

T−1 = (1/qn−1)(T T − (λ/k)J). (155)
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J. Generalized isospectral data

In (Thas, 2006a) the next generalization was obtained for any dimension n ≥ 2.

Theorem VII.5 (K. Thas (Thas, 2006a)) Let P = PG(n, q) be the n-dimensional pro-

jective space over the finite field Fq, and suppose there exists projective isospectral data

(P, {θ(i)}, r). Then q cannot be a square. If q is not a square, then (r, n, q) ∈
{(3, 2, 2), (3, n, 3)}, where in the the case (r, n, q) = (3, n, 3) each θ(i) fixes pointwise a hy-

perplane, and also a point not in that hyperplane. However, this class of solutions only

generates planar isospectral pairs if n = 2.

Call a triple (P, {θ(i)}, r), where P is a finite projective space of dimension at least 2, and

{θ(i)} a set of r nontrivial involutory automorphisms of P, satisfying

r(|P|) −
r
∑

j=1

Fix(θ(j)) = 2(|P| − 1), (156)

for some natural number r ≥ 3, “generalized projective isospectral data”.

These data were completely classified in (Thas, 2006b).

Theorem VII.6 (K. Thas (Thas, 2006b)) Let P = PG(l, q) be the l-dimensional projective

space over the finite field Fq, l ≥ 2, and suppose there exists generalized projective isospectral

data (P, {θ(i)}, r) which yield isospectral billiards. Then either l = 2, the θ(i) fix the same

number of points of P, and the solutions are as previously described, or l = 3, r = 3 and

q = 2, and again the examples are as before.

K. The operator group

Suppose D is a Euclidean TI-domain on d base triangles, and let M (µ), µ ∈ {1, 2, 3}, be

the corresponding permutation d × d-matrices. Define again involutions θ(µ) on a set X

of d letters ∆1,∆2, . . . ,∆d (corresponding to the base triangles) as follows: θ(µ)(∆i) = ∆j

if M
(µ)
ij = 1 and i 6= j. In the other cases, ∆i is mapped onto itself. Then clearly,

〈θ(µ) ‖ µ ∈ {1, 2, 3}〉 is a transitive permutation group on X, which we call the operator

group of D.
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Suppose that (D1, D2) is a pair of non-congruent planar isospectral domains constructed

from unfolding an r-gon, r ≥ 3, d < ∞ times. Since the Di are constructed by unfolding

an r-gon, we can associate r involutions θ
(j)
i to Di, j = 1, 2, . . . , r and i = 1, 2. Define the

operator groups

Gi = 〈θ(j)
i 〉. (157)

Now suppose that

G1
∼= PSL(n, q) ∼= G2, (158)

with q a prime power and n ≥ 2 a natural number.

The natural geometry on which PSL(n, q) acts (faithfully) is the (n− 1)-dimensional pro-

jective space PG(n − 1, q) over the finite field Fq. It should be mentioned that PSL(n, q)

acts transitively on the points of PG(n− 1, q). So we can see the involutions θ
(j)
i for fixed

i ∈ {1, 2} as automorphisms of PG(n− 1, q) that generate PSL(n, q).

This means that for fixed i ∈ {1, 2} the triple

(PG(n− 1, q), {θ(j)
i }, r) (159)

yields generalized projective isospectral data.

Theorem VII.6 implies that (n, q) is contained in {(3, 2), (3, 3), (4, 2), (3, 4)} if n ≥ 3.

Now suppose that n = 2. We have to solve the equation

r|PG(1, q)| −
r
∑

j=1

Fix(θ
(j)
i ) = 2(|PG(1, q)| − 1), (160)

for fixed i ∈ {1, 2}, where Fix(θ
(j)
i ) is the number of fixed points in PG(1, q) of θ

(j)
i . Since

|PG(1, q)| = q + 1 and since a nontrivial element of PSL(2, q) fixes at most 2 points of

PG(1, q), an easy calculation leads to a contradiction if q ≥ 3.

Now let q = 2. Then PSL(2, 2) contains precisely 3 involutions, and they each fix precisely

one point of PG(1, 2). A numerical contradiction follows. �
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VIII. RELATED QUESTIONS

We now consider some questions related to the main one elaborated on in the present

paper.

A. Boundary conditions

So far we have mainly concentrated on billiards with Dirichlet boundary conditions. More

recently attention has been concentrated on mixed Dirichlet-Neumann boundary condi-

tions, that is, having either Ψ = 0 or ∂nΨ = 0 on different intervals of the boundary (n

being the normal to the boundary). The answer to this problem is much simpler than the

Dirichlet problem. Very simple instances of mixed-boundary condition isospectral pairs

are proposed in (Levitin et al., 2006) (see also (Jakobson et al., 2006)). Their simplest

example is reproduced at Fig. 15. Eigenfunctions are given by

sin
π(m+ 1/2)x

d
sin

πny

d
, n ≥ 1,m ≥ 0 (161)

for the square of size d, and

sin
π(m+ 1/2)x

d
√

2
sin

π(n+ 1/2)y

d
√

2
− sin

π(n+ 1/2)x

d
√

2
sin

π(m+ 1/2)y

d
√

2
, m > n ≥ 0 (162)

for the triangle of size d
√

2. These examples can be generalized: (Levitin et al., 2006) gives

1

1

1

1

Figure 15 Isospectral billiards with mixed Neumann-Dirichlet boundary conditions. Solid line =

Dirichlet; dashed line = Neumann.

a procedure to construct similar pairs. The idea is to construct an elementary domain, or
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“construction block”, whose boundary is made of two line segments a and b on the plane,

whose ends are joined by two arbitrary curves. Imposing any mixed Neumann-Dirichlet

boundary conditions on the construction block boundary, one obtains a Neumann-Dirichlet

isospectral pair by gluing the construction block together with its reflexion with respect to

either a or b (and imposing Neumann b.c. to the segment itself, Dirichlet to its image). This

technique can be further generalized by gluing together more copies of the construction

block, yielding more complicated examples. In particular this method shows that for

mixed boundary conditions it is possible to construct

• isospectral pairs such that one member is connected and the other is not;

• isospectral pairs such that one member is smooth and the other is not;

• isospectral 4-uples;

• billiards whose spectrum remains invariant when Dirichlet and Neumann boundaries

are swapped. These billiards were investigated in (Jakobson et al., 2006). The

simplest example is a billiard of semi-circular shape: if the equation of the billiard

on the complex plane is given by {z ∈ C; 0 ≤ arg(z) ≤ π; |r| ≤ 1}, the Dirichlet

boundary conditions correspond to {z ∈ C; |r| = 1, π/4 ≤ arg(z) ≤ 3π/4,<z < 0}.

A necessary condition for this Dirichlet-Neumann isospectrality is that the Dirichlet

boundary has the same total length as the Neumann boundary.

Such domains have been investigated numerically (Driscoll and Gottlieb, 2003) as well as

analytically (Okada and Shudo, 2001a), and experimental setups have been proposed in

(Driscoll and Gottlieb, 2003).

All these examples have the property that the length difference between the Dirichlet

boundary and the Neumann boundary are the same. This turns out Necessary conditions

similar to those obtained from Weyl’s law (77) applying to isospectral billiards derived

in (Levitin et al., 2006) for mixed-b.c. isospectral billiards. In particular such isospectral

pairs need to have same area, same length difference between the Dirichlet boundary and

the Neumann boundary and same curvature-singularity properties, namely

2

∫

∂B

κ(s)ds+
∑

DD

π2 − β2

β
+
∑

NN

π2 − β2

β
− 1

2

∑

DN

π2 + 2β2

β
, (163)
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where κ is the curvature and β represents the angles at the Dirichlet-Dirichlet, Neumann-

Neumann or Dirichlet-Neumann boundary intersetions.

Finally, we observe that for some of the examples produced in (Levitin et al., 2006), it

was shown that two isospectral domains produce a different number of nodal domains

(domains separated by nodal lines where Ψ = 0, see section V.H).

B. Isospectrality versus iso-length spectrality

Okada and Shudo’s result on iso-length spectrality

Let D be a planar domain obtained by unfolding N times the same triangular building

block B with sides 1, 2, 3. Then the length spectrum is the set of lengths of closed trajecto-

ries (periodic orbits) of D. Any periodic orbit on D can be regarded as a “lift” of a closed

trajectory on B, because its projection is always a periodic orbit on B. (The converse is,

of course, not necessarily true.) One observes that the number of closed lifts of a given

closed trajectory on B is counted as

nD(γ) = Tr(M (γm)M (γm−1) . . .M (γ1)), (164)

where γ =
∏

γi (γi ∈ {1, 2, 3}) denotes the sequence representing the order in which

a given closed trajectory on B hits the boundary segments. (The M (γj)’s are adjacency

matrices.) Note that such a sequence is not uniquely determined by a given closed orbit

— the number of closed lifts, however, is. So the length spectrum of D is determined

by the length spectrum of B and by nD(γ). Hence, if one considers two domains D and

D′ that are constructed by unfolding the same building block as above, it is sufficient to

prove that nD(γ) = nD′
(γ) for all possible sequences γ in order to conclude “iso-length

spectrality”.

The following is now obvious.

Theorem VIII.1 (Y. Okada and A. Shudo (Okada and Shudo, 2001b)) Let D and D′ be

two unfolded domains obtained by N times succesive reflections of the same building block.

If D and D′ are transplantable, then nD(γ) = nD′
(γ) for any sequence γ, so D and D′ are
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iso-length spectral. �

Theorem VIII.2 (Y. Okada and A. Shudo (Okada and Shudo, 2001b)) Let D and D′ be

two unfolded domains obtained by N times succesive reflections of the same building block. If

nD(γ) = nD′
(γ) for any sequence γ, then D and D′ are transplantable, so also isospectral.

Proof. LetG andG′ — respectively corresponding toD andD′ — be the groups generated

by the adjacency matrices:

G = 〈M (µ)〉, G′ = 〈N (µ)〉; (165)

then clearly G and G′ are subgroups of the symmetric group SN on N letters. Let F3 be a

free group generated by symbols a, b and c. Define the surjective homomorphism

ΦD : F3 7→ G : γ = γ1γ2 . . . γm 7→M (γm)M (γm−1) . . .M (γ1). (166)

Then

G ∼= F3/kerΦD and G′ ∼= F3/kerΦD′ , (167)

the latter notation being obvious.

Now assume that nD(γ) = nD′
(γ) for any sequence γ. Then

kerΦD = {γ ‖ ΦD(γ) = I} = {γ ‖ nD(γ) = N} = {γ ‖ nD′(γ) = N}

= {γ ‖ ΦD′(γ) = I} = kerΦD′

. (168)

So the map

∆ : G 7→ G′ : ΦD(γ) 7→ ΦD′

(γ) (169)

yields an isomorphism between G and G′.

Let (identity maps)
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ρD : G 7→ GL(N,C), ρD′

: G′ 7→ GL(N,C) (170)

be linear representations of G and G′, respectively. Since the latter groups are isomorphic,

ρ = ρD′ ◦ ∆ : ΦD(γ) 7→ ΦD′

(γ) ∈ GL(N,C) (171)

is another linear representation of G. Since nD(γ) and nD′
(γ) become (equal) characters

of the representations ρD and ρ respectively, the representations are similar. So there exists

an invertible matrix T for which

TM (µ) = N (µ)T (172)

for any µ. So D and D′ are transplantable. �

Penrose–Lifshits mushrooms

Michael Lifshits (unpublished), exploiting a type of construction attributed to R. Penrose

(see, e.g., (Rauch, 1978)), constructed a class of pairs of planar domains that, while not

isometric, have periodic geodesics of exactly the same lengths (including multiplicities).

At least when the boundaries are smooth (C∞), it follows that the two billiards have the

same wave invariants, in the sense that the traces of their wave groups, cos(t
√

∆) , differ

at most by a smooth function (Melrose, 1996). In a recent review of the inverse spectral

problem (Zelditch, 2004) S. Zelditch asked whether the Dirichlet Laplacians, ∆, for the

two domains are necessarily isospectral (judging that proposition “dubious” but not yet

refuted). Given the refutation, such billiards provide a kind of converse to the famous

examples of drums that sound the same, being drums that sound different but are very

similar geometrically — in fact, in the geometrical features deemed most relevant to the

spectrum.

In this section we describe a construction of smooth Penrose–Lifshits mushroom pairs

that are not isospectral, following (Fulling and Kuchment, 2005). Since the domains are

smooth (but not convex), the spectral difference is not attributable to diffraction from
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corners, which would muddy the definition or the relevance of “periodic geodesics”.

The construction of a mushroom starts from a half-ellipse E with foci F and F̃ :

E

F F’O

We use the tilde, whether applied to regions, curves, or points, to indicate the operation

of reflection through the minor axis of the ellipse. If two entities are interchanged by that

reflection, we call them dual. Next, add two “bumps”, B1 on the left and B2 on the right,

with B̃1 6= B2 , to form a smooth domain Ω:

F F’O

Ω

Finally, add another bump (not self-dual) between the foci in two dual ways (M , respec-

tively M̃) to get two domains Ωj :

F F’O

Ω

B
B

1
2
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respectively

B
B

1
2

Ω

F O F’

We call the domains Ω1 and Ω2 constructed in this manner a Penrose–Lifshits mushroom

pair.

We repeat that the bumps can be added in such a way that the boundaries remain smooth.

That assumption, however, is needed mainly to draw a clean conclusion about equality of

the length spectra.

Theorem VIII.3 (S. A. Fuller and P. Kuchment (Fulling and Kuchment, 2005)) If B1

and B2 are given and not dual, then there exist dual bumps M and M̃ such that the resulting

Penrose–Lifshits mushrooms Ωj have the same length spectra and wave invariants but are

not isospectral.

Proof. First we review the proof that the length spectra coincide (Melrose, 1996;

Zelditch, 2004). The geodesics in an ellipse fall into two disjoint categories (Berry, 1981;

Keller and Rubinow, 1960; Rauch, 1978):

• those that intersect the major axis between the foci, and

• those that do so at or beyond the foci.

The only exception is the major axis itself. The smoothness assumption guarantees that

the major axis will not bifurcate in Ωj by diffraction.

It follows that a similar division holds for the domains Ωj we have just described: any

geodesic originating in a bump B1 or B2 can never reach a bump M or M̃ , and vice versa.

Now, the geodesics that do not intersect the focal segment FF̃ are exactly the same for the

two domains. On the other hand, those for Ω1 that do intersect this segment are identified

one-to-one with their duals in Ω2 by the reflection operation.
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This shows length isospectrality.

Now we have to show nonisospectrality for some choice ofM . Consider the spectrum of Ω1

assuming that the bump M is small and has support on the left half of the focal segment;

i.e., to construct Ω1 the (open) segment FO in the boundary of Ω is perturbed by the

graph of a smooth, compactly supported (and nonpositive) function εf(x), where ε is a

small parameter. Let ψ0 be the ground state of the Dirichlet Laplacian on Ω and λ0 be the

corresponding lowest eigenvalue. The known Rayleigh–Hadamard formula for change of

the spectrum under domain perturbations (e.g., (Garabedian and Schiffer, 1952; L. Ivanov

and Krein, 1977; Zelditch, 2004) or (Garabedian, 1998, Section 15.1, Exercise 9)) shows

that if

∫

∂Ω

(

∂ψ0(x)

∂ν

)2

f(x)dσ(x) 6= 0,

where
∂ψ0(x)

∂ν
is the normal derivative of the eigenfunction on the boundary, then the

lowest eigenvalue λ0 changes under the perturbation. This integral gives the derivative

at ε = 0 of the lowest eigenvalue with respect to ε. Thus, if one could guarantee that

the values of this integral are different for the two small perturbation domains Ωj , this

would imply their non-isospectrality: the lowest Dirichlet eigenvalues would change with

different velocities. Since the choice of the perturbation shape f is in our hands, in order

to make these integrals different, and thus domains nonisospectral, it is sufficient to have

two mutually dual segments inside the focal segment such that the square of the normal

derivative of the ground state is not an even function on their union, I. Indeed, in this

case we could find an even perturbation f that would provide nonequal integrals (in fact,

almost any perturbation would do). �

C. Spectral problems for Lie geometries

There exists a vast literature on spectral problems for (finite) graphs — see the excellent

paper (van Dam and Haemers, 2003) on that behalf. In this section we want to consider a

spectral — “Kac type” — problem for graphs which are associated to the most important

incidence geometries.
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We have already seen that certain simple Lie groups turn up in the construction theory

of counter examples. It seems natural to extend (variations of) Kac theory to the natural

geometries on which such groups act as automorphism groups. Since the most important

rank 2 geometries are the so-called “generalized polygons”, we address the extension

for these Lie geometries. Generalized polygons are the natural generalizations of the

projective planes, but of course one could address the question(s) we consider below to

other incidence geometries.

First we need to introduce these synthetic structures.

D. Generalized polygons

In this section we state the definition of the central Lie type geometries of rank 2, namely

the “generalized polygons”, and introduce some standard notation and notions. General-

ized polygons were introduced by J. Tits in his celebrated paper (Tits, 1959), in order to

have a geometric interpretation of certain Chevalley groups of rank 2. They are also the

building bricks of (Tits) buildings, the natural geometries for the groups with a BN-pair.

A groupG is said to have a BN-pair (B,N), whereB,N are subgroups ofG, if the following

properties are satisfied:

(BN1) 〈B,N〉 = G;

(BN2) H = B ∩ N � N and N/H = W is a Coxeter group (see, e.g., (Tits, 1974)) with

distinct generators s1, s2, . . . , sn;

(BN3) BsiBwB ⊆ BwB ∪BsiwB whenever w ∈ W and i ∈ {1, 2, . . . , n};

(BN4) siBsi 6= B for all i ∈ {1, 2, . . . , n}.

The subgroup B, respectively W , is a Borel subgroup, respectively the Weyl group, of G.

The natural number n is called the rank of the BN-pair.

Example. Suppose PG(1, q) is the projective line over the finite field Fq; so PG(1, q)

has q + 1 points. Consider the natural action of PSL(2, q) on PG(1, q), and let x and y be

96



distinct points of the projective line. Put B = PSL(2, q)x and N = PSL(2, q){x,y}. Then

(B,N) is a BN-pair for PSL(2, q). Here N/(B ∩N) = W is just the group of order 2.

Example. Consider the Desarguesian projective plane PG(2, q), and PSL(3, q) in its

natural action on the latter plane. Let (x, L) be an incident point-line pair, and ∆ a triangle

(in the ordinary sense) that contains x as a point and L as a side. Put B = PSL(3, q)(x,L)

and N = PSL(3, q)∆; then (B,N) is a BN-pair for PSL(3, q) and N/(B ∩ N) = W is the

dihedral group of order 6.

The reader may want to use the monographs (J. A. Thas and Maldeghem, 2006;

Maldeghem, 1998; Payne and Thas, 1984; Thas, 2004) as standard references on the

subject of generalized polygons.

Definition and properties

We start with a synthetic definition. Let n ≥ 3 be a natural number. A (thick) generalized

n-gon or (thick) generalized polygon (GP) is a point-line geometry Γ = (P ,B, I), where P
is the point set, B the line set and I ⊂ (P ×B)∪ (B×P) the symmetric incidence relation,

so that the following axioms are satisfied:

(i) Γ contains no k-gon (in the ordinary sense), for 2 ≤ k < n;

(ii) any two elements x, y ∈ P ∪ B are contained in some ordinary n-gon in Γ;

(iii) there exists an ordinary (n+ 1)-gon in Γ.

The point graph of a point-line geometry is the graph of which the vertices are the points

of the geometry, and for which two vertices are joined by an edge if they are collinear

in the geometry. Equivalently, a generalized polygon could be defined as a point-line

geometry for which the point graph is bipartite of diameter n and girth 2n.

The generalized 3-gons are precisely the projective planes. If (iii) is not satisfied for Γ,

then Γ is called thin. Otherwise, it is called thick. Each thick generalized n-gon, n ≥ 3, Γ
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Figure 16 The unique generalized quadrangle of order 2: the symplectic W(3, 2).

has an order: there are (not necessarily finite) constants s > 1 and t > 1 so that each point

is incident with t + 1 lines and each line is incident with s + 1 points. We then say that Γ

“has order (s, t)”. Note that, for a point x and a line L, “xIL” means that (x, L) ∈ I (and

so also (L, x) ∈ I).

In this paper we only consider thick GPs.

Now let G be a group with a BN-pair (B,N) of rank 2.

One can associate a generalized polygon B(G) to the group G in the following way. For

this purpose, define P1 = 〈B,Bs1〉 and P2 = 〈B,Bs2〉.

• Call the right cosets of P1 “points”.

• Call the right cosets of P2 “lines”.

• Call two such (distinct) cosets “incident” if their intersection is nonempty (so P1g is

incident with P2h, g, h ∈ G, if P1g ∩ P2h 6= ∅).

Then B(G) is a GP — say a generalized n-gon for some natural number n — on which

G acts naturally as an automorphism group that permutes transitively the ordered n-gons

(in the ordinary sense).

Conjecture [J. Tits, (Tits, 1974, §11.5.1)]. If a finite thick generalized n-gon

is such that the automorphism group permutes transitively the ordered n-gons

(that is, if ∆ is associated with a BN-pair), then ∆ is isomorphic with the GP of

an absolutely simple group over a finite field, or with the GP of a Ree group of

Type 2F4 over a finite field.
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For more on the classification of BN-pairs of rank 2, see (Thas, a,c,d; Thas and

Maldeghem).

Duality principle

Let Γ = (P ,B, I) be a GP of order (s, t). Then ΓD = (B,P , I) clearly again is a GP, but now

of order (t, s). (The latter geometry is called the point-line dual of Γ.) So any theorem

which holds for a GP, has a dual interpretation; we call this principle “Duality Principle”.

Automorphisms and isomorphisms

Let Γ = (P ,B, I) and Γ′ = (P ′,B′, I′) be GPs. Then an isomorphism between Γ and Γ′ is a

pair (α, β) for which α is a bijection between P and P ′, β is a bijection between B and B′,

and xIL (in Γ) if and only if xαILβ. If there is an isomorphism between Γ and Γ′, we say

they are “isomorphic”, and write Γ ∼= Γ′.

If Γ = Γ′ one speaks of an “automorphism”. The set of all automorphisms of a GP forms

a group, and the classical examples of GPs are those examples that are associated to a

Chevalley group (or, equivalently, to a “classical” BN-pair), cf. (Maldeghem, 1998) for

more details.

Collinearity matrices

Suppose Γ = (P ,B, I) is a finite GP (Γ has a finite number of points and lines) of order

(s, t), put |P| = v, and let {x1, x2, . . . , xv} = P be the point set. Define the collinearity

matrix A(Γ) = A as the v × v-matrix (aij) for which aij = 1 if xi ∼ xj 6= xi (the latter

notation meaning that xi and xj are different collinear points), and 0 otherwise. So it is

the adjacency matrix of the point graph of Γ. The (point) spectrum of Γ is the spectrum of

A, and we denote it by spec(A).
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The following quantum mechanical question is the Kac inverse problem for the theory of

GPs.

QUESTION VIII.4 Let Γ and Γ′ be distinct finite thick generalized polygons with associated

collinearity matrices A and A′, respectively. Does spec(A) = spec(A′) imply that Γ ∼= Γ′?

Clearly, a similar problem can be posed for the line spectrum, but as points and lines play

essentially the same role in a GP, we will only consider the question in its above form.

We will show that Question VIII.4 can be reduced to a very important question in the

theory of GPs.

Theorem VIII.5 (K. Thas (Thas, b)) Let Γ and Γ′ be distinct finite thick generalized poly-

gons with associated collinearity matrices A and A′, respectively. Then spec(A) = spec(A′)

if and only if Γ and Γ′ have the same order.

The next section contains the proof of Theorem VIII.5.

E. Point spectra and order

Let Γ be a finite thick GP of order (s, t), with associated collinearity matrix A. Our first

concern is to calculate spec(A).

First of all, we recall a celebrated theorem of Feit and Higman (Feit and Higman, 1964):

A finite thick generalized n-gon exists if and only if n ∈ {3, 4, 6, 8}.

We will do a case-by-case analysis according to this result.

Case n = 3

Recall that a generalized 3-gon is the same as an axiomatic projective plane.

Now let Γ be a finite projective plane of order n, n ≥ 2, and put n2 +n+ 1 = v, its number

of points. Then A = Jv − Iv, where Jv is the all 1 v × v-matrix, and Iv the v × v-identity

matrix. It follows that
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spec(A) = {−1, v − 1}. (173)

So if the spectra of two finite projective planes coincide, their orders also do.

Case n = 4

Let Γ be a thick generalized 4-gon, or also “GQ” (“generalized quadrangle”) of order (s, t).

Then by (Payne and Thas, 1984, 1.2.2), we have

spec(A) = {−t− 1, s− 1, s(t+ 1)}. (174)

Now let Γ′ also be a thick GQ, with the same spectrum, of order (s′, t′). There is only one

negative eigenvalue, so −t−1 = −t′−1 and t = t′. Since s−1 < s(t+1) (s′−1 < s′(t′+1)),

it also follows that s = s′, and hence Γ and Γ′ have the same order.

Case n = 6

For this case, we need one more definition. A distance regular graph G with diameter d

is a regular connected graph with valency k for which there exist natural numbers b0 =

k, b1, . . . , bd−1; c1 = 1, c2, . . . , cd such that for each pair of vertices x and y at distance j, we

have

• |Γj−1(y) ∩ Γ1(x)| = cj, 1 ≤ j ≤ d;

• |Γj+1(y) ∩ Γ1(x)| = bj, 0 ≤ j ≤ d− 1.

Now define the constants aj = |Γj(y)∩Γ1(x)| for 0 ≤ j ≤ d. A result of (A. E. Brouwer and

Neumaier, 1989) claims that the eigenvalues of the point graph of G are the eigenvalues

of the following “intersection matrix”:
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































0 1

k a1 c2

b1 a2 .

b2 . .

. . .

. . cd

bd−1 ad

































. (175)

It just so happens to be that the collinearity graph of a generalized hexagon (= a

generalized 6-gon) is distance regular with diameter 3. An easy exercise yields, for a thick

generalized hexagon of order (s, t), the following intersection matrix:

B =















0 1 0 0

s(t+ 1) s− 1 1 0

0 st s− 1 t+ 1

0 0 st (t+ 1)(s− 1)















. (176)

The determinant of B − xI4 has the following roots:

x = −t− 1, x = s(t+ 1), x = s− 1 −
√
st, x = s− 1 +

√
st. (177)

One observes that −t− 1 is strictly the smallest eigenvalue, while s(t+ 1) is the largest. It

now easily follows that if a generalized hexagon of order (s′, t′) has the same spectrum as

Γ, then it has the same order.
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Case n = 8

Let Γ be a thick generalized octagon (8-gon) of order (s, t). Again, the point graph is

distance regular, now with diameter 4. The intersection matrix is easily seen to be the

following:

B =





















0 1 0 0 0

s(t+ 1) s− 1 1 0 0

0 st s− 1 1 0

0 0 st s− 1 t+ 1

0 0 0 st (t+ 1)(s− 1)





















, (178)

which has eigenvalues

x = −t− 1, x = s− 1, x = s(t+ 1), x = s− 1 −
√

2st, x = s− 1 +
√

2st. (179)

The third largest eigenvalue is s− 1, so, if Γ′ is a thick generalized octagon of order (s′, t′)

with the same spectrum, then s = s′. As s(t + 1) is the largest eigenvalue of spec(A), it

follows that t = t′.

This ends the proof of Theorem VIII.5. �

F. Concluding remarks

In this section, we make some comments on generalized polygons that are characterized

by their order.

PROJECTIVE PLANES. For some small values, e.g. n = 2, it is known that there is a unique

projective plane of order n (up to isomorphism). It is well-known, however, that as soon
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as n is large enough and not a prime, nonisomorphic examples exist. On the other hand,

for p a prime, only one example is known, namely the classical example PG(2, p) arising

from a BN-pair in PSL(2, p).

GENERALIZED QUADRANGLES. Many infinite classes of GQs are known, and several exam-

ples with small parameters are completely determined by their order. We refer to (Payne

and Thas, 1984, Chapter 6) for these examples. We make some comments according to

the known orders. Below, q is always a prime power. We also assume s ≤ t by reasons of

duality. (Details and references can be found in (Thas, 2004, Chapter 3).)

• (s, t) = (q2, q3). Only one example is known (for each q), namely the Hermitian

quadrangle H(4, q2).

• (s, t) = (q − 1, q + 1). If q ≥ 8 and q is even, nonisomorphic examples are known

for every q. In the other cases, only unique examples are known.

• (s, t) = (q, q). If q is odd, nonisomorphic examples are known for every q. If q ≥ 8

and q is even, we have the same remark. The other values give unique examples.

• (s, t) = (q, q2). If q ≥ 5, nonisomorphic examples are known for every q. The

examples of order (2, 4) and (3, 9) are unique.

GENERALIZED HEXAGONS. Up to duality, only two classes of generalized hexagons are

known (both associated to classical groups): the split Cayley hexagons H(q) of order q, q

a prime power, and the twisted triality hexagons T(q, q3) of order (q, q3), cf. (Maldeghem,

1998, Chapter 2). We know that

H(q) ∼= H(q)D if and only if q is a power of 3 (Maldeghem, 1998).

So if q is not as such, H(q) 6∼= H(q)D, while both have the same spectrum.

GENERALIZED OCTAGONS. Up to duality, the only known thick finite generalized octagons

are the Ree-Tits octagons O(q), where q is an odd power of 2, and can be constructed from

a BN-pair in the Ree groups of Type 2F4 (Maldeghem, 1998, Chapter 2). They have order

(q, q2).
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Finally, the reader is referred to the monograph (D. M. Cvetkovic and Sachs, 1998) for

more information on graph spectra. Also, the recent paper (van Dam and Haemers,

2003) surveys the known cases of graphs which are determined by their spectrum. In that

paper, also some generalized quadrangles with small parameters are mentioned which

are uniquely determined by their spectrum. Since such examples must have the property

that they are determined by their order, the reference (Payne and Thas, 1984, Chapter 6)

also yields these examples.

105



G. Homophonic pairs

Homophonic pairs in R2 are nonisometric compact domains which are not isospectral,

but which have a distinguished point such that the corresponding (normalized) Dirichlet

eigenfunctions take equal values at these points. This could be interpreted in the following

way: if the corresponding drums are struck at these special points, then they sound the

same in such a way that every frequency will be excited to the same intensity for each.

An example of two billiards which are not isospectral but homophonic (Buser et al., 1994)

is provided in the gallery of examples (example 211 right). These billiards sound the same

when struck at the interior points where six triangles meet.

IX. OPEN PROBLEMS

Perhaps the single most important open problem in Kac theory is the following:

Show that for all N ∈ N there exists an N∗ ≥ N such that there are isospectral

pairs on N∗ tiles.

(Equivalently, show that there are infinitely many pairs of involution graphs

which yield isospectral pairs.)

So far, only for N ≤ 21 values of N are known for which this question has a positive

answer.

Further interesting problems in construction theory are:

Construct isospectral pairs which are not transplantable.

Derive criterions for pairs of involution graphs to yield isospectral plane domains.

Construct isospectral pairs on ∞ tiles (by a free construction?).

Construct isospectral R2-domains with smooth boundaries (independent of the

tiling method.)
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Find examples of (planar) isospectral pairs not coming from Sunada triples, or

still arising from Sunada triples but not being transplantable.

On the group theoretical level, we pose the following question.

Are the operator groups of (transplantable) isospectral pairs always 2-transitive?

If so, the classification of finite simple groups could be used to classify such

operator groups. In the same spirit, one could ask as to whether other finite

simple groups can act as operator groups.

Develop a theory of isospectral “domains” for (= on) general buildings.

Note that the projective completion of R2 is a rank 2-building over R.

The same questions could all be formulated for “isospectral n-tuples”, n > 2.
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at Paris, whose hospitality is gratefully acknowledged.

108



Appendix A: The finite simple groups

In this appendix we list the finite simple groups.

Notation. n is a positive integer, q > 1 is a power of a prime number p, and is the order

of some underlying finite field. The groups we list may not be simple; often one has to

factor out the central subgroup to obtain the simple group, compare (Gordon, 1986, p.

490-491).

Infinite Families.

• Cyclic groups: Zp

• An, n > 4: Alternating groups

• An(q): Chevalley groups, linear groups; note that An(q)/Z(An(q)) ∼= PSL(n+ 1, q)

• Bn(q), n > 1: Chevalley groups, orthogonal group

• Cn(q), n > 2: Chevalley groups, symplectic groups

• Dn(q), n > 3: Chevalley groups, orthogonal groups

• E6(q): Chevalley groups

• E7(q): Chevalley groups

• E8(q): Chevalley groups

• F4(q): Chevalley groups

• G2(q): Chevalley groups

• 2An(q2), n > 1: Steinberg groups, unitary groups

• 2Dn(q2), n > 3: Steinberg groups, orthogonal groups

• 2E6(q
2): Steinberg groups

• 3D4(q
3): Steinberg groups
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• 2B2(2
2n+1): Suzuki groups

• 2F4(2
2n+1): Ree groups, Tits group

• 2G2(3
2n+1): Ree groups

Sporadic Groups.

(1) Mathieu group M11

(2) Mathieu group M12

(3) Mathieu group M22

(4) Mathieu group M23

(5) Mathieu group M24

(6) Janko group J1

(7) Janko group J2

(8) Janko group J3

(9) Janko group J4

(10) Conway group Co1

(11) Conway group Co2

(12) Conway group Co3

(13) Fischer group Fi22

(14) Fischer group Fi23

(15) Fischer group Fi24

(16) Higman-Sims group HS

(17) McLaughlin group McL

(18) Held group He
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(19) Rudvalis group Ru

(20) Suzuki sporadic group Suz

(21) O’Nan group O′N

(22) Harada-Norton group HN

(23) Lyons group Ly

(24) Thompson group Th

(25) Baby Monster group B

(26) Fischer-Griess Monster group M

Appendix B: Gallery of examples

1. Some modes

Figure 17 Fundamental modes

2. The 17 families of isospectral pairs and their mathematical properties

The following gallery presents the 17 known families of isospectral pairs, as obtained in

(Buser et al., 1994; Giraud, 2005b; Okada and Shudo, 2001a). All are based on a Sunada

triple (G,G1, G2), where G = PSL(n + 1, q) is the special linear automorphism group
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Figure 18 Triangular modes

Figure 19 15-th mode

of a finite projective space of (qn+1 − 1)/(q − 1) points, and G1, G2 are two subgroups

respectively generated by a1, b1, c1 and a2, b2, c2 given below. These automorphisms are

collineations of order 2 of the underlying finite projective space; a1, b1, c1 act on points

while a2, b2, c2 act on lines, numbered from 0 to (qn+1 − 1)/(q − 1) − 1.

Interestingly, the structure of pairs 136 and 152 forbids to construct any proper billiard,

that is structures where triangles do not overlap. It is quite simple to convince oneself of

this fact. In the case of the billiard 136 (see Fig. 28), the initial triangle is unfolded six

times around each of its corner. Clearly, to have a non-overlapping billiard, each angle

should be less than π/3, which is impossible unless the initial triangle is equilateral.

For the billiard 152 (see Fig. 33), the initial triangle is unfolded six times around two of

its corners, four times around the third one, thus two angles have to be less than π/3 and
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Figure 20 Pair 71. Sunada triple G = PSL(3, 2), Gi = 〈ai, bi, ci〉, i = 1, 2, with a1 = (0 1)(2 5),

b1 = (0 2)(3 4), c1 = (0 4)(1 6), a2 = (0 4)(2 3), b2 = (0 1)(4 6), c2 = (0 2)(1 5).

Figure 21 Pair 72. Sunada triple G = PSL(3, 2), Gi = 〈ai, bi, ci〉, i = 1, 2, with a1 = (0 1)(2 5),

b1 = (1 5)(3 4), c1 = (0 4)(1 6), a2 = (0 4)(2 3), b2 = (0 6)(1 4), c2 = (0 2)(1 5).

one less than π/2. While it is possible to construct such a billiard, it is impossible to get

a pair of planar billiards. Indeed, the role of the angles is exchanged from one billiard to

the other, which leads to the condition that the three angles be less than π/3.

Figure 22 Pair 73. Sunada triple G = PSL(3, 2), Gi = 〈ai, bi, ci〉, i = 1, 2, with a1 = (2 5)(4 6),

b1 = (1 5)(3 4), c1 = (0 4)(1 6), a2 = (0 3)(2 4), b2 = (0 6)(1 4), c2 = (0 2)(1 5).
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Figure 23 Pair 131. Sunada triple G = PSL(3, 3), Gi = 〈ai, bi, ci〉, i = 1, 2, with a1 =

(0 12)(1 10)(3 5)(6 7), b1 = (0 10)(2 9)(3 4)(5 8), c1 = (0 4)(1 6)(2 11)(9 12), a2 =

(0 4)(2 3)(6 8)(9 10), b2 = (0 12)(1 4)(5 11)(6 9), c2 = (0 10)(1 5)(2 7)(3 12).

Figure 24 Pair 132. Sunada triple G = PSL(3, 3), Gi = 〈ai, bi, ci〉, i = 1, 2, with a1 =

(0 12)(1 10)(3 5)(6 7), b1 = (1 12)(2 9)(3 8)(4 5), c1 = (0 4)(1 6)(2 11)(9 12), a2 =

(0 4)(2 3)(6 8)(9 10), b2 = (0 1)(4 12)(5 11)(8 10), c2 = (0 10)(1 5)(2 7)(3 12).

Figure 25 Pair 133. Sunada triple G = PSL(3, 3), Gi = 〈ai, bi, ci〉, i = 1, 2, with a1 =

(1 7)(3 5)(4 9)(6 10), b1 = (1 12)(2 9)(3 8)(4 5), c1 = (0 4)(1 6)(2 11)(9 12), a2 =

(0 9)(4 10)(6 8)(7 12), b2 = (0 1)(4 12)(5 11)(8 10), c2 = (0 10)(1 5)(2 7)(3 12).

Figure 26 Pair 134. Sunada triple G = PSL(3, 3), Gi = 〈ai, bi, ci〉, i = 1, 2, with a1 =

(1 7)(3 5)(4 9)(6 10), b1 = (0 5)(1 2)(6 12)(9 11), c1 = (0 4)(1 6)(2 11)(9 12), a2 =

(0 9)(4 10)(6 8)(7 12), b2 = (0 11)(1 8)(2 7)(3 4), c2 = (0 10)(1 5)(2 7)(3 12).
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Figure 27 Pair 135. Sunada triple G = PSL(3, 3), Gi = 〈ai, bi, ci〉, i = 1, 2, with a1 =

(1 7)(3 5)(4 9)(6 10), b1 = (0 5)(1 2)(6 12)(9 11), c1 = (0 4)(1 6)(2 11)(9 12), a2 =

(0 9)(4 10)(6 8)(7 12), b2 = (0 11)(1 8)(2 7)(3 4), c2 = (0 10)(1 5)(2 7)(3 12).
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Figure 28 Pair 136. Sunada triple G = PSL(3, 3), Gi = 〈ai, bi, ci〉, i = 1, 2, with a1 =

(0 2)(1 7)(3 6)(5 10), b1 = (0 6)(2 4)(3 8)(5 9), c1 = (0 5)(1 2)(6 12)(9 11), a2 =

(0 7)(3 11)(6 8)(9 12), b2 = (0 8)(1 10)(5 11)(7 9), c2 = (0 11)(1 8)(2 7)(3 4).

Figure 29 Pair 137. Sunada triple G = PSL(3, 3), Gi = 〈ai, bi, ci〉, i = 1, 2, with a1 =

(0 2)(1 7)(3 6)(5 10), b1 = (0 4)(2 3)(6 8)(9 10), c1 = (0 5)(1 2)(6 12)(9 11), a2 =

(0 7)(3 11)(6 8)(9 12), b2 = (0 12)(1 10)(3 5)(6 7), c2 = (0 11)(1 8)(2 7)(3 4).

Figure 30 Pair 138. Sunada triple G = PSL(3, 3), Gi = 〈ai, bi, ci〉, i = 1, 2, with a1 =

(0 10)(1 5)(2 7)(3 12), b1 = (0 4)(2 3)(6 8)(9 10), c1 = (0 5)(1 2)(6 12)(9 11), a2 =

(0 4)(1 6)(2 11)(9 12), b2 = (0 12)(1 10)(3 5)(6 7), c2 = (0 11)(1 8)(2 7)(3 4).

Figure 31 Pair 139. Sunada triple G = PSL(3, 3), Gi = 〈ai, bi, ci〉, i = 1, 2, with a1 =

(0 10)(1 5)(2 7)(3 12), b1 = (1 10)(3 6)(5 7)(9 11), c1 = (0 5)(1 2)(6 12)(9 11), a2 =

(0 4)(1 6)(2 11)(9 12), b2 = (0 3)(2 4)(6 8)(7 11), c2 = (0 11)(1 8)(2 7)(3 4).
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Figure 32 Pair 151. Sunada triple G = PSL(1, 2), Gi = 〈ai, bi, ci〉, i = 1, 2, with a1 =

(0 14)(1 12)(2 6)(4 5)(7 11)(9 10), b1 = (1 13)(2 7)(4 6)(8 9), c1 = (1 14)(2 12)(3 4)(8 11),

a2 = (0 11)(1 5)(3 4)(6 10)(8 9)(13 14), b2 = (0 10)(1 2)(6 9)(12 14), c2 = (0 5)(2 4)(6 7)(11 14).

Figure 33 Pair 152. Sunada triple G = PSL(1, 2), Gi = 〈ai, bi, ci〉, i = 1, 2, with a1 =

(0 14)(1 12)(2 6)(4 5)(7 11)(9 10), b1 = (1 13)(2 7)(4 6)(8 9), c1 = (0 12)(1 6)(3 5)(7 8),

a2 = (0 11)(1 5)(3 4)(6 10)(8 9)(13 14), b2 = (0 10)(1 2)(6 9)(12 14), c2 = (0 13)(1 11)(2 3)(7 10).

Figure 34 Pair 153. Sunada triple G = PSL(1, 2), Gi = 〈ai, bi, ci〉, i = 1, 2, with a1 =

(0 14)(2 11)(4 7)(5 6)(8 10)(12 13), b1 = (1 13)(2 7)(4 6)(8 9), c1 = (0 12)(1 6)(3 5)(7 8),

a2 = (0 9)(2 5)(3 4)(6 8)(10 11)(12 13), b2 = (0 10)(1 2)(6 9)(12 14), c2 = (0 13)(1 11)(2 3)(7 10).
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Figure 35 Pair 154. Sunada triple G = PSL(1, 2), Gi = 〈ai, bi, ci〉, i = 1, 2, with a1 =

(0 14)(2 11)(4 7)(5 6)(8 10)(12 13), b1 = (1 4)(2 8)(7 9)(8 9), c1 = (0 12)(1 6)(3 5)(7 8),

a2 = (0 9)(2 5)(3 4)(6 8)(10 11)(12 13), b2 = (6 9)(7 13)(12 14), c2 = (0 13)(1 11)(2 3)(7 10).

Figure 36 Pair 211. Sunada triple G = PSL(3, 4), Gi = 〈ai, bi, ci〉, i = 1, 2, with a1 =

(2 7)(3 11)(5 12)(8 18)(13 14)(15 17)(16 20), b1 = (0 17)(3 8)(4 12)(6 13)(9 19)(14 15)(16 18),

c1 = (1 8)(2 16)(4 11)(5 19)(7 14)(10 17)(13 20), a2 = (0 1)(4 17)(7 12)(9 16)(10 20)(11 13)(15 19),

b2 = (0 20)(3 16)(6 11)(8 15)(9 19)(10 12)(14 18), c2 = (1 8)(2 16)(4 11)(5 19)(7 14)(10 17)(13 20).
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